1
|
Franklin MA, Salib MN, Gafni J, Pessah IN, Molinski TF. Structure-activity of Bastadins from the marine sponge Ianthella basta. Modulators of the RYR1 Ca 2+ channel. Bioorg Med Chem Lett 2025; 121:130165. [PMID: 40043821 DOI: 10.1016/j.bmcl.2025.130165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The RYR1 Ca2+ channel mediates essential steps of excitation-contraction in skeletal muscle. Bastadins-5 and -6, highly brominated macrodilactams assembled from tyrosine and tyramine by the marine sponge Ianthella basta, were identified as potent sensitizers of RYR1 channel activation. Here, we present a structure-activity relationships study of a wide panel of bastadins, and related analogs, and define the minimum requirements for stabilizing the RYR1 complex open or closed conformations.
Collapse
Affiliation(s)
- Melanie A Franklin
- Department of Chemistry University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juliette Gafni
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tadeusz F Molinski
- Department of Chemistry University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
3
|
Janßen S, Erbe LS, Kneifel M, Vorgerd M, Döring K, Lubieniecki KP, Lubieniecka JM, Gerding WM, Casadei N, Güttsches AK, Heyer C, Lücke T, Nguyen HHP, Köhler C, Hoffjan S. Compound Heterozygous RYR1 Variants in a Patient with Severe Congenital Myopathy: Case Report and Comparison with Additional Cases of Recessive RYR1-Related Myopathy. Int J Mol Sci 2024; 25:10867. [PMID: 39409197 PMCID: PMC11477233 DOI: 10.3390/ijms251910867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Pathogenic variants in the ryanodine receptor 1 (RYR1) gene are causative for a wide spectrum of muscular phenotypes, ranging from malignant hyperthermia over mild, non-progressive to severe congenital myopathy. Both autosomal dominant and recessive inheritance can occur, with the more severe forms usually showing recessive inheritance. However, genotype-phenotype correlations are complicated due to the large size of the gene and heterogeneous phenotypes. We present a 6-year-old patient with severe congenital myopathy, carrying a heterozygous pathogenic RYR1 variant inherited from the healthy mother. Through whole genome sequencing we identified a second, deep intronic RYR1 variant that has recently been described in another patient with severe congenital myopathy and shown to affect splicing. Segregation analyses confirmed the variants to be compound heterozygous. We compared our patient's phenotype to that of the patient from the literature as well as five additional patients with compound heterozygous RYR1 variants from our center. The main overlapping features comprised congenital onset, predominant muscular hypotonia, and normal creatine kinase (CK) levels, while overall clinical expression varied substantially. Interestingly, both patients carrying the new intronic splice variant showed a very severe disease course. More widespread use of genome sequencing will open the way for better genotype-phenotype correlations.
Collapse
Affiliation(s)
- Sören Janßen
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (S.J.); (T.L.); (C.K.)
| | - Leoni S. Erbe
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
| | - Moritz Kneifel
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany; (M.K.); (M.V.)
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany; (M.K.); (M.V.)
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
| | - Krzysztof P. Lubieniecki
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
| | - Joanna M. Lubieniecka
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University Tübingen, 72074 Tübingen, Germany;
- NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany; (M.K.); (M.V.)
| | - Christoph Heyer
- Institute for Pediatric Radiology, Katholisches Klinikum Bochum, Ruhr-University Bochum, 44791 Bochum, Germany;
| | - Thomas Lücke
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (S.J.); (T.L.); (C.K.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany
| | - Cornelia Köhler
- Department of Neuropediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (S.J.); (T.L.); (C.K.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany; (L.S.E.); (K.D.); (K.P.L.); (J.M.L.); (W.M.G.); (H.H.P.N.)
