1
|
He Y, Verleyen M, Callewaert B, Burssens A, Audenaert E. Unraveling the Genetic Landscape of Foot Arch Morphology: A Systematic Review of Single Nucleotide Polymorphisms. Clin Genet 2025; 107:485-494. [PMID: 39965907 PMCID: PMC11973014 DOI: 10.1111/cge.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Variations in foot arch morphology, including flat feet (pes planus) and high arches (pes cavus), range from asymptomatic to debilitating. Limited research exists on the genetics of foot arch geometry. This systematic review aims to identify single nucleotide polymorphisms (SNPs) linked to foot arch morphology. The review protocol was registered in PROSPERO (CRD42024537877). PubMed, The Cochrane Library, Embase, and Web of Science were searched for studies on SNPs related to foot arch morphology published up to December 2023. Nineteen eligible studies (2006-2020) identified 137 SNPs across conditions affecting connective tissue (12 studies, e.g., Marfan Syndrome), nerves (six studies, e.g., Charcot-Marie-Tooth Disease), and muscles (one study, e.g., Distal Arthrogryposis Syndromes). While no studies directly linked SNPs to foot arch morphology, three explored SNPs in genetic diseases associated with foot arch variations. Pes planus was linked to connective tissue disorders, and pes cavus to neuropathies and myopathies. Only two replicated SNPs were found. This review found no direct studies of SNPs influencing foot arch morphology, highlighting a significant research gap. Future research should examine SNPs in larger cohorts to differentiate natural variations from pathology-driven deformities. To enhance reproducibility, standardized methodologies, and a unified genetic database (including phenotypic data on common traits) should be developed.
Collapse
Affiliation(s)
- Yukun He
- Department of Human Structure and RepairFaculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
- Department of Orthopedic Surgery and TraumatologyGhent University HospitalGhentBelgium
| | - Marlies Verleyen
- Department of Human Structure and RepairFaculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
| | - Bert Callewaert
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Center for Medical Genetics, Ghent University HospitalGhentBelgium
| | - Arne Burssens
- Department of Orthopedic Surgery and TraumatologyGhent University HospitalGhentBelgium
| | - Emmanuel Audenaert
- Department of Human Structure and RepairFaculty of Medicine and Health Sciences, Ghent UniversityGhentBelgium
- Department of Orthopedic Surgery and TraumatologyGhent University HospitalGhentBelgium
| |
Collapse
|
2
|
De Grado A, Serio M, Saveri P, Pisciotta C, Pareyson D. Charcot-Marie-Tooth disease: a review of clinical developments and its management - What's new in 2025? Expert Rev Neurother 2025; 25:427-442. [PMID: 40014417 DOI: 10.1080/14737175.2025.2470980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Charcot-Marie-Tooth disease (CMT) understanding and diagnostic rates are improving. Symptomatic management is still the only option, but many therapeutic approaches are under investigation, some in the clinical trial phase. AREAS COVERED Through a comprehensive search in PubMed, the ClinicalTrials.gov website, and the latest abstracts on the topic, the authors review the diagnostic advances and promising treatments, focusing on pharmacological and gene therapy/silencing approaches, and on clinical trial challenges. They also review current CMT management, including rehabilitation, orthotics, and associated symptoms and comorbidities. EXPERT OPINION The CMT field is evolving rapidly, with significant advances in genetic diagnosis and disease recognition. International networks and patient organization partnerships are vital for progress, enabling collaboration and large-scale studies. Metabolic neuropathies are relatively easier to target, and interim analysis results from the CMT-SORD trial suggest govorestat may become the first approved CMT drug. Gene therapy shows promise but currently faces safety and targeting challenges; PMP22 silencers for CMT1A are close to being tested in patients. New drugs, such as HDAC6 inhibitors, are also approaching the clinical trial phase, despite existing hurdles. Supportive care, including rehabilitation and orthotics, continues to improve quality of life. There is optimism that within the next decade, approved therapies will reduce disease burden.
