1
|
Høj A, Holm‐Yildiz S, Krag T, Dejanovic D, van Overeem Hansen T, Dunø M, Ørngreen MC, Vissing J, Løkken N. 2-[ 18F] FDG PET/CT in Rapid Late-Onset Multiple Acyl-CoA Dehydrogenase Deficiency: A Case Report. JIMD Rep 2025; 66:e12469. [PMID: 39950184 PMCID: PMC11821449 DOI: 10.1002/jmd2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn metabolic myopathy affecting fat and protein metabolism. Patients with late-onset MADD typically present with exercise intolerance and muscle weakness. We present a patient with an acute, very late-onset symptom debut at 52 years of age. Over 5 months, the patient deteriorated from asymptomatic to almost complete loss of ambulation. He had a substantial weight loss, head-drop, progressive proximal limb and chewing weakness. Due to the rapid progression, amyotrophic lateral sclerosis, myositis, myasthenia gravis and a paraneoplastic syndrome in relation to underlying malignancy were considered first. A 2-[18F] FDG PET/CT scan was performed to exclude a paraneoplastic syndrome. The scan revealed diffuse and symmetric, pathologically high 2-[18F] FDG-uptake in the patient's neck, shoulder, and paravertebral muscles, which was later suggested as a sign of a metabolic myopathy. Muscle biopsy (Oil Red O staining) and acylcarnitine profile (elevated C5-C18 acylcarnitines) findings suggested MADD, which was confirmed by genetic analysis showing biallelic variants in the ETFDH gene (c.1763A>G, p.(His588Arg); c.897G>A, p.(Leu299=)). After 1 month of dietary intervention and daily diet supplements (riboflavin 400 mg TID, levocarnitine 1 g TID, Q10 150 mg qD in two doses), the patient had almost recovered to his habitual level. A posttreatment muscle biopsy showed less disrupted ultrastructure of the myofibers. We learned from this case of rapid and late-onset MADD that 2-[18F] FDG PET/CT, with diffuse and symmetric 2-[18F] FDG-uptake in skeletal muscle, can be valuable in clarifying this rare diagnosis.
Collapse
Affiliation(s)
- Astrid Høj
- Department of Neurology, Copenhagen Neuromuscular CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Sonja Holm‐Yildiz
- Department of Neurology, Copenhagen Neuromuscular CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Thomas Krag
- Department of Neurology, Copenhagen Neuromuscular CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Danijela Dejanovic
- Department of Clinical Physiology, Nuclear Medicine, and PET, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Molecular Genetic Laboratory, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Morten Dunø
- Department of Clinical Genetics, Molecular Genetic Laboratory, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Mette Cathrine Ørngreen
- Department of Paediatrics and Adolescent MedicineCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Nicoline Løkken
- Department of Neurology, Copenhagen Neuromuscular CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Meier C, Burns K, Manolikos C, Hodge S, Bell DA. Multiple acyl-Coa dehydrogenase deficiency: an underdiagnosed disorder in adults. Intern Med J 2024; 54:1567-1571. [PMID: 39132981 DOI: 10.1111/imj.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024]
Abstract
Inherited metabolic diseases, as a first presentation in adults, are an under-recognised condition associated with significant morbidity and mortality. Diagnosis is challenging because of non-specific clinical and biochemical findings, resemblance to common conditions such as neuropsychiatric disorders and the misconception that these disorders predominantly affect paediatric populations. We describe a series of patients with multiple acyl-CoA dehydrogenase deficiency (MADD)/MADD-like disorders to highlight these diagnostic challenges.
