1
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Trabacca A, Ferrante C, Oliva MC, Fanizza I, Gallo I, De Rinaldis M. Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes (Basel) 2024; 15:1346. [PMID: 39457470 PMCID: PMC11507535 DOI: 10.3390/genes15101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known genes. Key clinical features of MNDs include muscle weakness, hypotonia, and atrophy due to the degeneration of lower motor neurons or spasticity, hypertonia, and hyperreflexia caused by upper motor neuron dysfunction. The course of the disease varies among individuals and is influenced by the specific subtype. METHODS We performed a non-systematic, narrative clinical review, employing a systematic methodology for the literature search and article selection to delineate the features of hereditary pediatric motor neuron diseases. RESULTS The growing availability of advanced molecular testing, such as whole-exome sequencing (WES) and whole-genome sequencing (WGS), has expanded the range of identified genetic factors. These advancements provide insights into the genetic complexity and underlying mechanisms of these disorders. As more MND-related genes are discovered, the accumulating genetic data will help prioritize promising candidate genes for future research. In some cases, targeted treatments based on specific genetic mechanisms have already emerged, underscoring the critical role of early and timely diagnosis in improving patient outcomes. Common MNDs include amyotrophic lateral sclerosis, spinal muscular atrophy, and bulbar spinal muscular atrophy. CONCLUSION This narrative clinical review covers the clinical presentation, genetics, molecular features, and pathophysiology of inherited pediatric MNDs.
Collapse
Affiliation(s)
- Antonio Trabacca
- Scientific Institute IRCCS. “E. Medea”, Scientific Direction, 23842 Bosisio Parini, Italy
| | - Camilla Ferrante
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Maria Carmela Oliva
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Isabella Fanizza
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Ivana Gallo
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Marta De Rinaldis
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| |
Collapse
|
3
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
4
|
Campbell L, Fredericks J, Mathivha K, Moshesh P, Coovadia A, Chirwa P, Dillon B, Ghoor A, Lawrence D, Nair L, Mabaso N, Mokwele D, Novellie M, Krause A, Carstens N. The implementation and utility of clinical exome sequencing in a South African infant cohort. Front Genet 2023; 14:1277948. [PMID: 38028619 PMCID: PMC10665497 DOI: 10.3389/fgene.2023.1277948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Genetic disorders are significant contributors to infant hospitalization and mortality globally. The early diagnosis of these conditions in infants remains a considerable challenge. Clinical exome sequencing (CES) has shown to be a successful tool for the early diagnosis of genetic conditions, however, its utility in African infant populations has not been investigated. The impact of the under-representation of African genomic data, the cost of testing, and genomic workforce shortages, need to be investigated and evidence-based implementation strategies accounting for locally available genetics expertise and diagnostic infrastructure need to be developed. We evaluated the diagnostic utility of singleton CES in a cohort of 32 ill, South African infants from two State hospitals in Johannesburg, South Africa. We analysed the data using a series of filtering approaches, including a curated virtual gene panel consisting of genes implicated in neonatal-and early childhood-onset conditions and genes with known founder and common variants in African populations. We reported a diagnostic yield of 22% and identified seven pathogenic variants in the NPHS1, COL2A1, OCRL, SHOC2, TPRV4, MTM1 and STAC3 genes. This study demonstrates the utility value of CES in the South African State healthcare setting, providing a diagnosis to patients who would otherwise not receive one and allowing for directed management. We anticipate an increase in the diagnostic yield of our workflow with further refinement of the study inclusion criteria. This study highlights important considerations for the implementation of genomic medicine in under-resourced settings and in under-represented African populations where variant interpretation remains a challenge.