Collapse
Affiliation(s)
- Amedeo De Grado
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Serio
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Paola Saveri
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Xu IRL, Danzi MC, Ruiz A, Raposo J, De Jesus YA, Reilly MM, Cortese A, Shy ME, Scherer SS, Hermann D, Fridman V, Baets J, Saporta M, Seyedsadjadi R, Stojkovic T, Claeys KG, Patel P, Feely S, Rebelo A, Inherited Neuropathy Consortium, Dohrn MF, Züchner S. A study concept of expeditious clinical enrollment for genetic modifier studies in Charcot-Marie-Tooth neuropathy 1A. J Peripher Nerv Syst 2024; 29:202-212. [PMID: 38581130 PMCID: PMC11209807 DOI: 10.1111/jns.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.
Collapse
Affiliation(s)
- Isaac R. L. Xu
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ariel Ruiz
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yeisha Arcia De Jesus
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David Hermann
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, New York, 14642, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA
| | - Jonathan Baets
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, United States
| | - Reza Seyedsadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya Stojkovic
- AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Hôpital Pitié-Salpêtrière, 47-83, boulevard de l’Hôpital, 75013 Paris, France
| | - Kristl G. Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, Leuven, Belgium
| | - Pooja Patel
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Maike F. Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. J Neuropathol Exp Neurol 2024; 83:318-330. [PMID: 38472136 PMCID: PMC11029467 DOI: 10.1093/jnen/nlae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| | | | | | - Isaac Xu
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephan Züchner
- Department of Human Genetics and John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, Maine, USA
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, USA
| |
Collapse
|
5
|
Murray GC, Hines TJ, Tadenev ALD, Xu I, Züchner S, Burgess RW. Testing SIPA1L2 as a modifier of CMT1A using mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569428. [PMID: 38076977 PMCID: PMC10705403 DOI: 10.1101/2023.11.30.569428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Charcot-Marie-Tooth 1A is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), which produces muscle weakness and loss of sensation in the hands and feet. A recent case-only genome wide association study by the Inherited Neuropathy Consortium identified a strong association between variants in signal induced proliferation associated 1 like 2 (SIPA1L2) and strength of foot dorsiflexion. To validate SIPA1L2 as a candidate modifier, and to assess its potential as a therapeutic target, we engineered mice with a deletion in SIPA1L2 and crossed them to the C3-PMP22 mouse model of CMT1A. We performed neuromuscular phenotyping and identified an interaction between Sipa1l2 deletion and muscular endurance decrements assayed by wire-hang duration in C3-PMP22 mice, as well as several interactions in femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggested an involvement of Sipa1l2 in cholesterol biosynthesis, which was also implicated in C3-PMP22 mice. Though several interactions between Sipa1l2 deletion and CMT1A-associated phenotypes were identified, validating a genetic interaction, the overall effect on neuropathy was small.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| | | | | | - Isaac Xu
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- The Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469
| |
Collapse
|
6
|
Pipis M, Won S, Poh R, Efthymiou S, Polke JM, Skorupinska M, Blake J, Rossor AM, Moran JJ, Munot P, Muntoni F, Laura M, Svaren J, Reilly MM. Post-transcriptional microRNA repression of PMP22 dose in severe Charcot-Marie-Tooth disease type 1. Brain 2023; 146:4025-4032. [PMID: 37337674 PMCID: PMC10545524 DOI: 10.1093/brain/awad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 06/21/2023] Open
Abstract
Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.
