1
|
de Feraudy Y, Vandroux M, Romero NB, Schneider R, Saker S, Boland A, Deleuze JF, Biancalana V, Böhm J, Laporte J. Exome sequencing in undiagnosed congenital myopathy reveals new genes and refines genes-phenotypes correlations. Genome Med 2024; 16:87. [PMID: 38982518 PMCID: PMC11234750 DOI: 10.1186/s13073-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.
Collapse
Affiliation(s)
- Yvan de Feraudy
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Department of Pediatric Neurology, CHU Strasbourg, Strasbourg, France
- Centre de Référence Neuromusculaire Nord-Est-Île de France, Strasbourg, France
| | - Marie Vandroux
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Norma Beatriz Romero
- Myology Institute, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Raphaël Schneider
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Safaa Saker
- Genethon, DNA and Cell Bank, Evry, 91000, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Valérie Biancalana
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Laboratoire de Diagnostic Génétique CHRU de Strasbourg, Strasbourg, 67091, France
| | - Johann Böhm
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
2
|
Deng Q, Ding Z, Fu Q, Lin M. One case of congenital myopathy caused by new mutation of RYR1 gene and literature review. Gene 2023:147493. [PMID: 37207825 DOI: 10.1016/j.gene.2023.147493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To report a case of congenital myopathy caused by RYR1 gene complex heterozygous mutation and analyze the pathogenicity of the mutation. Method The clinical manifestation, laboratory examination, imaging findings, muscle pathology and gene test results of a child with congenital myopathy were analyzed retrospectively. Combined with literature review, it is analyzed and discussed. Result The child, female, was admitted to hospital because of "dyspnea for 22 minutes after asphyxia resuscitation". The main manifestations are low muscle tension, the original reflex cannot be drawn out, the trunk and proximal muscles are weak, and the tendon reflex is not drawn out. The pathological signs were negative. The electrolyte of blood liver and kidney function, blood thyroid and blood ammonia were not abnormal, and creatine kinase increased temporarily. Electromyography suggests myogenic damage. Whole exome sequencing showed that there was a new compound heterozygous variation in RYR1 gene c.14427_ 14429del/c.14138C>T.Western blot showed that the expression of RYR1 protein in patients was significantly lower than that in normal controls. Conclusion The compound heterozygous variation of RYR1 gene c.14427 was reported for the first time in China_ 14429del/c.14138c > t is the pathogenic gene of the child. The new discovery of RYR1 gene spectrum was revealed, which expanded the RYR1 gene spectrum.
Collapse
Affiliation(s)
- Qingxian Deng
- Department of Neonatology, Huzhou Maternity and Child Care Hospital of Zhejiang Province, Huzhou 313000, China
| | - Zhongying Ding
- Department of Medical Laboratory Center, Huzhou Maternity and Child Care Hospital of Zhejiang Province, Huzhou 313000, China
| | - Qinqin Fu
- Department of Neonatology, Huzhou Maternity and Child Care Hospital of Zhejiang Province, Huzhou 313000, China
| | - Meifang Lin
- Department of Neonatology, Huzhou Maternity and Child Care Hospital of Zhejiang Province, Huzhou 313000, China.
| |
Collapse
|
3
|
Granger A, Beecher G, Liewluck T, Nicolau S, Flanigan KM, Laughlin RS, Milone M. Inherited myopathy plus: Double-trouble from rare neuromuscular disorders. Neuromuscul Disord 2023; 33:153-160. [PMID: 36628841 DOI: 10.1016/j.nmd.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
A rare disorder in the USA is one that affects <200,000 people, making inherited myopathies rare diseases. Increasing access to genetic testing has been instrumental for the diagnosis of inherited myopathies. Genetic findings, however, require clinical correlation due to variable phenotype, polygenic etiology of certain inherited disorders, and possible co-existing independent neuromuscular disorders. We searched the Mayo Clinic Rochester medical record (2004-2020) to identify adult patients carrying pathogenic variants or likely pathogenic variants in genes causative of myopathies and having a coexisting independent neuromuscular disorder classified as rare at https://rarediseases.info.nih.gov/. One additional patient was identified at Nationwide Children's hospital. Clinical and laboratory findings were reviewed. We identified 14 patients from 13 families fulfilling search criteria. Seven patients had a "double-trouble" inherited myopathy; two had an inherited myopathy with coexistent idiopathic myositis; three had an inherited myopathy with coexisting rare neuromuscular disorder of neurogenic type; a female DMD carrier had co-existing distal spinal muscular atrophy, which was featuring the clinical phenotype; and a patient with a MYH7 pathogenic variant had Sandhoff disease causing motor neuron disease. These cases highlight the relevance of correlating genetic findings, even when diagnostic, with clinical features, to allow precise diagnosis, optimal care, and accurate prognosis.