Collapse
Affiliation(s)
- Ciselle Meier
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Kharis Burns
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Manolikos
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Samantha Hodge
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Damon A Bell
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Biochemistry, Fiona Stanley and Royal Perth Hospital Network, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
4
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Schee JP, Tan JS, Tan CY, Shahrizaila N, Wong KT, Goh KJ. Multiple Acyl-CoA Dehydrogenase Deficiency: Phenotypic and Genetic Features of a Malaysian Cohort. J Clin Neurol 2024; 20:422-430. [PMID: 38951975 PMCID: PMC11220347 DOI: 10.3988/jcn.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited disorder of fatty acid oxidation that causes lipid storage myopathy (LSM). This is the first report on MADD that describes the phenotypic and genetic features of a Malaysian cohort. METHODS Among the >2,500 patients in a local muscle biopsy database, patients with LSM were identified and their genomic DNA were extracted from muscle samples and peripheral blood. All 13 exons of the electron-transfer flavoprotein dehydrogenase gene (ETFDH) were subsequently sequenced. Fifty controls were included to determine the prevalence of identified mutations in the normal population. RESULTS Fourteen (82%) of the 17 LSM patients had MADD with ETFDH mutations. Twelve (86%) were Chinese and two were Malay sisters. Other unrelated patients reported that they had no relevant family history. Nine (64%) were females. The median age at onset was 18.5 years (interquartile range=16-37 years). All 14 demonstrated proximal limb weakness, elevated serum creatine kinase levels, and myopathic changes in electromyography. Three patients experienced a metabolic crisis at their presentation. Sanger sequencing of ETFDH revealed nine different variants/mutations, one of which was novel: c.998A>G (p.Y333C) in exon 9. Notably, 12 (86%) patients, including the 2 Malay sisters, carried a common c.250G>A (p.A84T) variant, consistent with the hotspot mutation reported in southern China. All of the patients responded well to riboflavin therapy. CONCLUSIONS Most of our Malaysian cohort with LSM had late-onset, riboflavin-responsive MADD with ETFDH mutations, and they demonstrated phenotypic and genetic features similar to those of cases reported in southern China. Furthermore, we report a novel ETFDH mutation and possibly the first ever MADD patients of Malay descent.
Collapse
Affiliation(s)
- Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Joo San Tan
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Yin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Khean Jin Goh
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Wen B, Tang R, Tang S, Sun Y, Xu J, Zhao D, Wang T, Yan C. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene. J Hum Genet 2024; 69:125-131. [PMID: 38228875 DOI: 10.1038/s10038-023-01216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Runqi Tang
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, 252000, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab (Lond) 2023; 20:42. [PMID: 37845732 PMCID: PMC10580530 DOI: 10.1186/s12986-023-00764-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Riboflavin, or vitamin B2, is an essential nutrient that serves as a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). The binding of the FAD and/or FMN cofactors to flavoproteins is critical for regulating their assembly and activity. There are over 90 proteins in the human flavoproteome that regulate a diverse array of biochemical pathways including mitochondrial metabolism, riboflavin transport, ubiquinone and FAD synthesis, antioxidant signalling, one-carbon metabolism, nitric oxide signalling and peroxisome oxidative metabolism. The identification of patients with genetic variants in flavoprotein genes that lead to adult-onset pathologies remains a major diagnostic challenge. However, once identified, many patients with adult-onset inborn errors of metabolism demonstrate remarkable responses to riboflavin therapy. We review the structure:function relationships of mutant flavoproteins and propose new mechanistic insights into adult-onset riboflavin-responsive pathologies and metabolic dysregulations that apply to multiple biochemical pathways. We further address the vexing issue of how the inheritance of genetic variants in flavoprotein genes leads to an adult-onset disease with complex symptomologies and varying severities. We also propose a broad clinical framework that may not only improve the current diagnostic rates, but also facilitate a personalized approach to riboflavin therapy that is low cost, safe and lead to transformative outcomes in many patients.
Collapse
Affiliation(s)
- Chiara Murgia
- The School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, Australia.
| | - Ankush Dehlia
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Mark A Guthridge
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
9
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Nalini A, Vengalil S, Polavarapu K, Preethish-Kumar V, Nashi S, Arunachal G, Chawla T, Bardhan M, Mohan D, Christopher R, Bevinahalli N, Kulanthaivelu K, Nishino I, Faruq M. Mutation spectrum of primary lipid storage myopathies. Ann Indian Acad Neurol 2022; 25:106-113. [PMID: 35342266 PMCID: PMC8954319 DOI: 10.4103/aian.aian_333_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Lipid storage myopathies (LSM) constitute an important group of treatable myopathies. Genetic testing is essential for confirming the diagnosis and also helps in explaining phenotypic heterogeneity. The objective of this study was to describe the clinical features and genetic spectrum of LSM seen in a quaternary referral center in India. Methods: Eleven cases of suspected LSM underwent clinical, biochemical, histopathological and genetic evaluation. Tandem Mass Spectrometry and clinical exome sequencing with Sanger validation were performed. Results: All patients had exertion induced myalgia and either progressive or episodic limb girdle muscle weakness (LGMW). The age of onset ranged 10 to 31 years (mean- 21 ± 6.7y), age at presentation- 14 to 49 years (mean- 26.5 ± 9.5y). Mutations identified: ETFDH = 5, CPT2 = 3, FLAD1 = 1, ACADVL = 1, FLAD1 = 1. Dropped head syndrome was seen in two patients with ETFDH mutations. Bulbar symptoms and Beevor's sign were noted in a patient with FLAD1 variant. Novel variants were identified in seven patients. Conclusions: This is the first report on the genetic spectrum of LSM from India. LSM should be considered in patients with exertion induced myalgias, LGMW, cranial nerve involvement or dropped head syndrome. Genetic testing is essential for identification of these treatable disorders.