Collapse
Affiliation(s)
- Menelaos Pipis
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Seongsik Won
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Roy Poh
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - James M Polke
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John J Moran
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
7
|
Jamiri Z, Khosravi R, Heidari MM, Kiani E, Gharechahi J. A nonsense mutation in MME gene associates with autosomal recessive late-onset Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1913. [PMID: 35212467 PMCID: PMC9034668 DOI: 10.1002/mgg3.1913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Background The genetic cause for the majority of patients with late‐onset axonal form of neuropathies have remained unknown. In this study we aimed to identify the causal mutation in a family with multiple affected individuals manifesting a range of phenotypic features consistent with late‐onset sensorimotor axonal polyneuropathy. Methods Whole exome sequencing (WES) followed by targeted variant screening and prioritization was performed to identify the candidate mutation. The co‐segregation of the mutation with the phenotype was confirmed by Sanger sequencing. Results We identified a nonsense mutation (c.1564C>T; p.Q522*) in membrane metalloendopeptidase (MME) gene as the cause of the disease condition. The mutation has a combined annotation‐ dependent depletion (CADD) score 45 and predicted to be deleterious based on various algorithms. The mutation was inherited in an autosomal recessive mode and further confirmed to co‐segregate with the disease phenotype in the family and showed to has the required criteria including rarity and deleteriousness to be considered as pathogenic. Conclusion The MME gene encodes for the membrane bound endopeptidase neprilysin (NEP) which is involved in processing of various peptide substrates. The identified mutation causes a complete loss of carboxy‐terminal region of the NEP protein which contains the zinc binding site and the catalytic domain and thus considered to be a loss‐of‐function mutation. The loss of NEP activity is likely associated with impaired myelination and axonal injury which is hallmark of CMT diseases.
Collapse
Affiliation(s)
- Zeinab Jamiri
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Rana Khosravi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Ebrahim Kiani
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Wang H, Davison M, Wang K, Xia TH, Call KM, Luo J, Wu X, Zuccarino R, Bacha A, Bai Y, Gutmann L, Feely SME, Grider T, Rossor AM, Reilly MM, Shy ME, Svaren J. MicroRNAs as Biomarkers of Charcot-Marie-Tooth Disease Type 1A. Neurology 2021; 97:e489-e500. [PMID: 34031204 DOI: 10.1212/wnl.0000000000012266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether microRNAs (miRs) are elevated in the plasma of individuals with the inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1A (CMT1A), miR profiling was employed to compare control and CMT1A plasma. METHODS We performed a screen of CMT1A and control plasma samples to identify miRs that are elevated in CMT1A using next-generation sequencing, followed by validation of selected miRs by quantitative PCR, and correlation with protein biomarkers and clinical data: Rasch-modified CMT Examination and Neuropathy Scores, ulnar compound muscle action potentials, and motor nerve conduction velocities. RESULTS After an initial pilot screen, a broader screen confirmed elevated levels of several muscle-associated miRNAs (miR1, -133a, -133b, and -206, known as myomiRs) along with a set of miRs that are highly expressed in Schwann cells of peripheral nerve. Comparison to other candidate biomarkers for CMT1A (e.g., neurofilament light) measured on the same sample set shows a comparable elevation of several miRs (e.g., miR133a, -206, -223) and ability to discriminate cases from controls. Neurofilament light levels were most highly correlated with miR133a. In addition, the putative Schwann cell miRs (e.g., miR223, -199a, -328, -409, -431) correlate with the recently described transmembrane protease serine 5 (TMPRSS5) protein biomarker that is most highly expressed in Schwann cells and also elevated in CMT1A plasma. CONCLUSIONS These studies identify a set of miRs that are candidate biomarkers for clinical trials in CMT1A. Some of the miRs may reflect Schwann cell processes that underlie the pathogenesis of the disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that a set of plasma miRs are elevated in patients with CMT1A.
Collapse
Affiliation(s)
- Hongge Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Matthew Davison
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Kathryn Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tai-He Xia
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Katherine M Call
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Jun Luo
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Xingyao Wu
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Riccardo Zuccarino
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexa Bacha
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Yunhong Bai
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Laurie Gutmann
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Shawna M E Feely
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tiffany Grider
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexander M Rossor
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Mary M Reilly
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Michael E Shy
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - John Svaren
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison.