Collapse
Affiliation(s)
- Andre Granger
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|
4
|
Management of patients susceptible to malignant hyperthermia: A surgeon's perspective. Int J Pediatr Otorhinolaryngol 2022; 159:111187. [PMID: 35660936 DOI: 10.1016/j.ijporl.2022.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/28/2022] [Accepted: 05/21/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Malignant hyperthermia (MH) susceptibility caries broad implications for the care of pediatric surgical patients. While precautions must often be taken for only a vague family history, two options exist to assess MH-susceptibility. We evaluate the use of MH precautions and susceptibility testing at a freestanding children's hospital. METHODS This single institution retrospective cohort study identified patients of any age who received general anesthetics utilizing MH precautions over a five-year period. The electronic medical record was further queried for patients diagnosed with MH. The indication for MH precautions and uses of susceptibility testing are assessed. Secondary outcomes included a diagnosis of bona fide MH. RESULTS A total of 125 patients received 174 anesthetics with MH precautions at a mean age of 114 months (0-363 months). Otolaryngology was the procedural service most frequently involved in the care of the cohort (n = 45; 26%). A reported personal or family history of MH (n = 102; 59%) was the most common indication for precautions, followed by muscular dystrophy (n = 29; 17%). No MH events occurred in the cohort and further review of ICD-9 and -10 diagnosis codes found no MH diagnoses. No study subjects received muscle biopsy and contracture testing and only 5 (4%) underwent genetic testing for genomic variants known to cause MH susceptibility. A case example is given to highlight the implications of a reported MH history. CONCLUSION Otolaryngologists should maintain a familiarity with the precautions necessary to manage patients at risk for MH and MH-like reactions. Without an accessible test to rule out susceptibility, surgeons must rely on a careful history to appropriately utilize precautions. An inappropriate label of "MH-susceptible" may result in decreased access to care and treatment delays.
Collapse
|
5
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
6
|
Lawal TA, Patankar A, Todd JJ, Razaqyar MS, Chrismer IC, Zhang X, Waite MR, Jain MS, Emile-Backer M, Witherspoon JW, Liu CY, Grunseich C, Meilleur KG. Ryanodine Receptor 1-Related Myopathies: Quantification of Intramuscular Fatty Infiltration from T1-Weighted MRI. J Neuromuscul Dis 2021; 8:657-668. [PMID: 33646171 PMCID: PMC8385519 DOI: 10.3233/jnd-200549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Ryanodine receptor 1-related myopathy (RYR1-RM) can present with a selective pattern and gradient of intramuscular fatty infiltration (IMFI) on magnetic resonance imaging (MRI). Objective: To demonstrate an automated protocol for quantification of IMFI in the lower extremity muscles of individuals with RYR1-RM using T1-weighted MRI and to examine the relationships of IMFI with motor function and clinical severity. Methods: Axial images of the lower extremity muscles were acquired by T1-weighted fast spin-echo and short tau inversion recovery (STIR) sequences. A modified ImageJ-based program was used for quantification. IMFI data was analyzed by mode of inheritance, motor function, and clinical severity. Results: Upper and lower leg IMFI from 36 genetically confirmed and ambulatory RYR1-RM affected individuals (26 dominant and 10 recessive) were analyzed using Grey-scale quantification. There was no statistically significant difference in IMFI between dominant and recessive cases in upper or lower legs. IMFI in both upper and lower legs was inversely correlated with participant performance on the motor function measure (MFM-32) total score (upper leg: p < 0.001; lower leg: p = 0.003) and the six-minute walk test (6MWT) distance (upper leg: p < 0.001; lower leg: p = 0.010). There was no significant difference in mean IMFI between participants with mild versus severe clinical phenotypes (p = 0.257). Conclusion: A modified ImageJ-based algorithm was able to select and quantify fatty infiltration in a cohort of heterogeneously affected individuals with RYR1-RM. IMFI was not predictive of mode of inheritance but showed strong correlation with motor function and capacity tests including MFM-32 and 6MWT, respectively.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Aneesh Patankar
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NIH), Bethesda, MD, USA
| | - Joshua J Todd
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Muslima S Razaqyar
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Irene C Chrismer
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Xuemin Zhang
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Melissa R Waite
- Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Magalie Emile-Backer
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Jessica W Witherspoon
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Chia-Ying Liu
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NIH), Bethesda, MD, USA
| | - Katherine G Meilleur
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| |
Collapse
|
7
|
