1
|
Trehalose-Carnosine Prevents the Effects of Spinal Cord Injury Through Regulating Acute Inflammation and Zinc(II) Ion Homeostasis. Cell Mol Neurobiol 2022; 43:1637-1659. [PMID: 36121569 PMCID: PMC10079760 DOI: 10.1007/s10571-022-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Spinal cord injury (SCI) leads to long-term and permanent motor dysfunctions, and nervous system abnormalities. Injury to the spinal cord triggers a signaling cascade that results in activation of the inflammatory cascade, apoptosis, and Zn(II) ion homeostasis. Trehalose (Tre), a nonreducing disaccharide, and L-carnosine (Car), (β-alanyl-L-histidine), one of the endogenous histidine dipeptides have been recognized to suppress early inflammatory effects, oxidative stress and to possess neuroprotective effects. We report on the effects of the conjugation of Tre with Car (Tre-car) in reducing inflammation in in vitro and in vivo models. The in vitro study was performed using rat pheochromocytoma cells (PC12 cell line). After 24 h, Tre-car, Car, Tre, and Tre + Car mixture treatments, cells were collected and used to investigate Zn2+ homeostasis. The in vivo model of SCI was induced by extradural compression of the spinal cord at the T6-T8 levels. After treatments with Tre, Car and Tre-Car conjugate 1 and 6 h after SCI, spinal cord tissue was collected for analysis. In vitro results demonstrated the ionophore effect and chelating features of L-carnosine and its conjugate. In vivo, the Tre-car conjugate treatment counteracted the activation of the early inflammatory cascade, oxidative stress and apoptosis after SCI. The Tre-car conjugate stimulated neurotrophic factors release, and influenced Zn2+ homeostasis. We demonstrated that Tre-car, Tre and Car treatments improved tissue recovery after SCI. Tre-car decreased proinflammatory, oxidative stress mediators release, upregulated neurotrophic factors and restored Zn2+ homeostasis, suggesting that Tre-car may represent a promising therapeutic agent for counteracting the consequences of SCI.
Collapse
|
2
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
3
|
Lee-Hotta S, Uchiyama Y, Kametaka S. Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review. Neurochem Int 2019; 128:32-38. [PMID: 30986502 DOI: 10.1016/j.neuint.2019.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
In most mature neurons, low levels of intracellular Cl- concentrations ([Cl-]i) are maintained by channels and transporters, particularly the K+-Cl- cotransporter 2 (KCC2), which is the only Cl- extruder in most neurons. Recent studies have implicated KCC2 expression in the molecular mechanisms underlying neuronal disorders, such as spasticity, epilepsy and neuropathic pain. Alterations in KCC2 expression have been associated with brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB). The present review summarizes recent progress regarding the roles of Cl- regulators in immature and mature neurons. Moreover, we focus on the role of KCC2 regulation via the BDNF-TrkB pathway in spinal cord injury and rehabilitation, as prior studies have shown that the BDNF-TrkB pathway can affect both the pathological development and functional amelioration of spinal cord injuries. Evidence suggests that rehabilitation using active exercise and mechanical stimulation can attenuate spasticity and neuropathic pain in animal models, likely due to the upregulation of KCC2 expression via the BDNF-TrkB pathway. Moreover, research suggests that such rehabilitation efforts may recover KCC2 expression without the use of exogenous BDNF.
Collapse
Affiliation(s)
- Sachiko Lee-Hotta
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| | - Yasushi Uchiyama
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| | - Satoshi Kametaka
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| |
Collapse
|
4
|
Shiao R, Lee-Kubli CA. Neuropathic Pain After Spinal Cord Injury: Challenges and Research Perspectives. Neurotherapeutics 2018; 15:635-653. [PMID: 29736857 PMCID: PMC6095789 DOI: 10.1007/s13311-018-0633-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that remains difficult to treat because underlying mechanisms are not yet fully understood. In part, this is due to limitations of evaluating neuropathic pain in animal models in general, and SCI rodents in particular. Though pain in patients is primarily spontaneous, with relatively few patients experiencing evoked pains, animal models of SCI pain have primarily relied upon evoked withdrawals. Greater use of operant tasks for evaluation of the affective dimension of pain in rodents is needed, but these tests have their own limitations such that additional studies of the relationship between evoked withdrawals and operant outcomes are recommended. In preclinical SCI models, enhanced reflex withdrawal or pain responses can arise from pathological changes that occur at any point along the sensory neuraxis. Use of quantitative sensory testing for identification of optimal treatment approach may yield improved identification of treatment options and clinical trial design. Additionally, a better understanding of the differences between mechanisms contributing to at- versus below-level neuropathic pain and neuropathic pain versus spasticity may shed insights into novel treatment options. Finally, the role of patient characteristics such as age and sex in pathogenesis of neuropathic SCI pain remains to be addressed.