Collapse
|
11
|
Infant with early onset bilateral facial and bulbar weakness: Successful treatment of riboflavin in multiple acyl-CoA dehydrogenase deficiency caused by biallelic nonsense FLAD1 variants. Neuromuscul Disord 2021; 31:1194-1198. [PMID: 34454814 DOI: 10.1016/j.nmd.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a heterogeneous group of inborn error of metabolic disease affecting the oxidation of fatty acids and amino acids, and choline metabolism. Genes involved in electrons transfer to the mitochondrial respiratory chain typically induce MADD. Recently, FLAD1, which encodes flavin adenine dinucleotide synthase, has also been reported as a cause of MADD. Here, we present a case of a 28-month girl with progressive weakness in facial and bulbar muscle. She has been suffering from feeding difficulty and recurrent respiratory distress. Lipid storage myopathy was evident from muscle biopsy. Furthermore, whole exome sequencing identified homozygous variant of c.745C > T (p.Arg249*) in FLAD1, confirming the diagnosis of FLAD1-related MADD. The patient showed improvements in her symptoms and exhibited catch-up growth following the supplementation of riboflavin. Lipid storage myopathy with FLAD1-related MADD is potentially treatable. Therefore, we should have high clinical suspicion, even though the diagnosis is challenging.
Collapse
|
12
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
13
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
15
|
Hu P, Pan Y, Wang C, Zhang W, Huang H, Wang J, Zhang N. FLAD1 is up-regulated in Gastric Cancer and is a potential prediction of prognosis. Int J Med Sci 2020; 17:1763-1772. [PMID: 32714079 PMCID: PMC7378663 DOI: 10.7150/ijms.48162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Gastric cancer (GC) is a common malignancy throughout the world. Biomarkers for prognosis and risk evaluation of GC are rapidly discovered. We investigated the prognostic role of FLAD1, an important protein-coding gene that affects cell cycle and survival. Methods: The expression of FLAD1 at mRNA levels in GC tumor tissues and normal tissues was mined and analyzed in Oncomine database and verified in 10 pairs of GS tissues and their adjacent normal tissues in our center by RT qPCR. The FLAD1 protein expression were detected in 106 paraffin-embedded GC tissues by immunohistochemistry (IHC). Statistical analyses were applied to evaluate the clinical significance of FLAD1. The prognostic value of FLAD1 mRNA expression was also analyzed using the Kaplan-Meier plotter (www.kmplot.com). Results: Statistics obtained from online database suggested FLAD1 mRNA was overexpressed in GC tissues. The results were further validated in 10 pairs of GS tissues and adjacent normal tissues in our center (p=0.021). IHC and survival analysis of GC samples from 106 patients showed FLAD1 was overexpressed in 63/106 (59.4%) patients and was associated to higher TNM stage (p=0.026). Multivariate analysis revealed FLAD1 was an independent prognostic factor for GC (p < 0.001). Furthermore, FLAD1 mRNA was associated to unfavorable overall survival (OS), first progression (FP), and post-progression survival (PPS) of GC (p<0.001). Conclusion: FLAD1 in GC is overexpressed at both mRNA and protein level and could be a potential biomarker for GC prognosis.
