1
|
Laarne M, Oghabian A, Laitila J, Isohanni P, Tynninen O, Zhao F, Rostedt F, Sarparanta J, Sagath L, Lawlor MW, Wallgren-Pettersson C, Lehtokari VL, Pelin K. A homozygous single-nucleotide variant in TNNT1 causes abnormal troponin T isoform expression in a patient with severe nemaline myopathy: A case report. J Neuromuscul Dis 2025:22143602251339569. [PMID: 40397026 DOI: 10.1177/22143602251339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
BACKGROUND Slow skeletal troponin T (ssTnT, TNNT1) is the tropomyosin-binding subunit of the troponin complex in the slow-twitch fibers of skeletal muscle. Exon 5 of TNNT1 is alternatively spliced, and retention of the 3' region of intron 11 (exon 12') has also been described. Variants in TNNT1 are known to cause nemaline myopathy (NM). OBJECTIVE To identify and further investigate the disease-causing variant in a patient with lethal NM. METHODS The genetic analyses included a gene panel, Sanger sequencing, whole-exome sequencing, and targeted array-CGH. Muscle biopsy was analyzed using routine histopathological methods. The alternative splicing of TNNT1 exon 12 in patient muscle was quantified from RNA sequencing data, and the protein expression was confirmed by western blot. Expression of ssTnT in patient muscle was studied by immunohistology. RESULTS The patient presented with arthrogryposis, stiffness, respiratory insufficiency, and minimal spontaneous movements. Histopathology showed hypotrophy and predominance of type II fibers, perimysial connective tissue accumulation, and nemaline bodies. The patient was homozygous for the TNNT1 missense variant (NM_003283.6:c.653C > G, p.(Pro218Arg), NM_ 001126132.3:c.612-7C > G), predicted to disrupt splicing. RNA-seq revealed inclusion of exon 12' in 49.85% of transcripts, whereas in controls exon 12' was not expressed. Exon 12' expression on the protein level was confirmed by western blot. Immunohistology showed strong ssTnT expression in remaining type I fibers, and low expression in type IIA fibers. CONCLUSIONS The c.653C > G variant was shown to alter TNNT1 splicing. The results suggest a novel pathogenetic mechanism involving abnormal expression of a troponin T isoform.
Collapse
Affiliation(s)
- Milla Laarne
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ali Oghabian
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jenni Laitila
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland
- Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fanny Rostedt
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lydia Sagath
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Yavaş C, Doğan M, Eröz R, Türegün K. A rare TNNT1 gene variant causing creatine kinase elevation in nemaline myopathy: c.271_273del (p.Lys91del). Genes Genomics 2024; 46:613-620. [PMID: 38363456 DOI: 10.1007/s13258-024-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.
Collapse
Affiliation(s)
- Cüneyd Yavaş
- Department of Molecular Biology and Genetics, Biruni University, Karanfil St. No:1H/12, Beylikduzu, Istanbul, 34100, Turkey.
| | - Mustafa Doğan
- Genetic Diseases Assessment Center, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Recep Eröz
- Department of Medical Genetics Medical Faculty, Aksaray University, Aksaray, Turkey
| | - Kübra Türegün
- Department of Biotechnology, Institute of Science and Technology, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Strauss KA, Carson VJ, Bolettieri E, Everett M, Bollinger A, Bowser LE, Beiler K, Young M, Edvardson S, Fraenkel N, D'Amico A, Bertini E, Lingappa L, Chowdhury D, Lowes LP, Iammarino M, Alfano LN, Brigatti KW. WiTNNess: An international natural history study of infantile-onset TNNT1 myopathy. Ann Clin Transl Neurol 2023; 10:1972-1984. [PMID: 37632133 PMCID: PMC10647004 DOI: 10.1002/acn3.51884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE We created WiTNNess as a hybrid prospective/cross-sectional observational study to simulate a clinical trial for infantile-onset TNNT1 myopathy. Our aims were to identify populations for future trial enrollment, rehearse outcome assessments, specify endpoints, and refine trial logistics. METHODS Eligible participants had biallelic pathogenic variants of TNNT1 and infantile-onset proximal weakness without confounding conditions. The primary endpoint was ventilator-free survival. "Thriving" was a secondary endpoint defined as the ability to swallow and grow normally without non-oral feeding support. Endpoints of gross motor function included independent sitting and standing as defined by the Word Health Organization, a novel TNNT1 abbreviated motor score, and video mapping of limb movement. We recorded adverse events, concomitant medications, and indices of organ function to serve as comparators of safety in future trials. RESULTS Sixteen children were enrolled in the aggregate cohort (6 prospective, 10 cross-sectional; median census age 2.3 years, range 0.5-13.8). Median ventilator-free survival was 20.2 months and probability of death or permanent mechanical ventilation was 100% by age 60 months. All six children (100%) in the prospective arm failed to thrive by age 12 months. Only 2 of 16 (13%) children in the aggregate cohort sat independently and none stood alone. Novel exploratory motor assessments also proved informative. Laboratory and imaging data suggest that primary manifestations of TNNT1 deficiency are restricted to skeletal muscle. INTERPRETATION WiTNNess allowed us to streamline and economize the collection of historical control data without compromising scientific rigor, and thereby establish a sound operational framework for future clinical trials.