| |
Collapse
|
10
|
Estiar MA, Yu E, Haj Salem I, Ross JP, Mufti K, Akçimen F, Leveille E, Spiegelman D, Ruskey JA, Asayesh F, Dagher A, Yoon G, Tarnopolsky M, Boycott KM, Dupre N, Dion PA, Suchowersky O, Trempe JF, Rouleau GA, Gan-Or Z. Evidence for Non-Mendelian Inheritance in Spastic Paraplegia 7. Mov Disord 2021; 36:1664-1675. [PMID: 33598982 DOI: 10.1002/mds.28528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | | | - Jay P Ross
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Kheireddin Mufti
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Fulya Akçimen
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Etienne Leveille
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Dupre
- Neuroscience Axis, CHU de Québec, Université Laval, Québec City, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jean-Francois Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
12
|
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, Massaad-Massade L. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res 2021; 227:100-111. [PMID: 32693030 DOI: 10.1016/j.trsl.2020.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy, affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused by a duplication on chromosome 17p11.2 leading to an overexpression of the Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small changes in its expression influences myelination and affect motor and sensory functions. To date, CMT1A treatment is symptomatic and classic pharmacological options have been disappointing. Here, we review the past, present, and future treatment options for CMT1A, with a special emphasis on the highly promising potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
Collapse
Affiliation(s)
- Suzan Boutary
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - David Adams
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Julien Loisel-Duwattez
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France
| | | |
Collapse
|
13
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
14
|
Lee AJ, Nam DE, Choi YJ, Noh SW, Nam SH, Lee HJ, Kim SJ, Song GJ, Choi BO, Chung KW. Paternal gender specificity and mild phenotypes in Charcot-Marie-Tooth type 1A patients with de novo 17p12 rearrangements. Mol Genet Genomic Med 2020; 8:e1380. [PMID: 32648354 PMCID: PMC7507087 DOI: 10.1002/mgg3.1380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Charcot–Marie–Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are developed by duplication and deletion of the 17p12 (PMP22) region, respectively. Methods De novo rates were determined in 211 CMT1A or HNPP trio families, and then, analyzed gender‐specific genetic features and clinical phenotypes of the de novo cases. Results This study identified 40 de novo cases (19.0%). Paternal origin was highly frequent compared to maternal origin (p = .005). Most de novo CMT1A rearrangements occurred between non‐sister chromatids (p = .003), but it was interesting that three of the four sister chromatids exchange cases were observed in the less frequent maternal origin. Paternal ages at the affected child births were slightly higher in the de novo CMT1A group than in the non‐de novo CMT1A control group (p = .0004). For the disability score of CMTNS, the de novo CMT1A group had a slightly lower value compared to the control group (p = .005). Electrophysiological studies showed no significant differences between the two groups. Conclusion This study suggests that de novo CMT1A patients tend to have milder symptoms and that the paternal ages at child births in the de novo group are higher than those of the non‐de novo group.
Collapse
Affiliation(s)
- Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Yu J Choi
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Seung W Noh
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Hye J Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung J Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyun J Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
15
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
16
|
Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges. Nat Rev Neurol 2019; 15:644-656. [PMID: 31582811 DOI: 10.1038/s41582-019-0254-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
Abstract
Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.
Collapse
|
17
|
Bis-Brewer DM, Fazal S, Züchner S. Genetic modifiers and non-Mendelian aspects of CMT. Brain Res 2019; 1726:146459. [PMID: 31525351 DOI: 10.1016/j.brainres.2019.146459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are amongst the most common inherited diseases in neurology. While great strides have been made to identify the genesis of these diseases, a diagnostic gap of 30-60% remains. Classic models of genetic causation may be limited to fully close this gap and, thus, we review the current state and future role of alternative, non-Mendelian forms of genetics in CMT. Promising synergies exist to further define the full genetic architecture of inherited neuropathies, including affordable whole-genome sequencing, increased data aggregation and clinical collaboration, improved bioinformatics and statistical methodology, and vastly improved computational resources. Given the recent advances in genetic therapies for rare diseases, it becomes a matter of urgency to diagnose CMT patients with great fidelity. Otherwise, they will not be able to benefit from such therapeutic options, or worse, suffer harm when pathogenicity of genetic variation is falsely evaluated. In addition, the newly identified modifier and risk genes may offer alternative targets for pharmacotherapy of inherited and, potentially, even acquired forms of neuropathies.