Functional analysis of newly identified RYR1 variants in patients susceptible to malignant hyperthermia. J Anesth 2020; 34:658-665. [PMID: 32535660 DOI: 10.1007/s00540-020-02803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aimed to evaluate whether the three ryanodine receptor type 1 (RYR1) variants (p.Ser2345Thr, p.Ser2345Arg, and p.Lys3367Arg) which we identified in Japanese malignant hyperthermia (MH) patients with a clinical grading scale rank of 6 were causative for MH. METHODS We prepared human embryonic kidney (HEK)-293 cells transfected with wild-type RYR1 or one of the RYR1 variants, along with myotubes cultured from muscle pieces. Calcium kinetics were examined by calculating the 340/380-nm ratio under various caffeine and 4-chloro-m-cresol (4CmC) concentrations with the ratiometric dye Fura-2 AM. Half-maximal effective concentration (EC50) values were calculated from dose-response curves. Statistical analysis was based on one-way analysis of variance with a Dunnett's multiple comparison test, using a P value < 0.05 as evidence of statistical significance. RESULTS In functional analysis using HEK-293 cells, we found significant reductions in the EC50 of p.Ser2345Thr and p.Ser2345Arg in comparison with wild-type RYR1 (P < 0.001), while the EC50 of p.Lys3367Arg was not significantly different (P = 0.062 for caffeine and P > 0.999 for 4CmC). On the other hand, functional analysis using myotubes showed significant differences in the EC50 values for all variants (P < 0.001 for all comparisons). CONCLUSIONS p.Ser2345Thr and p.Ser2345Arg appear capable of causing a calcium metabolism disorder that leads to the onset of MH, and p.Ser2345Arg can be considered as a diagnostic mutation, because it meets the European Malignant Hyperthermia Group criteria. However, patients with p.Lys3367Arg might have mutations in genes other than RYR1 that are capable of causing MH.
Collapse
|
8
|
Gardner L, Miller DM, Daly C, Gupta PK, House C, Roiz de Sa D, Shaw MA, Hopkins PM. Investigating the genetic susceptibility to exertional heat illness. J Med Genet 2020; 57:531-541. [DOI: 10.1136/jmedgenet-2019-106461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022]
Abstract
BackgroundWe aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap.MethodsThe coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature.ResultsWe found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI.ConclusionWe confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.
Collapse
|
9
|
An Assessment of Penetrance and Clinical Expression of Malignant Hyperthermia in Individuals Carrying Diagnostic Ryanodine Receptor 1 Gene Mutations. Anesthesiology 2019; 131:983-991. [PMID: 31206373 PMCID: PMC9912949 DOI: 10.1097/aln.0000000000002813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Malignant hyperthermia (MH) is a potentially lethal disorder triggered by certain anesthetics. Mutations in the ryanodine receptor 1 (RYR1) gene account for about half of MH cases. Discordance between the low incidence of MH and a high prevalence of mutations has been attributed to incomplete penetrance, which has not been quantified yet. The authors aimed to examine penetrance of MH-diagnostic RYR1 mutations and the likelihood of mutation carriers to develop MH, and to identify factors affecting severity of MH clinical expression. METHODS In this multicenter case-control study, data from 125 MH pedigrees between 1994 and 2017 were collected from four European registries and one Canadian registry. Probands (survivors of MH reaction) and their relatives with at least one exposure to anesthetic triggers, carrying one diagnostic RYR1 mutation, were included. Penetrance (percentage of probands among all genotype-positive) and the probability of a mutation carrier to develop MH were obtained. MH onset time and Clinical Grading Scale score were used to assess MH reaction severity. RESULTS The overall penetrance of nine RYR1 diagnostic mutations was 40.6% (93 of 229), without statistical differences among mutations. Likelihood to develop MH on exposure to triggers was 0.25 among all RYR1 mutation carriers, and 0.76 in probands (95% CI of the difference 0.41 to 0.59). Penetrance in males was significantly higher than in females (50% [62 of 124] vs. 29.7% [30 of 101]; P = 0.002). Males had increased odds of developing MH (odds ratio, 2.37; 95% CI, 1.36 to 4.12) despite similar levels of exposure to trigger anesthetics. Proband's median age was 12 yr (interquartile range 6 to 32.5). CONCLUSIONS Nine MH-diagnostic RYR1 mutations have sex-dependent incomplete penetrance, whereas MH clinical expression is influenced by patient's age and the type of anesthetic. Our quantitative evaluation of MH penetrance reinforces the notion that a previous uneventful anesthetic does not preclude the possibility of developing MH.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW We will give an overview of neuromuscular disorders that can be linked with malignant hyperthermia or malignant hyperthermia-like reactions, and suggest an appropriate approach to interpret the risks. RECENT FINDINGS An increasing number of neuromuscular phenotypes have been linked to malignant hyperthermia susceptibility (MHS). This is for an important part due to the highly variable phenotype associated with mutations in the ryanodine receptor 1 gene (RYR1), the gene most frequently associated with MHS. A RYR1-mutation or a clinical RYR1-phenotype does not automatically translate in MHS, but precautions should be taken nonetheless. In addition, several other genes and phenotypes are now considered to be associated with MHS. In contrast, several neuromuscular diseases that were long thought to be linked to MHS are now known to cause malignant hyperthermia-like reactions instead of malignant hyperthermia. This is highly relevant as not only the given preoperative advice differs, but also acute treatment. SUMMARY This review provides a summary of current evidence linking certain neuromuscular diseases to malignant hyperthermia or malignant hyperthermia-like reactions. We provide a guide for the clinician, to determine which patients are at risk of malignant hyperthermia or malignant hyperthermia-like reactions perioperatively, and to ensure adequate treatment in case such a severe acute complication occurs.