Collapse
Affiliation(s)
- Kevin A. Strauss
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
- Department of PediatricsPenn Medicine‐Lancaster General HospitalPennsylvaniaLancasterUSA
- Department of PediatricsUMass Chan Medical SchoolWorcesterMassachusettsUSA
- Department of Molecular, Cell & Cancer BiologyUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Vincent J. Carson
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
- Department of PediatricsPenn Medicine‐Lancaster General HospitalPennsylvaniaLancasterUSA
| | | | | | | | | | | | - Millie Young
- Clinic for Special ChildrenStrasburgPennsylvaniaUSA
| | - Simon Edvardson
- ALYN Hospital Pediatric and Adolescent Rehabilitation CenterJerusalemIsrael
| | - Nitay Fraenkel
- ALYN Hospital Pediatric and Adolescent Rehabilitation CenterJerusalemIsrael
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative Disorders, Department of NeurosciencesIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Department of NeurosciencesIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Lokesh Lingappa
- Department of Pediatric NeurologyRainbow Children's HospitalHyderabadIndia
| | - Devyani Chowdhury
- Cardiology Care for ChildrenLancasterPennsylvaniaUSA
- Department of CardiologyNemours Children's HealthWilmingtonDelawareUSA
| | - Linda P. Lowes
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | - Megan Iammarino
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | - Lindsay N. Alfano
- Center for Gene TherapyNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
4
|
Exon skipping caused by splicing mutation in TNNT1 nemaline myopathy. J Hum Genet 2023; 68:97-101. [PMID: 36446828 DOI: 10.1038/s10038-022-01096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The TNNT1 gene encoding the slow skeletal muscle TnT has been identified as a causative gene for nemaline myopathy. TNNT1 nemaline myopathy is mainly characterized by neonatal-onset muscle weakness, pectus carinatum and respiratory insufficiency. Herein, we report on a Chinese girl with TNNT1 nemaline myopathy with mild clinical phenotypes without thoracic deformities or decreased respiratory function. Muscle biopsy showed moderate to marked type 1 fiber atrophy and nemaline rods. Next-generation sequencing identified the compound heterozygous c. 587dupA (p. D196Efs*41) and c. 387+5G>A mutations in the TNNT1 gene according to the transcript NM_003283.4. RNA sequencing revealed complete exon 9 skipping caused by the c. 387+5G>A mutation. Through quantitative PCR, we found that both the truncation c. 587dupA (p. D196Efs*41) and the splicing c. 387+5G>A mutations triggered nonsense-mediated mRNA decay (NMD). Western blotting showed the residual amount of the truncated TNNT1 protein by deletion of exon 9, which may ameliorate the disease to some extent.
Collapse
|
5
|
Holling T, Lisfeld J, Johannsen J, Matschke J, Song F, Altmeppen HC, Kutsche K. Autosomal dominantly inherited myopathy likely caused by the TNNT1 variant p.(Asp65Ala). Hum Mutat 2022; 43:1224-1233. [PMID: 35510366 DOI: 10.1002/humu.24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/12/2022]
Abstract
Nemaline myopathies (NEM) are genetically and clinically heterogenous. Biallelic or monoallelic variants in TNNT1, encoding slow skeletal troponin T1 (TnT1), cause NEM. We report a 2-year-old patient and his mother carrying the heterozygous TNNT1 variant c.194A>C/p.(Asp65Ala) that occurred de novo in the mother. Both had muscle hypotrophy and muscle weakness. Muscle pathology in the proband's mother revealed slow twitch type 1 fiber hypotrophy and fast twitch type 2 fiber hypertrophy that was confirmed by a reduced ratio of slow skeletal myosin to fast skeletal myosin type 2a. RT-PCR and immunoblotting data demonstrated increased levels of high-molecular-weight TnT1 isoforms in skeletal muscle of the proband's mother that were also observed in some controls. In an overexpression system, complex formation of TnT1-D65A with tropomyosin 3 (TPM3) was enhanced. The previously reported TnT1-E104V and TnT1-L96P mutants showed reduced or no co-immunoprecipitation with TPM3. Our studies support pathogenicity of the TNNT1 p.(Asp65Ala) variant. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Zambon AA, Abel F, Linnane B, O'Rourke D, Phadke R, Sewry CA, Sarkozy A, Manzur A, Muntoni F. Troponin-T type 1 (TNNT1)-related nemaline myopathy: unique respiratory phenotype and muscle pathology findings. Neuromuscul Disord 2022; 32:245-254. [DOI: 10.1016/j.nmd.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
7
|
Ogasawara M, Nishino I. A review of core myopathy: central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Neuromuscul Disord 2021; 31:968-977. [PMID: 34627702 DOI: 10.1016/j.nmd.2021.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Core myopathies are clinically, pathologically, and genetically heterogeneous muscle diseases. Their onset and clinical severity are variable. Core myopathies are diagnosed by muscle biopsy showing focally reduced oxidative enzyme activity and can be pathologically divided into central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Although RYR1-related myopathy is the most common core myopathy, an increasing number of other causative genes have been reported, including SELENON, MYH2, MYH7, TTN, CCDC78, UNC45B, ACTN2, MEGF10, CFL2, KBTBD13, and TRIP4. Furthermore, the genes originally reported to cause nemaline myopathy, namely ACTA1, NEB, and TNNT1, have been recently associated with core-rod myopathy. Genetic analysis allows us to diagnose each core myopathy more accurately. In this review, we aim to provide up-to-date information about core myopathies.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan.