Collapse
Affiliation(s)
- Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
18
|
Tao F, Beecham GW, Rebelo AP, Svaren J, Blanton SH, Moran JJ, Lopez-Anido C, Morrow JM, Abreu L, Rizzo D, Kirk CA, Wu X, Feely S, Verhamme C, Saporta MA, Herrmann DN, Day JW, Sumner CJ, Lloyd TE, Li J, Yum SW, Taroni F, Baas F, Choi BO, Pareyson D, Scherer SS, Reilly MM, Shy ME, Züchner S. Variation in SIPA1L2 is correlated with phenotype modification in Charcot- Marie- Tooth disease type 1A. Ann Neurol 2019; 85:316-330. [PMID: 30706531 PMCID: PMC7263419 DOI: 10.1002/ana.25426] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified β-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.
Collapse
Affiliation(s)
- Feifei Tao
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Gary W Beecham
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Adriana P Rebelo
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Susan H Blanton
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - John J Moran
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Camila Lopez-Anido
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Jasper M Morrow
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Lisa Abreu
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Devon Rizzo
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL
| | - Callyn A Kirk
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL
| | - Xingyao Wu
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Sabrina W Yum
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Franco Taroni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Davide Pareyson
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary M Reilly
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Stephan Züchner
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| |
Collapse
|
19
|
Choi BO, Nam SH, Chung KW. Replication studies of MIR149 association in Charcot-Marie-Tooth disease type 1A in a European population - response. Neuromuscul Disord 2019; 29:160-162. [PMID: 30683432 DOI: 10.1016/j.nmd.2018.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|
20
|
Tao F, Beecham GW, Rebelo AP, Blanton SH, Moran JJ, Lopez-Anido C, Svaren J, Abreu L, Rizzo D, Kirk CA, Wu X, Feely S, Verhamme C, Saporta MA, Herrmann DN, Day JW, Sumner CJ, Lloyd TE, Li J, Yum SW, Taroni F, Baas F, Choi BO, Pareyson D, Scherer SS, Reilly MM, Shy ME, Züchner S, the Inherited Neuropathy Consortium. Modifier Gene Candidates in Charcot-Marie-Tooth Disease Type 1A: A Case-Only Genome-Wide Association Study. J Neuromuscul Dis 2019; 6:201-211. [PMID: 30958311 PMCID: PMC6597974 DOI: 10.3233/jnd-190377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by a uniform 1.5-Mb duplication on chromosome 17p, which includes the PMP22 gene. Patients often present the classic neuropathy phenotype, but also with high clinical variability. OBJECTIVE We aimed to identify genetic variants that are potentially associated with specific clinical outcomes in CMT1A. METHODS We genotyped over 600,000 genomic markers using DNA samples from 971 CMT1A patients and performed a case-only genome-wide association study (GWAS) to identify potential genetic association in a subset of 644 individuals of European ancestry. A total of 14 clinical outcomes were analyzed in this study. RESULTS The analyses yielded suggestive association signals in four clinical outcomes: difficulty with eating utensils (lead SNP rs4713376, chr6 : 30773314, P = 9.91×10-7, odds ratio = 3.288), hearing loss (lead SNP rs7720606, chr5 : 126551732, P = 2.08×10-7, odds ratio = 3.439), decreased ability to feel (lead SNP rs17629990, chr4 : 171224046, P = 1.63×10-7, odds ratio = 0.336), and CMT neuropathy score (lead SNP rs12137595, chr1 : 4094068, P = 1.14×10-7, beta = 3.014). CONCLUSIONS While the results require validation in future genetic and functional studies, the detected association signals may point to novel genetic modifiers in CMT1A.
Collapse
Affiliation(s)
- Feifei Tao
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gary W. Beecham
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Adriana P. Rebelo
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H. Blanton
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - John J. Moran
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Camila Lopez-Anido
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Lisa Abreu
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Devon Rizzo
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Callyn A. Kirk
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
| | - Xingyao Wu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - David N. Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W. Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sabrina W. Yum
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Franco Taroni
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Davide Pareyson
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary M. Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Michael E. Shy
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Stephan Züchner
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - the Inherited Neuropathy Consortium
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI, USA
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
21
|
Tao F, Züchner S. Replication studies of MIR149 association in Charcot-Marie-Tooth disease type 1A in a European population. Neuromuscul Disord 2018; 29:160-162. [PMID: 30683433 DOI: 10.1016/j.nmd.2018.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
|
22
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|