Collapse
|
11
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
12
|
Abstract
The congenital myopathies are a genetically heterogeneous and diverse group of early-onset, nondystrophic neuromuscular disorders. While the originally reported "classical" entities within this group - Central Core Disease, Multiminicore Disease, Nemaline Myopathy, and Centronuclear Myopathy - were defined by the predominant finding on muscle biopsy, "novel" forms with multiple, subtle, and unusual histopathologic features have been described more recently, reflective of an expanding phenotypical spectrum. The main disease mechanisms concern excitation-contraction coupling, intracellular calcium homeostasis, and thin/thick filament interactions. Management to date has been mainly supportive. Therapeutic strategies currently at various stages of exploration include genetic interventions aimed at direct correction of the underlying genetic defect, enzyme replacement therapy, and pharmacologic approaches, either specifically targeting the principal effect of the underlying gene mutation, or addressing its downstream consequences more generally. Clinical trial development is accelerating but will require more robust natural history data and tailored outcome measures.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom.
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
13
|
Knuiman GJ, Küsters B, Eshuis L, Snoeck M, Lammens M, Heytens L, De Ridder W, Baets J, Scalco RS, Quinlivan R, Holton J, Bodi I, Wraige E, Radunovic A, von Landenberg C, Reimann J, Kamsteeg EJ, Sewry C, Jungbluth H, Voermans NC. The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. J Neurol 2019; 266:876-887. [PMID: 30788618 PMCID: PMC6420893 DOI: 10.1007/s00415-019-09209-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The histopathological features of malignant hyperthermia (MH) and non-anaesthetic (mostly exertional) rhabdomyolysis (RM) due to RYR1 mutations have only been reported in a few cases. METHODS We performed a retrospective multi-centre cohort study focussing on the histopathological features of patients with MH or RM due to RYR1 mutations (1987-2017). All muscle biopsies were reviewed by a neuromuscular pathologist. Additional morphometric and electron microscopic analysis were performed where possible. RESULTS Through the six participating centres we identified 50 patients from 46 families, including patients with MH (n = 31) and RM (n = 19). Overall, the biopsy of 90% of patients showed one or more myopathic features including: increased fibre size variability (n = 44), increase in the number of fibres with internal nuclei (n = 30), and type I fibre predominance (n = 13). Abnormalities on oxidative staining, generally considered to be more specifically associated with RYR1-related congenital myopathies, were observed in 52%, and included unevenness (n = 24), central cores (n = 7) and multi-minicores (n = 3). Apart from oxidative staining abnormalities more frequently observed in MH patients, the histopathological spectrum was similar between the two groups. There was no correlation between the presence of cores and the occurrence of clinically detectable weakness or presence of (likely) pathogenic variants. CONCLUSIONS Patients with RYR1-related MH and RM exhibit a similar histopathological spectrum, ranging from mild myopathic changes to cores and other features typical of RYR1-related congenital myopathies. Suggestive histopathological features may support RYR1 involvement, also in cases where the in vitro contracture test is not informative.