- Center for Rare Diseases Ruhr (CeSER), 44791 Bochum, Germany
| |
Collapse
|
4
|
Ogasawara M, Nishino I. Update on RYR1-related myopathies. Curr Opin Neurol 2024; 37:504-508. [PMID: 38994695 DOI: 10.1097/wco.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW RYR1-related myopathy (RYR1-RM) is a group of myopathies caused by mutations in the RYR1 gene, which encodes the ryanodine receptor 1 (RYR1). This review discusses recent advances in the clinical features, pathology, pathogenesis, and therapeutics of RYR1-RM. RECENT FINDINGS Although treatments such as salbutamol, pyridostigmine, and N-acetylcysteine have been explored as potential therapies for RYR1-RM, none have been conclusively proven to be effective. However, recent clinical trials of Rycal ARM210 in patients with RYR1-RM have shown promising results, including reduced fatigue and improved proximal muscle strength.Recent advances in three-dimensional structural analysis of RYR1 channels, facilitated by cryo-electron microscopy (cryo-EM), have elucidated the distinct molecular mechanisms underlying RYR1 functionality. Additionally, high-throughput screening methods, including FRET-based and endoplasmic reticulum Ca 2+ -based assays, have been successful in identifying potential candidates for the treatment of RYR1-RM. SUMMARY Recent advances in clinical and pathological understanding have provided new insights into RYR1-RM. Novel pathomechanisms elucidated by cryo-EM and rapid screening methods have led to the identification of several promising drug candidates. We are hopeful about the potential of Rycal, other new drugs, and gene therapy, offering a promising outlook for the future.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Pediatrics, Showa General Hospital, Hanakoganei
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawahigashi-cho, Kodaira, Tokyo, Japan
| |
Collapse
|
5
|
Beaufils M, Melka M, Brocard J, Benoit C, Debbah N, Mamchaoui K, Romero NB, Dalmas-Laurent AF, Quijano-Roy S, Fauré J, Rendu J, Marty I. Functional benefit of CRISPR-Cas9-induced allele deletion for RYR1 dominant mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102259. [PMID: 39071953 PMCID: PMC11278293 DOI: 10.1016/j.omtn.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as "RYR1-related myopathies." There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.
Collapse
Affiliation(s)
- Mathilde Beaufils
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Margaux Melka
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Brocard
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clement Benoit
- University Grenoble Alpes, TIMC, CNRS UMR5525, 38000 Grenoble, France
| | - Nagi Debbah
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
- University Grenoble Alpes, TIMC, CNRS UMR5525, 38000 Grenoble, France
- University Grenoble Alpes, Departement de Pharmacochimie Moléculaire, CNRS UMR 5063, 38400 Saint-Martin-d'Hères, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75000 Paris, France
| | - Norma B. Romero
- Neuromuscular Morphology Unit, Institut de Myologie, Pitié-Salpêtrière Hospital, Sorbonne Université, 75000 Paris, France
| | | | - Susana Quijano-Roy
- Neuromuscular Unit (NEIDF), Child Neurology and ICU Department, Raymond-Poincaré Hospital, (APHP University Paris-Saclay), 92380 Garches, France
| | - Julien Fauré
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - John Rendu
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Isabelle Marty
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
6
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Li HB, Ji XL, Nie PH, Sun NH, Li RH. Perioperative management of bronchoscopy in a child patient with central core disease: A case report and literature review. Int J Surg Case Rep 2024; 118:109629. [PMID: 38657516 PMCID: PMC11063512 DOI: 10.1016/j.ijscr.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION We described the perioperative management of a child patient with central core disease for bronchoscopy with bronchoalveolar lavage. It is safe to avoid triggering agents (volatile anesthetics and succinylcholine) probably in preventing this appearance of malignant hyperthermia (MH). It is important to recognize potential complications and know how to prevent and manage them in patients with this condition. PRESENTATION OF CASE A 5-year-old boy (weight: 8.8 kg; height: 63 cm) presented to the pediatric department after five days of intermittent fever (highest body temperature is 39.3 °C) and cough, and aggravation 1 day, meanwhile he had phlegm in throat but