Collapse
Affiliation(s)
- Rani Shiao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA
| | - Corinne A Lee-Kubli
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines, La Jolla, California, 92073, USA.
| |
Collapse
|
5
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
6
|
Devasahayam AJ, Downer MB, Ploughman M. The Effects of Aerobic Exercise on the Recovery of Walking Ability and Neuroplasticity in People with Multiple Sclerosis: A Systematic Review of Animal and Clinical Studies. Mult Scler Int 2017; 2017:4815958. [PMID: 29181199 PMCID: PMC5664281 DOI: 10.1155/2017/4815958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Walking is of high priority for people with multiple sclerosis (PwMS). It remains unclear whether aerobic exercise can improve walking ability and upregulate neurotrophins. This review aims to consolidate evidence to develop optimal aerobic training parameters to enhance walking outcomes and neuroplasticity in PwMS. METHODS Clinical studies examining aerobic exercise for ≥3 weeks, having outcomes on walking with or without neurotrophic markers, were included. Studies utilizing animal models of MS were included if they employed aerobic exercise with outcomes on neurological recovery and neurotrophins. From a total of 1783 articles, 12 clinical and 5 animal studies were included. RESULTS Eleven clinical studies reported improvements in walking ability. Only two clinical studies evaluated both walking and neurotrophins, and neither found an increase in neurotrophins despite improvements in walking. Patients with significant walking impairments were underrepresented. Long-term follow-up revealed mixed results. Two animal studies reported a positive change in both neurological recovery and neurotrophins. CONCLUSION Aerobic exercise improves walking ability in PwMS. Gains are not consistently maintained at 2- to 9-month follow-up. Studies examining levels of neurotrophins are inconclusive, necessitating further research. Aerobic exercise enhances both neurological recovery and neurotrophins in animal studies when started 2 weeks before induction of MS.
Collapse
Affiliation(s)
- Augustine Joshua Devasahayam
- The Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Room 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, Canada A1A 1E5
| | - Matthew Bruce Downer
- The Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Room 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, Canada A1A 1E5
| | - Michelle Ploughman
- The Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Room 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, Canada A1A 1E5
| |
Collapse
|
7
|
Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity. Mol Neurobiol 2017; 55:2696-2711. [PMID: 28421542 DOI: 10.1007/s12035-017-0551-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) induces cognitive impairments, motor and behavioral deficits. Previous evidences have suggested that neural stem cell (NSC) transplantation could facilitate functional recovery from brain insults, but their underlying mechanisms remains to be elucidated. Here, we established TBI model by an electromagnetic-controlled cortical impact device in the rats. Then, 5 μl NSCs (5.0 × 105/μl), derived from green fluorescent protein (GFP) transgenic mouse, was transplanted into the traumatic brain regions of rats at 24 h after injury. After differentiation of the NSCs was determined using immunohistochemistry, neurological severity scores (NSS) and rotarod test were conducted to detect the neurological behavior. Western blot and RT-PCR as well as ELASA were used to evaluate the expression of synaptophysin and brain-derived neurotrophic factor (BDNF). In order to elucidate the role of BDNF on the neural recovery after NSC transplantation, BDNF knockdown in NSC was performed and transplanted into the rats with TBI, and potential mechanism for BDNF knockdown in the NSC was analyzed using microassay analysis. Meanwhile, BDNF antibody blockade was conducted to further confirm the effect of BDNF on neural activity. As a result, an increasing neurological function improvement was seen in NSC transplanted rats, which was associated with the upregulation of synaptophysin and BDNF expression. Moreover, transplantation of BDNF knockdown NSCs and BDNF antibody block reduced not only the level of synaptophysin but also exacerbated neurological function deficits. Microassay analysis showed that 14 genes such as Wnt and Gsk3-β were downregulated after BDNF knockdown. The present data therefore showed that BDNF-mediated neuroplasticity underlie the mechanism of NSC transplantation for the treatment of TBI in adult rats.
Collapse
|
8
|
Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm 2017; 516:71-81. [DOI: 10.1016/j.ijpharm.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
|
9
|
Wang YC, Feng GY, Xia QJ, Hu Y, Xu Y, Xiong LL, Chen ZW, Wang HP, Wang TH, Zhou X. Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats. Apoptosis 2016; 21:404-20. [PMID: 26822976 DOI: 10.1007/s10495-016-1218-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons' survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.