Collapse
Affiliation(s)
- G J Knuiman
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B Küsters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - L Eshuis
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Snoeck
- National MH Investigation Unit, Department of Anaesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - M Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - L Heytens
- Malignant Hyperthermia Research Unit, University of Antwerp, Antwerp, Belgium
| | - W De Ridder
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - J Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - R S Scalco
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - R Quinlivan
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - J Holton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - I Bodi
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - E Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - A Radunovic
- Barts Neuromuscular Diseases Centre, Royal London Hospital, London, UK
| | - C von Landenberg
- Muscle Lab, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - J Reimann
- Muscle Lab, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - E-J Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Muscle Signalling Section, Randall Division for Cell and Molecular Biophysics, King's College, London, UK
- Department of Basic and Clinical Neuroscience, King's College, IoPPN, London, UK
| | - N C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Samões R, Oliveira J, Taipa R, Coelho T, Cardoso M, Gonçalves A, Santos R, Melo Pires M, Santos M. RYR1-Related Myopathies: Clinical, Histopathologic and Genetic Heterogeneity Among 17 Patients from a Portuguese Tertiary Centre. J Neuromuscul Dis 2018; 4:67-76. [PMID: 28269792 DOI: 10.3233/jnd-160199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pathogenic variants in ryanodine receptor type 1 (RYR1) gene are an important cause of congenital myopathy. The clinical, histopathologic and genetic spectrum is wide. OBJECTIVE Review a group of the patients diagnosed with ryanodinopathy in a tertiary centre from North Portugal, as an attempt to define some phenotypical patterns that may help guiding future diagnosis. METHODS Patients were identified from the database of the reference centre for Neuromuscular Disorders in North Portugal. Their data (clinical, histological and genetic) was retrospectively accessed. RESULTS Seventeen RYR1-related patients (including 4 familial cases) were identified. They were divided in groups according to three distinctive clinical characteristics: extraocular muscle (EOM) weakness (N = 6), disproportionate axial muscle weakness (N = 2) and joint laxity (N = 5). The fourth phenotype includes patients with mild tetraparesis and no distinctive clinical features (N = 4). Four different histopathological patterns were found: centronuclear (N = 5), central core (N = 4), type 1 fibres predominance (N = 4) and congenital fibre type disproportion (N = 1) myopathies. Each index case, except two patients, had a different RYR1 variant. Four new genetic variants were identified. All centronuclear myopathies were associated with autosomal recessive inheritance and EOM weakness. All central core myopathies were caused by pathogenic variants in hotspot 3 with autosomal dominant inheritance. Three genetic variants were reported to be associated to malignant hyperthermia susceptibility. CONCLUSIONS Distinctive clinical features were recognized as diagnostically relevant: extraocular muscle weakness (and centronuclear pattern on muscle biopsy), severe axial weakness disproportionate to the ambulatory state and mild tetraparesis associated with (proximal) joint laxity. There was a striking genetic heterogeneity, including four new RYR1 variants.
Collapse
Affiliation(s)
- Raquel Samões
- Department of Neurology, Centro Hospitalar do Porto, Porto, Portugal
| | - Jorge Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ricardo Taipa
- Neuropathology Unit, Centro Hospitalar do Porto, Porto, Portugal
| | - Teresa Coelho
- Department of Neurophysiology and Neuromuscular Disorders Outpatient Clinic, Centro Hospitalar do Porto, Porto, Portugal
| | - Márcio Cardoso
- Department of Neurophysiology and Neuromuscular Disorders Outpatient Clinic, Centro Hospitalar do Porto, Porto, Portugal
| | - Ana Gonçalves
- Unidade de Genética Molecular, Centro de Genética Médica, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | - Manuela Santos
- Neuromuscular Disorders Outpatient Clinic and Department of Neuropaediatrics, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
16
|
Punetha J, Kesari A, Uapinyoying P, Giri M, Clarke NF, Waddell LB, North KN, Ghaoui R, O'Grady GL, Oates EC, Sandaradura SA, Bönnemann CG, Donkervoort S, Plotz PH, Smith EC, Tesi-Rocha C, Bertorini TE, Tarnopolsky MA, Reitter B, Hausmanowa-Petrusewicz I, Hoffman EP. Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases. J Neuromuscul Dis 2018; 3:209-225. [PMID: 27854218 DOI: 10.3233/jnd-160151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. OBJECTIVE To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. METHODS We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. RESULTS We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. CONCLUSIONS Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.