he couldn't cough out. The child was found to have motor retardation at his one-month-old physical examination, then genetic analysis showed central core disease. Bronchoscopy with bronchoalveolar lavage was performed for better treatment under the premise of symptomatic treatment. DISCUSSION The patients with central core disease are particularly to develop malignant hyperthermia, so adequate precautions are in place to prevent and treat MH before anesthetic induction. The anesthesiologists need to make adequate preoperative anesthesia management strategies to ensure the safety of the child with central core disease for bronchoscopy with bronchoalveolar lavage. The child was discharged from the hospital one week after anti-inflammatory and anti-asthmatic treatment. CONCLUSION We summarized the anesthetic precautions and management in patients with central core disease, meanwhile we offered some suggestions about anesthetic focus on bronchoscopy with bronchoalveolar lavage.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Anesthesiology, WeiFang People's Hospital, 151th, Guangwen Road, Weifang 261041, China
| | - Xiang-Lin Ji
- Department of Anesthesiology, WeiFang People's Hospital, 151th, Guangwen Road, Weifang 261041, China
| | - Pei-He Nie
- Department of Anesthesiology, WeiFang People's Hospital, 151th, Guangwen Road, Weifang 261041, China
| | - Neng-Hong Sun
- Department of Anesthesiology, WeiFang People's Hospital, 151th, Guangwen Road, Weifang 261041, China
| | - Rui-Hua Li
- Department of Anesthesiology, WeiFang People's Hospital, 151th, Guangwen Road, Weifang 261041, China.
| |
Collapse
|
8
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Chen Y, Zhang S, Lu X, Xie W, Wang C, Zhai Z. Unusual cause of muscle weakness, type II respiratory failure and pulmonary hypertension: a case report of ryanodine receptor type 1(RYR1)-related myopathy. BMC Pulm Med 2024; 24:194. [PMID: 38649898 PMCID: PMC11034144 DOI: 10.1186/s12890-024-03016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Patients with congenital myopathies may experience respiratory involvement, resulting in restrictive ventilatory dysfunction and respiratory failure. Pulmonary hypertension (PH) associated with this condition has never been reported in congenital ryanodine receptor type 1(RYR1)-related myopathy. CASE PRESENTATION A 47-year-old woman was admitted with progressively exacerbated chest tightness and difficulty in neck flexion. She was born prematurely at week 28. Her bilateral lower extremities were edematous and muscle strength was grade IV-. Arterial blood gas analysis revealed hypoventilation syndrome and type II respiratory failure, while lung function test showed restrictive ventilation dysfunction, which were both worse in the supine position. PH was confirmed by right heart catheterization (RHC), without evidence of left heart disease, congenital heart disease, or pulmonary artery obstruction. Polysomnography indicated nocturnal hypoventilation. The ultrasound revealed reduced mobility of bilateral diaphragm. The level of creatine kinase was mildly elevated. Magnetic resonance imaging showed myositis of bilateral thigh muscle. Muscle biopsy of the left biceps brachii suggested muscle malnutrition and congenital muscle disease. Gene testing revealed a missense mutation in the RYR1 gene (exon33 c.C4816T). Finally, she was diagnosed with RYR1-related myopathy and received long-term non-invasive ventilation (NIV) treatment. Her symptoms and cardiopulmonary function have been greatly improved after 10 months. CONCLUSIONS We report a case of RYR1-related myopathy exhibiting hypoventilation syndrome, type II respiratory failure and PH associated with restrictive ventilator dysfunction. Pulmonologists should keep congenital myopathies in mind in the differential diagnosis of type II respiratory failure, especially in patients with short stature and muscle weakness.
Collapse
Affiliation(s)
- Yinong Chen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, P.R. China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Shuai Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China.
| | - Xin Lu
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Wanmu Xie
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, P.R. China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- Department of Respiratory Medicine, Capital Medical University, Beijing, P.R. China
| | - Zhenguo Zhai
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, P.R. China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China.