Collapse
Affiliation(s)
- You-Cui Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guo-Ying Feng
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Hu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Hang-Ping Wang
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Ting-Hua Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China. .,Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xue Zhou
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 2016; 6:35205. [PMID: 27748416 PMCID: PMC5066253 DOI: 10.1038/srep35205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Collapse
|
11
|
Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons. Neural Plast 2016; 2016:7692602. [PMID: 27563469 PMCID: PMC4987469 DOI: 10.1155/2016/7692602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
High cervical spinal cord injuries interrupt the bulbospinal respiratory pathways projecting to the cervical phrenic motoneurons resulting in important respiratory defects. In the case of a lateralized injury that maintains the respiratory drive on the opposite side, a partial recovery of the ipsilateral respiratory function occurs spontaneously over time, as observed in animal models. The rodent respiratory system is therefore a relevant model to investigate the neuroplastic and neuroprotective mechanisms that will trigger such phrenic motoneurons reactivation by supraspinal pathways. Since part of this recovery is dependent on the damaged side of the spinal cord, the present review highlights our current understanding of the anatomical neuroplasticity processes that are developed by the surviving damaged bulbospinal neurons, notably axonal sprouting and rerouting. Such anatomical neuroplasticity relies also on coordinated molecular mechanisms at the level of the axotomized bulbospinal neurons that will promote both neuroprotection and axon growth.
Collapse
|
12
|
Chung HJ, Chung WH, Lee JH, Chung DJ, Yang WJ, Lee AJ, Choi CB, Chang HS, Kim DH, Suh HJ, Lee DH, Hwang SH, Do SH, Kim HY. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats. J Vet Sci 2016; 17:97-102. [PMID: 27051345 PMCID: PMC4808649 DOI: 10.4142/jvs.2016.17.1.97] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/02/2015] [Accepted: 08/22/2015] [Indexed: 01/29/2023] Open
Abstract
We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.
Collapse
Affiliation(s)
- Hyo-jin Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Wook-hun Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hoon Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Dai-Jung Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Wo-Jong Yang
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - A-Jin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chi-Bong Choi
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hwa-Seok Chang
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Dae-Hyun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hyun Jung Suh
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Soo-Han Hwang
- Seoul Cord Blood Bank, Histostem Co, Seoul 05372, Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
13
|
Betz VM, Sitoci-Ficici KH, Uckermann O, Leipnitz E, Iltzsche A, Thirion C, Salomon M, Zwipp H, Schackert G, Betz OB, Kirsch M. Gene-activated fat grafts for the repair of spinal cord injury: a pilot study. Acta Neurochir (Wien) 2016; 158:367-78. [PMID: 26592254 DOI: 10.1007/s00701-015-2626-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI. METHODS An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated by histological and immunohistochemical methods. RESULTS NT-3 and BDNF were produced by gene-activated fat grafts for at least 21 days in vitro and in vivo. Fat tissue grafts remained stable at the site of implantation at 7 days and at 21 days. Neither BDNF-activated nor NT-3-activated fat graft had a detectable limiting effect on the neuronal degeneration. BDNF recruited microglia to perilesional site and attenuated their inflammatory response. CONCLUSIONS Gene-activated syngeneic fat tissue serves as a three-dimensional biological material delivering therapeutic molecules to the site of SCI over an extended period of time. The BDNF-fat graft attenuated the inflammatory response. Whether these findings translate into functional recovery will require extended observation times.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - K Hakan Sitoci-Ficici
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Elke Leipnitz
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Anne Iltzsche
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | | | | | - Hans Zwipp
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, University Hospital Grosshadern, University of Munich, Munich, Germany.
| | - Matthias Kirsch
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Wang XY, Gu PY, Chen SW, Gao WW, Tian HL, Lu XH, Zheng WM, Zhuge QC, Hu WX. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia. Neural Regen Res 2016; 10:1865-8. [PMID: 26807126 PMCID: PMC4705803 DOI: 10.4103/1673-5374.170318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1–5 and L7–S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.