Collapse
Affiliation(s)
- Jaya Punetha
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Akanchha Kesari
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Prech Uapinyoying
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mamta Giri
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Nigel F Clarke
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Leigh B Waddell
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Kathryn N North
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Roula Ghaoui
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Gina L O'Grady
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Emily C Oates
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Sarah A Sandaradura
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - Paul H Plotz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward C Smith
- Department of Pediatrics, Division of Pediatric Neurology, Duke University Medical Center, Durham, NC, USA
| | - Carolina Tesi-Rocha
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Tulio E Bertorini
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark A Tarnopolsky
- Departments of Pediatrics and Medicine, McMaster University, Neuromuscular Disease Clinic, Health Sciences Centre, ON, Canada
| | - Bernd Reitter
- Children's Hospital, Johannes Gutenberg University, Mainz, Germany
| | | | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
17
|
Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018; 14:151-167. [PMID: 29391587 DOI: 10.1038/nrneurol.2017.191] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation-contraction coupling, thin-thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.
Collapse
|
18
|
Abstract
This review identifies disease states associated with malignant hyperthermia susceptibility based on genotypic and phenotypic findings, and a framework is established for clinicians to identify a potentially malignant hyperthermia–susceptible patient.
Collapse
|
19
|
Abstract
This article reviews advancements in the genetics of malignant hyperthermia, new technologies and approaches for its diagnosis, and the existing limitations of genetic testing for malignant hyperthermia. It also reviews the various RYR1-related disorders and phenotypes, such as myopathies, exertional rhabdomyolysis, and bleeding disorders, and examines the connection between these disorders and malignant hyperthermia.
Collapse
|
20
|
Brackmann F, Türk M, Gratzki N, Rompel O, Jungbluth H, Schröder R, Trollmann R. Compound heterozygous RYR1 mutations in a preterm with arthrogryposis multiplex congenita and prenatal CNS bleeding. Neuromuscul Disord 2017; 28:54-58. [PMID: 29169929 DOI: 10.1016/j.nmd.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 01/23/2023]
Abstract
RYR1 mutations, the most common cause of non-dystrophic neuromuscular disorders, are associated with the malignant hyperthermia susceptibility (MHS) trait as well as congenital myopathies with widely variable clinical and histopathological manifestations. Recently, bleeding anomalies have been reported in association with certain RYR1 mutations. Here we report a preterm infant born at 32 weeks gestation with arthrogryposis multiplex congenita due to compound heterozygous, previously MHS-associated RYR1 mutations, with additional signs of prenatal hemorrhage. The patient presented at birth with multiple joint contractures, scoliosis, severe thoracic rigidity and respiratory failure. He continued to depend on mechanical ventilation and tube feeding. Muscle histopathology showed a marked myopathic pattern with eccentric cores. Interestingly, the patient had additional unusual prenatal intraventricular hemorrhage, resulting in post-hemorrhagic hydrocephalus as well as epidural hemorrhage affecting the spinal cord. This report adds to the phenotypic variability associated with RYR1 mutations, and highlights possible bleeding complications in affected individuals.
Collapse
Affiliation(s)
- Florian Brackmann
- Department of Pediatrics, Neuropediatrics, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany.
| | - Matthias Türk
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany
| | - Nils Gratzki
- Department of Pediatrics, Neonatology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany
| | - Oliver Rompel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany
| | - Heinz Jungbluth
- Department of Pediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London, UK; Randall Division of Cell and Molecular, Biophysics Muscle Signalling Section, King's College, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College, London, UK
| | - Rolf Schröder
- Department of Neuropathology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany
| | - Regina Trollmann
- Department of Pediatrics, Neuropediatrics, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany
| |
Collapse
|
21
|
Abath Neto O, Moreno CDAM, Malfatti E, Donkervoort S, Böhm J, Guimarães JB, Foley AR, Mohassel P, Dastgir J, Bharucha-Goebel DX, Monges S, Lubieniecki F, Collins J, Medne L, Santi M, Yum S, Banwell B, Salort-Campana E, Rendu J, Fauré J, Yis U, Eymard B, Cheraud C, Schneider R, Thompson J, Lornage X, Mesrob L, Lechner D, Boland A, Deleuze JF, Reed UC, Oliveira ASB, Biancalana V, Romero NB, Bönnemann CG, Laporte J, Zanoteli E. Common and variable clinical, histological, and imaging findings of recessive RYR1-related centronuclear myopathy patients. Neuromuscul Disord 2017; 27:975-985. [PMID: 28818389 DOI: 10.1016/j.nmd.2017.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/04/2023]
Abstract
Mutations in RYR1 give rise to diverse skeletal muscle phenotypes, ranging from classical central core disease to susceptibility to malignant hyperthermia. Next-generation sequencing has recently shown that RYR1 is implicated in a wide variety of additional myopathies, including centronuclear myopathy. In this work, we established an international cohort of 21 patients from 18 families with autosomal recessive RYR1-related centronuclear myopathy, to better define the clinical, imaging, and histological spectrum of this disorder. Early onset of symptoms with hypotonia, motor developmental delay, proximal muscle weakness, and a stable course were common clinical features in the cohort. Ptosis and/or ophthalmoparesis, facial weakness, thoracic deformities, and spinal involvement were also frequent but variable. A common imaging pattern consisted of selective involvement of the vastus lateralis, adductor magnus, and biceps brachii in comparison to adjacent muscles. In addition to a variable prominence of central nuclei, muscle biopsy from 20 patients showed type 1 fiber predominance and a wide range of intermyofibrillary architecture abnormalities. All families harbored compound heterozygous mutations, most commonly a truncating mutation combined with a missense mutation. This work expands the phenotypic characterization of patients with recessive RYR1-related centronuclear myopathy by highlighting common and variable clinical, histological, and imaging findings in these patients.