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
10
|
Meyer AP, Barnett CL, Myers K, Siskind CE, Moscarello T, Logan R, Roggenbuck J, Rich KA. Neuromuscular and cardiovascular phenotypes in paediatric titinopathies: a multisite retrospective study. J Med Genet 2024; 61:356-362. [PMID: 38050027 DOI: 10.1136/jmg-2023-109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Pathogenic variants in TTN cause a spectrum of autosomal dominant and recessive cardiovascular, skeletal muscle and cardioskeletal disease with symptom onset across the lifespan. The aim of this study was to characterise the genotypes and phenotypes in a cohort of TTN+paediatric patients. METHODS Retrospective chart review was performed at four academic medical centres. Patients with pathogenic or truncating variant(s) in TTN and paediatric-onset cardiovascular and/or neuromuscular disease were eligible. RESULTS 31 patients from 29 families were included. Seventeen patients had skeletal muscle disease, often with proximal weakness and joint contractures, with average symptom onset of 2.2 years. Creatine kinase levels were normal or mildly elevated; electrodiagnostic studies (9/11) and muscle biopsies (11/11) were myopathic. Variants were most commonly identified in the A-band (14/32) or I-band (13/32). Most variants were predicted to be frameshift truncating, nonsense or splice-site (25/32). Seventeen patients had cardiovascular disease (14 isolated cardiovascular, three cardioskeletal) with average symptom onset of 12.9 years. Twelve had dilated cardiomyopathy (four undergoing heart transplant), two presented with ventricular fibrillation arrest, one had restrictive cardiomyopathy and two had other types of arrhythmias. Variants commonly localised to the A-band (8/15) or I-band (6/15) and were predominately frameshift truncating, nonsense or splice-site (14/15). CONCLUSION Our cohort demonstrates the genotype-phenotype spectrum of paediatric-onset titinopathies identified in clinical practice and highlights the risk of life-threatening cardiovascular complications. We show the difficulties of obtaining a molecular diagnosis, particularly in neuromuscular patients, and bring awareness to the complexities of genetic counselling in this population.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cara L Barnett
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katherine Myers
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carly E Siskind
- Department of Neurology, Stanford Health Care, Stanford, California, USA
| | - Tia Moscarello
- Stanford Center for Inherited Cardiovascular Disease, Stanford Health Care, Stanford, California, USA
| | - Rachel Logan
- Division of Neurosciences, Children's Healthcare of Atlanta Inc, Atlanta, Georgia, USA
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Human Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Cong Z, Wan T, Wang J, Feng L, Cao C, Li Z, Wang X, Han Y, Zhou Y, Gao Y, Zhang J, Qu Y, Guo X. Epidemiological and clinical features of malignant hyperthermia: A scoping review. Clin Genet 2024; 105:233-242. [PMID: 38148504 DOI: 10.1111/cge.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Malignant hyperthermia (MH) is a potentially fatal inherited pharmacogenetic disorder related to pathogenic variants in the RYR1, CACNA1S, or STAC3 genes. Early recognition of the occurrence of MH and prompt medical treatment are indispensable to ensure a positive outcome. The purpose of this study was to provide valuable information for the early identification of MH by summarizing epidemiological and clinical features of MH. This scoping review followed the methodological framework recommended by Arksey and O'Malley. PubMed, Embase, and Web of science databases were searched for studies that evaluated the epidemical and clinical characteristics of MH. A total of 37 studies were included in this review, of which 26 were related to epidemiology and 24 were associated with clinical characteristics. The morbidity of MH varied from 0.18 per 100 000 to 3.9 per 100 000. The mortality was within the range of 0%-18.2%. Identified risk factors included sex, age, disorders associated with MH, and others. The most frequent initial clinical signs included hyperthermia, sinus tachycardia, and hypercarbia. The occurrence of certain signs, such as hypercapnia, delayed first temperature measurement, and peak temperature were associated with poor outcomes. The epidemiological and clinical features of MH varied considerably and some risk factors and typical clinical signs were identified. The main limitation of this review is that the treatment and management strategies were not assessed sufficiently due to limited information.