Collapse
Affiliation(s)
- Xu-Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6 People's Hospital, Shanghai, China; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Pei-Yuan Gu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shi-Wen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6 People's Hospital, Shanghai, China
| | - Wen-Wei Gao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6 People's Hospital, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6 People's Hospital, Shanghai, China
| | - Xiang-He Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei-Ming Zheng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qi-Chuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei-Xing Hu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Liu W, Shang FF, Xu Y, Belegu V, Xia L, Zhao W, Liu R, Wang W, Liu J, Li CY, Wang TH. eIF5A1/RhoGDIα pathway: a novel therapeutic target for treatment of spinal cord injury identified by a proteomics approach. Sci Rep 2015; 5:16911. [PMID: 26593060 PMCID: PMC4655360 DOI: 10.1038/srep16911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is frequently accompanied by a degree of spontaneous functional recovery. The underlying mechanisms through which such recovery is generated remain elusive. In this study, we observed a significant spontaneous motor function recovery 14 to 28 days after spinal cord transection (SCT) in rats. Using a comparative proteomics approach, caudal to the injury, we detected difference in 20 proteins. Two of these proteins, are eukaryotic translation initiation factor 5A1 (eIF5A1) that is involved in cell survival and proliferation, and Rho GDP dissociation inhibitor alpha (RhoGDIα), a member of Rho GDI family that is involved in cytoskeletal reorganization. After confirming the changes in expression levels of these two proteins following SCT, we showed that in vivo eIF5A1 up-regulation and down-regulation significantly increased and decreased, respectively, motor function recovery. In vitro, eIF5A1 overexpression in primary neurons increased cell survival and elongated neurite length while eIF5A1 knockdown reversed these results. We found that RhoGDIα up-regulation and down-regulation rescues the effect of eIF5A1 down-regulation and up-regulation both in vivo and in vitro. Therefore, we have identified eIF5A1/RhoGDIα pathway as a new therapeutic target for treatment of spinal cord injured patients.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Fei-Fei Shang
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Yang Xu
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lei Xia
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Wei Zhao
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Ran Liu
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Wei Wang
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Jin Liu
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
| | - Chen-Yun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650000, P.R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, The state key laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 61041, P.R. China
- Institute of Neuroscience, Kunming medical University, Kunming 650031, P.R. China
| |
Collapse
|
16
|
Wang B, Li Y, Li XP, Li Y. Panax notoginseng saponins improve recovery after spinal cord transection by upregulating neurotrophic factors. Neural Regen Res 2015; 10:1317-20. [PMID: 26487862 PMCID: PMC4590247 DOI: 10.4103/1673-5374.162766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic (T10) spinal cord transection, and injected Panax notoginseng saponins (100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Li
- Department of Neurosurgery, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuan-Peng Li
- Department of Neurosurgery, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
17
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
18
|
Wang XY, Ba YC, Xiong LL, Li XL, Zou Y, Zhu YC, Zhou XF, Wang TH, Wang F, Tian HL, Li JT. Endogenous TGFβ1 Plays a Crucial Role in Functional Recovery After Traumatic Brain Injury Associated with Smad3 Signal in Rats. Neurochem Res 2015; 40:1671-80. [PMID: 26253398 DOI: 10.1007/s11064-015-1634-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-β 1 (TGFβ1) has a diverse role in astrogliosis and neuronal survival, but the underlying mechanism remains to be elucidated, especially in traumatic brain injury (TBI). Here, we show that the expression of TGFβ1 was increased in the pericontusional region, accompanied with astrogliosis and neuronal loss in TBI rats. Moreover, TGFβ1 knockdown not only reduced the number of neurons and inhibited astrogliosis but also resulted in a significant neurological dysfunction in rats with TBI. Subsequently, Smad3, a key downstream signal of TGFβ1, was involved in pericontusional region after TBI. These findings therefore indicate that TGFβ1 is involved in neuroprotection and astrogliosis, via activation of down stream Smad3 signal in the brain after injury.
Collapse
Affiliation(s)
- Xu-Yang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, 200233, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Albayrak S, Atci İB, Kalayci M, Yilmaz M, Kuloglu T, Aydin S, Kom M, Ayden O, Aydin S. Effect of carnosine, methylprednisolone and their combined application on irisin levels in the plasma and brain of rats with acute spinal cord injury. Neuropeptides 2015; 52:47-54. [PMID: 26142757 DOI: 10.1016/j.npep.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/02/2023]
Abstract
Spinal cord injury (SCI) might occur to anybody at any time and any age. In its treatment, methylprednisolone (MP) is a first choice worldwide, but there is still no significant breakthrough in truly beneficial treatment due to SCI's complex pathophysiology. We investigated the effect of carnosine, methylprednisolone (MP) and its combination on irisin levels in the plasma, brain and medulla spinalis tissues in SCI using a rat model. The rats were divided into 6 groups: I (Control, saline); II (sham animals with laminectomy without cross-clamping); III (SCI); IV (SCI treated with 150mg/kg carnosine); V (SCI treated with 30mg/kg methylprednisolone); and VI (SCI treated with a combination of carnosine and MP). The animals were given traumatic SCI after laminectomy, using 70-g closing force aneurysm clips (Yasargil FE 721). Irisin concentration was measured by ELISA. The distribution of irisin in brain and spinal cord tissues was examined by immunochemistry. Irisin was mainly expressed in the astrocytes and microglia of brain tissues, and multipolar neurones of the anterior horn of spinal cord tissue in rats of all groups, indicating that irisin is physiologically indispensable. MP and carnosine and the combination of the two, significantly increased irisin in plasma and were accompanied by a significant rise in irisin immunoreactivity of brain and spinal cord tissues of the injured rats compared with control and sham. This finding raises the possibility that methylprednisolone and carnosine regulate the brain and spinal cord tissues in SCI by inducing irisin expression, and may therefore offer a better neurological prognosis.