| |
Collapse
|
8
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Laitila J, Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021; 31:955-967. [PMID: 34561123 DOI: 10.1016/j.nmd.2021.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
The nemaline myopathies constitute a large proportion of the congenital or structural myopathies. Common to all patients is muscle weakness and the presence in the muscle biopsy of nemaline rods. The causative genes are at least twelve, encoding structural or regulatory proteins of the thin filament, and the clinical picture as well as the histological appearance on muscle biopsy vary widely. Here, we suggest a renewed clinical classification to replace the original one, summarise what is known about the pathogenesis from mutations in each causative gene to the forms of nemaline myopathy described to date, and provide perspectives on pathogenetic mechanisms possibly open to therapeutic modalities.
Collapse
Affiliation(s)
- Jenni Laitila
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland
| |
Collapse
|
10
|
Wang Q, Hu F. Nemaline myopathy with dilated cardiomyopathy and severe heart failure: A case report. World J Clin Cases 2021; 9:2569-2575. [PMID: 33889622 PMCID: PMC8040187 DOI: 10.12998/wjcc.v9.i11.2569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nemaline myopathy (NM) is a rare type of congenital myopathy, with an incidence of 1:50000. Patients with NM often exhibit hypomyotonia and varying degrees of muscle weakness. Skeletal muscles are always affected by this disease, while myocardial involvement is uncommon. However, with improvements in genetic testing technology, it has been found that NM with a mutation in the myopalladin (MYPN) gene not only causes slow, progressive muscle weakness but also results in dilated or hypertrophic cardiomyopathy. CASE SUMMARY A 3-year-old pre-school boy was admitted to our hospital with cough, edema, tachypnea, and an increased heart rate. The patient was clinically diagnosed with severe dilated cardiomyopathy and heart failure, and subsequent gene examination confirmed the diagnosis of NM with a mutation in MYPN. Captopril, diuretics, low-dose digoxin, and dobutamine were administered. After 22 d of hospitalization, the patient was discharged due to the improvement of clinical symptoms. During the follow-up period, the patient died of refractory heart failure. CONCLUSION Decreased muscular tone and dilated cardiomyopathy are common features of MYPN-mutated NM. Heart transplantation may be a solution to this type of cardiomyopathy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pediatric Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fan Hu
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Petrucci A, Primiano G, Savarese M, Sancricca C, Udd B, Servidei S. Novel TNNT1 mutation and mild nemaline myopathy phenotype in an Italian patient. Neuromuscul Disord 2021; 31:532-538. [PMID: 33832840 DOI: 10.1016/j.nmd.2021.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Mutations in the TNNT1 gene cause an infantile, lethal form of myopathy named "Amish" Nemaline Myopathy. Adult patients are very rarely described. We report a 49-year-old patient who presented a slowly progressive phenotype characterized by myalgia, exercise intolerance and dyspnea since infancy. In adult life she lapsed into a coma as a result of acute respiratory failure, with the need of tracheostomy, subsequently removed once her respiratory condition improved. Afterwards, non-invasive ventilation was started. Short stature, contractures, a small size posterior cranial fossa and osteonecrosis were additional clinical findings. Muscle MRI showed minor hypotrophy and degenerative changes of the muscles of the posterior thigh compartment and involvement of the paraspinal, medial gastrocnemius and soleus muscles with sparing of the gracilis muscle. Muscle biopsy revealed multiminicores and nemaline rods. Genetic analysis identified a new pathogenetic biallelic deletion c.786delG p.(Lys263Serfs*36) in exon 13 of TNNT1 gene. This case confirms that recessive mutations in TNNT1 gene can manifest mainly with respiratory failure in adult life.