Collapse
Affiliation(s)
- Osorio Abath Neto
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France; Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | | | - Edoardo Malfatti
- Center for Research in Myology, Sorbonne University, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | - Johann Böhm
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | | | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | | | - Soledad Monges
- Servicio de Neurología y Servicio de Patologia, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Servicio de Neurología y Servicio de Patologia, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - James Collins
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Līvija Medne
- Individualized Medical Genetics Center, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariarita Santi
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sabrina Yum
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brenda Banwell
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emmanuelle Salort-Campana
- APHM, Dept. Neurology, Neuromuscular & ALS Reference Center, La Timone Univ. Hospital, France Aix Marseille Université, INSERM, GMGF, Marseille, France
| | - John Rendu
- Dept. Biochemistry, Molecular Biochemistry & Genetics, Toxicology & Pharmacology, Grenoble Alpes University, GIN Inst. Neurosciences, Grenoble, France
| | - Julien Fauré
- Dept. Biochemistry, Molecular Biochemistry & Genetics, Toxicology & Pharmacology, Grenoble Alpes University, GIN Inst. Neurosciences, Grenoble, France
| | - Uluc Yis
- Division of Child Neurology, Department of Pediatrics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Bruno Eymard
- Paris-Est Neuromuscular Center, APHP - GH Pitié-Salpêtrière, Paris, France
| | - Chrystel Cheraud
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Raphaël Schneider
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France; Department of Computer Science, ICube, UMR 7357, CNRS, Strasbourg, France
| | - Julie Thompson
- Department of Computer Science, ICube, UMR 7357, CNRS, Strasbourg, France
| | - Xaviere Lornage
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Lilia Mesrob
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Doris Lechner
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | | | - Umbertina Conti Reed
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Acary Souza Bulle Oliveira
- Setor de Doenças Neuromusculares, Departamento de Neurologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Valérie Biancalana
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France; Faculté de Médecine, Laboratoire de Diagnostic Génétique, Nouvel Hopital Civil, Strasbourg, France
| | - Norma B Romero
- Center for Research in Myology, Sorbonne University, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD, USA
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.
| |
Collapse
|
22
|
Schiemann AH, Stowell KM. Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia. Br J Anaesth 2016; 117:124-8. [PMID: 27147545 DOI: 10.1093/bja/aew065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is a pharmacogenetic disorder that has been linked to the skeletal muscle calcium release channel (RYR1) and the α1S subunit of the voltage-dependent L-type calcium channel (CACNA1S). Genomic DNA capture and next generation sequencing are becoming the preferred method to identify mutations in these genes. Bioinformatic pathogenicity prediction of identified variants may help to determine if these variants are in fact disease causing. METHODS Eight pathogenicity prediction programmes freely available on the web were used to determine their ability to correctly predict the impact of a missense variant on RyR1 or dihydropyridine receptor (DHPR) protein function. We tested MH-causative variants, variants that had been shown to alter calcium release in cells, and common sequence variants in RYR1 and CACNA1S. RESULTS None of the prediction programmes was able to identify all of the variants tested correctly as either 'damaging' (MH-causative variants, variants that had been shown to alter calcium release in cells) or as 'benign' (common sequence variants). The overall sensitivity of predictions ranged from 84% to 100% depending on the programme used, with specificity from 25% to 83%. CONCLUSIONS In this study we determined the sensitivity and specificity of bioinformatic pathogenicity prediction tools for RYR1 and CACNA1S. We suggest that the prediction results should be treated with caution, as none of the programmes tested predicted all the variants correctly and should only be used in combination with other available data (functional assays, segregation analysis).