Collapse
Affiliation(s)
- Zhukai Cong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Tingting Wan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Jiechu Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Luyang Feng
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Cathy Cao
- Department of Anesthesiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Xiaoxiao Wang
- Research Center for Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Ya Gao
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Jing Zhang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and lmprovement on Clinical Anesthesia, Beijing, China
| |
Collapse
|
12
|
Andrade PVD, Valim LM, Santos JM, Castro ID, Amaral JLGD, Silva HCAD. How would a completely homogeneous malignant hyperthermia susceptible sample be? BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744468. [PMID: 37820766 PMCID: PMC10877322 DOI: 10.1016/j.bjane.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Pamela Vieira de Andrade
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil.
| | - Lívia Maria Valim
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Joilson Moura Santos
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Isac de Castro
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - José Luiz Gomes do Amaral
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Helga Cristina Almeida da Silva
- Universidade Federal de São Paulo (UNIFESP), Centro de Estudo, Diagnóstico e Investigação de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Zhang QY, Yin YY, Bai L, Xu X. A case report of central core disease with repeated foaming at the mouth as the initial symptom. Medicine (Baltimore) 2023; 102:e36332. [PMID: 38050243 PMCID: PMC10695549 DOI: 10.1097/md.0000000000036332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Central core disease (CCD) is a congenital myopathy primarily observed in infants and children. It frequently manifests as limb weakness or delayed motor development, characterized by gradually progressing or non-worsening weakness and muscle atrophy primarily affecting the proximal limbs. Joint deformity is a prevalent clinical feature. Presently, there is no targeted treatment available for this condition. CASE DESCRIPTION The infant, who was 42 days old, showed a repeated occurrence of foaming at the mouth for more than a month as the initial symptom. Initially, the local clinic misdiagnosed it as softening of the thyroid cartilage. However, when the infant underwent bronchoscopy at our hospital, it was discovered that the pharyngeal muscle was loose, and there was noticeable retraction of the base of the tongue. Additionally, the infant displayed evident hypotonia and an increase in creatine kinase levels. By conducting a thorough genetic examination, we confirmed that the infant had CCD. CONCLUSION The onset of CCD may manifest as various symptoms. Medical practitioners need to be attentive in recognizing individuals who experience recurring pneumonia along with reduced muscle tone during the course of clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiu-yue Zhang
- Department of Pediatrics, the First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yang-yan Yin
- Department of Pediatrics, the First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Lu Bai
- Department of Pediatrics, the First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xuan Xu
- Department of Pediatrics, the First Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
14
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Multimodal Molecular Imaging Reveals Tissue-Based T Cell Activation and Viral RNA Persistence for Up to 2 Years Following COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293177. [PMID: 37577714 PMCID: PMC10418298 DOI: 10.1101/2023.07.27.23293177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Dylan Ryder
- Division of Experimental Medicine, University of California San Francisco
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Yingbing Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California San Francisco
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco
| | - Sadie E. Munter
- Division of Experimental Medicine, University of California San Francisco
| | - Kofi A. Asare
- Division of Experimental Medicine, University of California San Francisco
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Wally Koch
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Gyula Szabo
- Department of Pathology, University of California San Francisco
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Uttam Shrestha
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nitasha Kumar
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | - Ma Somsouk
- Division of Gastroenterology, University of California San Francisco
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco
| |
Collapse
|
15
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
16
|