Collapse
Affiliation(s)
- L. Campbell
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Fredericks
- Department of Paediatrics and Child Health, School of Clinical Medicine, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - K. Mathivha
- Department of Paediatrics and Child Health, School of Clinical Medicine, Nelson Mandela Children’s Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - P. Moshesh
- Department of Paediatrics and Child Health, School of Clinical Medicine, Nelson Mandela Children’s Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. Coovadia
- Department of Paediatrics and Child Health, School of Clinical Medicine, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - P. Chirwa
- Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - B. Dillon
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. Ghoor
- Department of Paediatrics and Child Health, School of Clinical Medicine, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D. Lawrence
- Department of Paediatrics and Child Health, School of Clinical Medicine, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L. Nair
- Department of Paediatrics and Child Health, School of Clinical Medicine, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - N. Mabaso
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D. Mokwele
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - M. Novellie
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. Krause
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - N. Carstens
- Division of Human Genetics, National Health Laboratory Service andSchool of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
5
|
Chen H, Sun C, Zheng Y, Yin J, Gao M, Zhao C, Lin J. A TRPV4 mutation caused Charcot-Marie-Tooth disease type 2C with scapuloperoneal muscular atrophy overlap syndrome and scapuloperoneal spinal muscular atrophy in one family: a case report and literature review. BMC Neurol 2023; 23:250. [PMID: 37391745 DOI: 10.1186/s12883-023-03260-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease 2C (CMT2C) and scapuloperoneal spinal muscular atrophy (SPSMA) are different clinical phenotypes of TRPV4 mutation. The mutation of p.R316C has been reported to cause CMT2C and SPSMA separately. CASE PRESENTATION Here, we reported a Chinese family harboring the same p.R316C variant, but with an overlap syndrome and different clinical manifestations. A 58-year-old man presented with severe scapula muscle atrophy, resulting in sloping shoulders. He also exhibited distinct muscle atrophy in his four limbs, particularly in the lower limbs. The sural nerve biopsy revealed severe loss of myelinated nerve fibers with scattered regenerating clusters and pseudo-onion bulbs. Nerve conduction study showed axon damage in both motor and sensory nerves. Sensory nerve action potentials could not be evoked in bilateral sural or superficial peroneal nerves. He was diagnosed with Charcot-Marie-Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome, whereas his 27-year-old son was born with clubfoot and clinodactyly. Electromyogram examination indicated chronic neurogenic changes and anterior horn cells involvement. Although there was no obvious weakness or sensory symptoms, early SPSMA could be considered for him. CONCLUSIONS A literature review of the clinical characteristics in CMT2C and SPSMA patients with TRPV4 mutation suggested that our case was distinct due to the overlap syndrome and phenotype variation. Altogether, this case broadened the phenotype spectrum and provided the nerve biopsy pathological details of TRPV4-related neuropathies.
Collapse
Affiliation(s)
- Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Yongsheng Zheng
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Junxiong Yin
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
- National Center for Neurological Diseases, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
- Huashan Rare Disease Center, Huashan Hospital Fudan University, 12 Middle Wulumuqi Rd, Shanghai, 200040, China.
| |
Collapse
|
6
|
González-Pérez P, Buch KA, Sadjadi R. Case 19-2023: An 80-Year-Old Man with Left Foot Drop. N Engl J Med 2023; 388:2379-2387. [PMID: 37342926 DOI: 10.1056/nejmcpc2211512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Paloma González-Pérez
- From the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Massachusetts General Hospital, and the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Harvard Medical School - both in Boston
| | - Karen A Buch
- From the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Massachusetts General Hospital, and the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Harvard Medical School - both in Boston
| | - Reza Sadjadi
- From the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Massachusetts General Hospital, and the Departments of Neurology (P.G.-P., R.S.) and Radiology (K.A.B.), Harvard Medical School - both in Boston
| |
Collapse
|
7