Collapse
Affiliation(s)
- Pan Hu
- Breast Cancer Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China
| | - Yuhang Pan
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| | - Chenyang Wang
- Department of Urologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, P.R. China
| | - Wenhui Zhang
- Joint Surgery/Orthopedic Trauma Department, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - He Huang
- General Surgery Department, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China
| | - Jiani Wang
- Breast Cancer Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China
| | - Nana Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| |
Collapse
|
16
|
García-Villoria J, De Azua B, Tort F, Mosegaard S, Ugarteburu O, Texidó L, Morales-Romero B, Olsen RKJ, Ribes A. FLAD1, encoding FAD synthase, is mutated in a patient with myopathy, scoliosis and cataracts. Clin Genet 2019; 94:592-593. [PMID: 30427553 DOI: 10.1111/cge.13452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Judit García-Villoria
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Begoña De Azua
- Servicio de Pediatría, Hospital Son Llàtzer, Mallorca, Spain
| | - Frederic Tort
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Olatz Ugarteburu
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Laura Texidó
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,CIBERER, Barcelona, Spain
| | - Blai Morales-Romero
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Antonia Ribes
- Secció Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,CIBERER, Barcelona, Spain
| |
Collapse
|
17
|
Muru K, Reinson K, Künnapas K, Lilleväli H, Nochi Z, Mosegaard S, Pajusalu S, Olsen RKJ, Õunap K. FLAD1-associated multiple acyl-CoA dehydrogenase deficiency identified by newborn screening. Mol Genet Genomic Med 2019; 7:e915. [PMID: 31392824 PMCID: PMC6732309 DOI: 10.1002/mgg3.915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria type II, is a mitochondrial fatty acid oxidation disorder caused by variants in ETFA, ETFB, and ETFDH. Recently, riboflavin transporter genes and the mitochondrial FAD transporter gene have also been associated with MADD-like phenotype. METHODS We present a case of MADD identified by newborn biochemical screening in a full-term infant suggestive of both medium-chain acyl-CoA dehydrogenase deficiency and MADD. Urine organic acid GC/MS analysis was also concerning for both disorders. However, panel sequencing of ETFA, ETFB, ETFDH, and ACADM was unrevealing. Ultimately, a variant in the FAD synthase gene, FLAD1 was found explaining the clinical presentation. RESULTS Exome sequencing identified compound heterozygous variants in FLAD1: NM_025207.4: c.[442C>T];[1588C>T], p.[Arg148*];[Arg530Cys]. The protein damaging effects were confirmed by Western blot. The patient remained asymptomatic and there was no clinical decompensation during the first year of life. Plasma acylcarnitine and urinary organic acid analyses normalized without any treatment. Riboflavin supplementation was started at 15 months. CONCLUSION Newborn screening, designed to screen for specific treatable congenital metabolic diseases, may also lead to the diagnosis of additional, very rare metabolic disorders such as FLAD1 deficiency. The case further illustrates that even milder forms of FLAD1 deficiency are detectable in the asymptomatic state by newborn screening.
Collapse
Affiliation(s)
- Kai Muru
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kadi Künnapas
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Hardo Lilleväli
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
18
|
Yamada K, Ito M, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Flavin adenine dinucleotide synthase deficiency due to FLAD1 mutation presenting as multiple acyl-CoA dehydrogenation deficiency-like disease: A case report. Brain Dev 2019; 41:638-642. [PMID: 30982706 DOI: 10.1016/j.braindev.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric acidemia type II, is classically caused by a congenital defect in electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH). Flavin adenine dinucleotide synthase (FADS) deficiency caused by mutations in FLAD1 was recently reported as a novel riboflavin metabolism disorder resembling MADD. Here, we describe a Japanese boy with FADS deficiency due to a novel mutation (p.R249*) in FLAD1. In the asymptomatic male infant born at full term, newborn screening showed positive results with elevated C5 and C14:1 acylcarnitine levels and an increased C14:1/C2 ratio. Biochemical studies were unremarkable except for lactic acidosis (pH 7.197, lactate 61 mg/dL). A diagnosis of MADD was suspected because of mild abnormalities of the acylcarnitine profile and apparent abnormalities of urinary organic acids, although mutations in the ETFA, ETFB, ETFDH, and riboflavin transporter genes (SLC52A1, SLC52A2, and SLC52A3) were not detected. Administration of riboflavin and L-carnitine was initiated at one month of age based on the diagnosis of "biochemical MADD" despite a lack of symptoms. Nevertheless, the acylcarnitine profile was not normalized. Symptoms resembling bulbar palsy, such as vocal cord paralysis and dyspnea with stridor, were present from 3 months of age. At 4 months of age, he became bedridden because of hypoxic-ischemic encephalopathy due to fulminant respiratory failure with aspiration pneumonia. At 2 years and 5 months of age, a homozygous c.745C > T (p.R249*) mutation in the FLAD1 gene was identified, confirming the diagnosis of FADS deficiency. His severe clinical course may be caused by this nonsense mutation associated with poor responsiveness to riboflavin. Persistent lactic acidosis and neuropathy, such as bulbar palsy, may be important for diagnosing FADS deficiency. Although the biochemical findings in FADS deficiency are similar to those in MADD, their clinical symptoms and severity may not be identical.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan.