Wattez JS, Eury E, Hazen BC, Wade A, Chau S, Ou SC, Russell AP, Cho Y, Kralli A. Loss of skeletal muscle estrogen-related receptors leads to severe exercise intolerance. Mol Metab 2023; 68:101670. [PMID: 36642217 PMCID: PMC9938320 DOI: 10.1016/j.molmet.2023.101670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Skeletal muscle oxidative capacity is central to physical activity, exercise capacity and whole-body metabolism. The three estrogen-related receptors (ERRs) are regulators of oxidative metabolism in many cell types, yet their roles in skeletal muscle remain unclear. The main aim of this study was to compare the relative contributions of ERRs to oxidative capacity in glycolytic and oxidative muscle, and to determine defects associated with loss of skeletal muscle ERR function. METHODS We assessed ERR expression, generated mice lacking one or two ERRs specifically in skeletal muscle and compared the effects of ERR loss on the transcriptomes of EDL (predominantly glycolytic) and soleus (oxidative) muscles. We also determined the consequences of the loss of ERRs for exercise capacity and energy metabolism in mice with the most severe loss of ERR activity. RESULTS ERRs were induced in human skeletal muscle in response to an exercise bout. Mice lacking both ERRα and ERRγ (ERRα/γ dmKO) had the broadest and most dramatic disruption in skeletal muscle gene expression. The most affected pathway was "mitochondrial function", in particular Oxphos and TCA cycle genes, and transcriptional defects were more pronounced in the glycolytic EDL than the oxidative soleus. Mice lacking ERRβ and ERRγ, the two isoforms expressed highly in oxidative muscles, also exhibited defects in lipid and branch chain amino acid metabolism genes, specifically in the soleus. The pronounced disruption of oxidative metabolism in ERRα/γ dmKO mice led to pale muscles, decreased oxidative capacity, histochemical patterns reminiscent of minicore myopathies, and severe exercise intolerance, with the dmKO mice unable to switch to lipid utilization upon running. ERRα/γ dmKO mice showed no defects in whole-body glucose and energy homeostasis. CONCLUSIONS Our findings define gene expression programs in skeletal muscle that depend on different combinations of ERRs, and establish a central role for ERRs in skeletal muscle oxidative metabolism and exercise capacity. Our data reveal a high degree of functional redundancy among muscle ERR isoforms for the protection of oxidative capacity, and show that ERR isoform-specific phenotypes are driven in part, but not exclusively, by their relative levels in different muscles.
Collapse
Affiliation(s)
- Jean-Sébastien Wattez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elodie Eury
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bethany C Hazen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexa Wade
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Chau
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shu-Ching Ou
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Hitachi K, Kiyofuji Y, Yamaguchi H, Nakatani M, Inui M, Tsuchida K. Simultaneous loss of skeletal muscle myosin heavy chain IIx and IIb causes severe skeletal muscle hypoplasia in postnatal mice. FASEB J 2023; 37:e22692. [PMID: 36515178 DOI: 10.1096/fj.202200581r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The skeletal muscle myosin heavy chain (MyHC) is a fundamental component of the sarcomere structure and muscle contraction. Two of the three adult fast MyHCs, MyHC-IIx and MyHC-IIb, are encoded by Myh1 and Myh4, respectively. However, skeletal muscle disorders have not yet been linked to these genes in humans. MyHC-IIb is barely detectable in human skeletal muscles. Thus, to characterize the molecular function of skeletal muscle MyHCs in humans, investigation of the effect of simultaneous loss of MyHC-IIb and other MyHCs on skeletal muscle in mice is essential. Here, we generated double knockout (dKO) mice with simultaneous loss of adult fast MyHCs by introducing nonsense frameshift mutations into the Myh1 and Myh4 genes. The dKO mice appeared normal after birth and until 2 weeks of age but showed severe skeletal muscle hypoplasia after 2 weeks. In 3-week-old dKO mice, increased expression of other skeletal muscle MyHCs, such as MyHC-I, MyHC-IIa, MyHC-neo, and MyHC-emb, was observed. However, these expressions were not sufficient to compensate for the loss of MyHC-IIb and MyHC-IIx. Moreover, the aberrant sarcomere structure with altered expression of sarcomere components was observed in dKO mice. Our findings imply that the simultaneous loss of MyHC-IIb and MyHC-IIx is substantially detrimental to postnatal skeletal muscle function and will contribute to elucidating the molecular mechanisms of skeletal muscle wasting disorders caused by the loss of skeletal muscle MyHCs.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Yuri Kiyofuji
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hisateru Yamaguchi
- School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | - Masashi Nakatani
- Faculty of Rehabilitation and Care, Seijoh University, Tokai, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| |
Collapse
|
18
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
19
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
20
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|