Collapse
Affiliation(s)
- A H Schiemann
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - K M Stowell
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
23
|
Stephens J, Schiemann AH, Roesl C, Miller D, Massey S, Pollock N, Bulger T, Stowell K. Functional analysis of RYR1 variants linked to malignant hyperthermia. Temperature (Austin) 2016; 3:328-339. [PMID: 27857962 PMCID: PMC4964997 DOI: 10.1080/23328940.2016.1153360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/04/2022] Open
Abstract
Malignant hyperthermia manifests as a rapid and sustained rise in temperature in response to pharmacological triggering agents, e.g. inhalational anesthetics and the muscle relaxant suxamethonium. Other clinical signs include an increase in end-tidal CO2, increased O2 consumption, as well as tachycardia, and if untreated a malignant hyperthermia episode can result in death. The metabolic changes are caused by dysregulation of skeletal muscle Ca2+ homeostasis, resulting from a defective ryanodine receptor Ca2+ channel, which resides in the sarcoplasmic reticulum and controls the flux of Ca2+ ions from intracellular stores to the cytoplasm. Most genetic variants associated with susceptibility to malignant hyperthermia occur in the RYR1 gene encoding the ryanodine receptor type 1. While malignant hyperthermia susceptibility can be diagnosed by in vitro contracture testing of skeletal muscle biopsy tissue, it is advantageous to use DNA testing. Currently only 35 of over 400 potential variants in RYR1 have been classed as functionally causative of malignant hyperthermia and thus can be used for DNA diagnostic tests. Here we describe functional analysis of 2 RYR1 variants (c. 7042_7044delCAG, p.ΔGlu2348 and c.641C>T, p.Thr214Met) that occur in the same malignant hyperthermia susceptible family. The p.Glu2348 deletion, causes hypersensitivity to ryanodine receptor agonists using in vitro analysis of cloned human RYR1 cDNA expressed in HEK293T cells, while the Thr214Met substitution, does not appear to significantly alter sensitivity to agonist in the same system. We suggest that the c. 7042_7044delCAG, p.ΔGlu2348 RYR1 variant could be added to the list of diagnostic mutations for susceptibility to malignant hyperthermia.
Collapse
Affiliation(s)
- Jeremy Stephens
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Cornelia Roesl
- Centre for Integrative Physiology, The University of Edinburgh , Edinburgh, United Kingdom
| | - Dorota Miller
- UK Malignant Hyperthermia Investigation Unit, Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Sean Massey
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Neil Pollock
- Anaesthetic Department, Palmerston North Hospital , Palmerston North, New Zealand
| | - Terasa Bulger
- Anaesthetic Department, Palmerston North Hospital , Palmerston North, New Zealand
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| |
Collapse
|
24
|
Bamaga AK, Riazi S, Amburgey K, Ong S, Halliday W, Diamandis P, Guerguerian AM, Dowling JJ, Yoon G. Neuromuscular conditions associated with malignant hyperthermia in paediatric patients: A 25-year retrospective study. Neuromuscul Disord 2016; 26:201-6. [PMID: 26951757 DOI: 10.1016/j.nmd.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
Abstract
Malignant Hyperthermia (MH) is a rare pharmacogenetic syndrome that can be fatal and the risk of MH in non RYR1-related disorders is unknown. We conducted a retrospective study to determine the prevalence of neuromuscular disorders among patients with MH at our centre. Patients who were admitted to the Hospital for Sick Children during the study period of January 1, 1990 to April 1, 2015 with a CK level > 8000 IU/L, or who received dantrolene, or who had a clinical diagnosis of MH were included. Medical records of 166 patients who met the inclusion criteria were reviewed and 13 patients were identified with MH-like reactions. Nine patients were classified as having true MH after review of the anaesthesia record and genetic testing results were available for 7 patients, 5 of whom had mutations in RYR1. Of the four patients who had severe reactions to anaesthesia but did not meet the criteria for true MH, two had Duchenne muscular dystrophy (DMD). In this retrospective study over 25 years, RYR1 mutations were the most common cause of MH in our cohort, and of these, one third had an underlying neuromuscular diagnosis. Genetic testing of RYR1 is indicated for all patients with MH, and anaesthetic precautions should be considered for any child with symptoms of neuromuscular disease.
Collapse
Affiliation(s)
- Ahmed K Bamaga
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kimberly Amburgey
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shaun Ong
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - William Halliday
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Phedias Diamandis
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Marie Guerguerian
- Departments of Critical Care Medicine and Paediatrics, Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James J Dowling
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Grace Yoon
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|