| | - Michinori Ito
- Departmental of Metabolism, Shikoku Medical Center for Children and Adults, Zentsuji, Kagawa, Japan
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
19
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
20
|
Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin metabolism. J Inherit Metab Dis 2019; 42:608-619. [PMID: 30680745 DOI: 10.1002/jimd.12058] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
22
|
Ryder B, Tolomeo M, Nochi Z, Colella M, Barile M, Olsen RK, Inbar-Feigenberg M. A Novel Truncating FLAD1 Variant, Causing Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) in an 8-Year-Old Boy. JIMD Rep 2018; 45:37-44. [PMID: 30311138 DOI: 10.1007/8904_2018_139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is a clinically heterogeneous disorder affecting fatty acid and amino acid metabolism. Presentations range from a severe neonatal form with hypoglycemia, metabolic acidosis, and hepatomegaly with or without congenital anomalies to later-onset lipid storage myopathy. Genetic testing for MADD traditionally comprises analysis of ETFA, ETFB, and ETFDH. Patients may respond to pharmacological doses of riboflavin, particularly those with late-onset MADD due to variants in ETFDH. Increasingly other genes involved in riboflavin transport and flavoprotein biosynthesis are recognized as causing a MADD phenotype. Flavin adenine dinucleotide synthase (FADS) deficiency caused by biallelic variants in FLAD1 has been identified in nine previous cases of MADD. FLAD1 missense mutations have been associated with a riboflavin-responsive phenotype; however the effect of riboflavin with biallelic loss of function FLAD1 mutations required further investigation. Herein we describe a novel, truncating variant in FLAD1 causing MADD in an 8-year-old boy. Fibroblast studies showed a dramatic reduction in FADS protein with corresponding reduction in the FAD synthesis rate and FAD cellular content, beyond that previously documented in FLAD1-related MADD. There was apparent biochemical and clinical response to riboflavin treatment, beyond that previously reported in cases of biallelic loss of function variants in FLAD1. Early riboflavin treatment may have attenuated an otherwise severe phenotype.
Collapse
Affiliation(s)
- B Ryder
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. .,National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand.
| | - M Tolomeo
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Z Nochi
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Colella
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - M Barile
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - R K Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem 2018; 62:443-454. [PMID: 29980631 DOI: 10.1042/ebc20170111] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Biomarkers are an indicator of biologic or pathogenic processes, whose function is indicating the presence/absence of disease or monitoring disease course and its response to treatment. Since mitochondrial disorders (MDs) can represent a diagnostic challenge for clinicians, due to their clinical and genetic heterogeneity, the identification of easily measurable biomarkers becomes a high priority. Given the complexity of MD, in particular the primary mitochondrial respiratory chain (MRC) diseases due to oxidative phosphorylation (OXPHOS) dysfunction, a reliable single biomarker, relevant for the whole disease group, could be extremely difficult to find, most of times leading the physicians to better consider a 'biosignature' for the diagnosis, rather than a single biochemical marker. Serum biomarkers like lactate and pyruvate are largely determined in the diagnostic algorithm of MD, but they are not specific to this group of disorders. The concomitant determination of creatine (Cr), plasma amino acids, and urine organic acids might be helpful to reinforce the biosignature in some cases. In recent studies, serum fibroblast growth factor 21 (sFGF21) and serum growth differentiation factor 15 (sGDF15) appear to be promising molecules in identifying MD. Moreover, new different approaches have been developed to discover new MD biomarkers. This work discusses the most important biomarkers currently used in the diagnosis of MRC diseases, and some approaches under evaluation, discussing both their utility and weaknesses.
Collapse
|