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Taga A, Peyton MA, Goretzki B, Gallagher TQ, Ritter A, Harper A, Crawford TO, Hellmich UA, Sumner CJ, McCray BA. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022; 9:375-391. [PMID: 35170874 PMCID: PMC8935273 DOI: 10.1002/acn3.51523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) typically cause nonoverlapping diseases of either the neuromuscular or skeletal systems. However, accumulating evidence suggests that some patients develop mixed phenotypes that include elements of both neuromuscular and skeletal disease. We sought to define the genetic and clinical features of these patients. METHODS We report a 2-year-old with a novel R616G mutation in TRPV4 with a severe neuropathy phenotype and bilateral vocal cord paralysis. Interestingly, a different substitution at the same residue, R616Q, has been reported in families with isolated skeletal dysplasia. To gain insight into clinical features and potential genetic determinants of mixed phenotypes, we perform in-depth analysis of previously reported patients along with functional and structural assessment of selected mutations. RESULTS We describe a wide range of neuromuscular and skeletal manifestations and highlight specific mutations that are more frequently associated with overlap syndromes. We find that mutations causing severe, mixed phenotypes have an earlier age of onset and result in more marked elevations of intracellular calcium, increased cytotoxicity, and reduced sensitivity to TRPV4 antagonism. Structural analysis of the two mutations with the most dramatic gain of ion channel function suggests that these mutants likely cause constitutive channel opening through disruption of the TRPV4 S5 transmembrane domain. INTERPRETATION These findings demonstrate that the degree of baseline calcium elevation correlates with development of mixed phenotypes and sensitivity to pharmacologic channel inhibition, observations that will be critical for the design of future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Margo A Peyton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Thomas Q Gallagher
- Departments of Otolaryngology - Head & Neck Surgery & Pediatrics, Eastern Virginia Medical School, and Department of Pediatric Otolaryngology, Children's Hospital of the King's Daughters, Norfolk, Virginia, 23508, USA
| | - Ann Ritter
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
9
|
Abstract
Mutations in the calcium channel gene Transient Receptor Potential cation channel subfamily V member 4 (TRPV4) cause autosomal dominant skeletal dysplasia, with phenotypes ranging from mild to perinatal lethality. A recent report detailed enhanced proplatelet formation and increased murine platelet count in the context of TRPV4 activation. No prior reports have described platelet count abnormalities in human TRPV4 disease. Here, we report a case of prolonged thrombocytosis in the context of TRPV4-associated metatropic dysplasia that was lethal in the infantile period.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erik Brandsma
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Charcot-Marie-Tooth disease: experience from a large Italian tertiary neuromuscular center. Neurol Sci 2020; 41:1239-1243. [PMID: 31902012 DOI: 10.1007/s10072-019-04219-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disease. Thanks to the advances of the latest generation sequencing, more than 80 causative genes have been reported to date. METHODS In this retrospective, observational study, we have analyzed clinical, electrophysiological, and genetic data of CMT patients in care at Neuromuscular Center of Messina University Hospital, Messina, Italy, for at least 22 years (from 1994 to 2016). Our center is the only reference center for genetic neuropathies in Sicily and in the southern part of Calabria. RESULTS We reviewed the clinical records of 566 patients with the aim to evaluate how many patients received a genetic diagnosis and the distribution of the genetic subtypes. About 352/566 (62.19%) received a genetic diagnosis. The most frequent genetic diagnoses were CMT1A/PMP22 duplication (51.13%), followed by HNPP/PMP22 deletion (15.05%), CMT1B/MPZ mutation (10.22%), CMTX/GJB1 mutation (9.37%), and CMT2F/HSPB1 (4%). Other rare mutations included MFN2 mutation (n. 8 pts), BSCL2 mutation (n.8 pts), PMP22 point mutation (n.7 pts), GDAP1 mutation (n.4 pts), GARSmutation (n. 2 pts), TRPV4 mutation (n. 2 pts), LITAF mutation (n.1 pt), and NEFL mutation (n. 1 pt). CONCLUSIONS Our study provides further data on frequency of CMT genes, subtypes in a wide Mediterranean area and contributes to help clinicians in addressing the genetic testing workup.
Collapse
|
11
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Jędrzejowska M, Dębek E, Kowalczyk B, Halat P, Kostera-Pruszczyk A, Ciara E, Jezela-Stanek A, Rydzanicz M, Gasperowicz P, Gos M. The remarkable phenotypic variability of the p.Arg269HiS variant in the TRPV4
gene. Muscle Nerve 2018; 59:129-133. [DOI: 10.1002/mus.26346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Maria Jędrzejowska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences; Warsaw Poland
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
| | - Emilia Dębek
- Department of Medical Genetics; Institute of Mother and Child; Kasprzaka 17a St, 01-211, Warsaw Poland
| | - Bartłomiej Kowalczyk
- Orthopedic Trauma Department; University Children's Hospital of Cracow; Cracow Poland
| | - Paulina Halat
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
| | | | - Elżbieta Ciara
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
| | | | | | - Piotr Gasperowicz
- Department of Medical Genetics; Medical University of Warsaw; Warsaw Poland
| | - Monika Gos
- Department of Medical Genetics; Institute of Mother and Child; Kasprzaka 17a St, 01-211, Warsaw Poland
| |
Collapse
|
13
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
14
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|