Collapse
Affiliation(s)
- Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, Neuroscience Department, San Camillo-Forlanini Hospital, Rome, Italy
| | - Guido Primiano
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Sancricca
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Serenella Servidei
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
12
|
Expanding the spectrum of congenital myopathies: prenatal onset with extreme hyperextension of the neck. Neurol Sci 2020; 42:1549-1553. [PMID: 33244741 DOI: 10.1007/s10072-020-04937-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
We describe the case of a male newborn presenting with a prenatal diagnosis of persistent hyperextension of the fetal neck and severe hypotonia and respiratory insufficiency at birth. Facial weakness, increased serum creatine kinase levels, and abnormal feeding, together with other signs, such as severe contractures, also classically associated with congenital myopathies prompted to perform a muscle biopsy showing internal rods suggestive of a possible nemaline myopathy. These findings suggest that a careful neurological examination should be performed in infants with persistent hyperextension of the fetal neck to exclude weakness and a possible underlying muscle disorder.
Collapse
|
13
|
Clayton JS, McNamara EL, Goullee H, Conijn S, Muthsam K, Musk GC, Coote D, Kijas J, Testa AC, Taylor RL, O’Hara AJ, Groth D, Ottenheijm C, Ravenscroft G, Laing NG, Nowak KJ. Ovine congenital progressive muscular dystrophy (OCPMD) is a model of TNNT1 congenital myopathy. Acta Neuropathol Commun 2020; 8:142. [PMID: 32819427 PMCID: PMC7441672 DOI: 10.1186/s40478-020-01017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Ovine congenital progressive muscular dystrophy (OCPMD) was first described in Merino sheep flocks in Queensland and Western Australia in the 1960s and 1970s. The most prominent feature of the disease is a distinctive gait with stiffness of the hind limbs that can be seen as early as 3 weeks after birth. The disease is progressive. Histopathological examination had revealed dystrophic changes specifically in type I (slow) myofibres, while electron microscopy had demonstrated abundant nemaline bodies. Therefore, it was never certain whether the disease was a dystrophy or a congenital myopathy with dystrophic features. In this study, we performed whole genome sequencing of OCPMD sheep and identified a single base deletion at the splice donor site (+ 1) of intron 13 in the type I myofibre-specific TNNT1 gene (KT218690 c.614 + 1delG). All affected sheep were homozygous for this variant. Examination of TNNT1 splicing by RT-PCR showed intron retention and premature termination, which disrupts the highly conserved 14 amino acid C-terminus. The variant did not reduce TNNT1 protein levels or affect its localization but impaired its ability to modulate muscle contraction in response to Ca2+ levels. Identification of the causative variant in TNNT1 finally clarifies that the OCPMD sheep is in fact a large animal model of TNNT1 congenital myopathy. This model could now be used for testing molecular or gene therapies.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Elyshia L. McNamara
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Keren Muthsam
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - David Coote
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, Brisbane, 4067 QLD Australia
| | - Alison C. Testa
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Amanda J. O’Hara
- School of Veterinary Medicine, Murdoch University, Murdoch, 6150 WA Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, 6102 WA Australia
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Kristen J. Nowak
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Office of Population Health Genomics, Public and Aboriginal Health Division, Western Australian Department of Health, East Perth, 6004 WA Australia
| |
Collapse
|
14
|
Pellerin D, Aykanat A, Ellezam B, Troiano EC, Karamchandani J, Dicaire MJ, Petitclerc M, Robertson R, Allard-Chamard X, Brunet D, Konersman CG, Mathieu J, Warman Chardon J, Gupta VA, Beggs AH, Brais B, Chrestian N. Novel Recessive TNNT1 Congenital Core-Rod Myopathy in French Canadians. Ann Neurol 2020; 87:568-583. [PMID: 31970803 DOI: 10.1002/ana.25685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy. METHODS Patients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype. RESULTS Three adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so. INTERPRETATION This study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Asli Aykanat
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Emily C Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marc Petitclerc
- Department of Neurology, Hôpital Hôtel-Dieu de Lévis, Lévis, Quebec, Canada
| | - Rebecca Robertson
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Denis Brunet
- Department of Neurology, Hôpital de l'Enfant Jésus, Université Laval, Quebec City, Quebec, Canada
| | | | - Jean Mathieu
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada
| | - Jodi Warman Chardon
- Department of Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chrestian
- Department of Child Neurology, Centre Hospitalier de l'Université Laval et Centre Mère-Enfant Soleil, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|