Collapse
Affiliation(s)
- Serdal Albayrak
- Department of Neurosurgery, Elazig Education and Research Hospital, 23100, Elazig, Turkey
| | - İbrahim Burak Atci
- Department of Neurosurgery, Elazig Education and Research Hospital, 23100, Elazig, Turkey
| | - Mehmet Kalayci
- Laboratory of Medical Biochemistry, Elazig Education and Research Hospital, Elazig 23100, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey
| | - Tuncay Kuloglu
- Firat University, School of Medicine, Department of Histology&Embryology, 23119, Elazig, Turkey
| | - Suna Aydin
- Cardiovascular Surgery- Anatomy, Elazig Education and Research Hospital, 23100, Elazig, Turkey
| | - Mustafa Kom
- Firat University, Veterinary of Medicine, Department of Surgery, Elazig 23119, Turkey
| | - Omer Ayden
- Department of Neurosurgery, Elazig Education and Research Hospital, 23100, Elazig, Turkey
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey.
| |
Collapse
|
20
|
Li XL, Yuan YG, Xu H, Wu D, Gong WG, Geng LY, Wu FF, Tang H, Xu L, Zhang ZJ. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats. Int J Neuropsychopharmacol 2015; 18:pyv046. [PMID: 25899067 PMCID: PMC4648155 DOI: 10.1093/ijnp/pyv046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. METHODS Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray's Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats' depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. RESULTS The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. CONCLUSION These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats' depressive behaviors, suggesting a therapeutic target for further exploration.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Yong-Gui Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Hua Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Wei-Gang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Lei-Yu Geng
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Fang-Fang Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Hao Tang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Lin Xu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China (Drs Li, Yuan, H. Xu, D. Wu, Gong, Geng, F-F. Wu, Tang, and Zhang); Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China (Dr L. Xu); Graduate School of Chinese Academy of Sciences, Beijing, China (Dr L. Xu)X-L.L. and Y-G.Y. contributed equally to this work.
| |
Collapse
|
21
|
Endoplasmic Reticulum Protein 29 Protects Axotomized Neurons from Apoptosis and Promotes Neuronal Regeneration Associated with Erk Signal. Mol Neurobiol 2014; 52:522-32. [DOI: 10.1007/s12035-014-8840-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|
22
|
Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats. Neurobiol Dis 2014; 69:93-107. [DOI: 10.1016/j.nbd.2014.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/25/2014] [Accepted: 05/17/2014] [Indexed: 11/22/2022] Open
|
23
|
Guertin PA. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front Hum Neurosci 2014; 8:272. [PMID: 24910602 PMCID: PMC4038974 DOI: 10.3389/fnhum.2014.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs-from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns-specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients.
Collapse
Affiliation(s)
- Pierre A. Guertin
- Department of Psychiatry and Neurosciences, Laval UniversityQuebec City, QC, Canada
- Spinal Cord Injury and Functional Recovery Laboratory, Laval University Medical Center (CHU de Quebec)Quebec City, QC, Canada
| |
Collapse
|
24
|
Liu R, Zhao W, Zhao Q, Liu SJ, Liu J, He M, Xu Y, Wang W, Liu W, Xia QJ, Li CY, Wang TH. Endoplasmic Reticulum Protein 29 Protects Cortical Neurons From Apoptosis and Promoting Corticospinal Tract Regeneration to Improve Neural Behavior via Caspase and Erk Signal in Rats with Spinal Cord Transection. Mol Neurobiol 2014; 50:1035-48. [DOI: 10.1007/s12035-014-8681-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022]
|
25
|
Yuan Y, Pan S, Sun Z, Dan Q, Liu J. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury. Int J Neurosci 2013; 124:524-31. [DOI: 10.3109/00207454.2013.859144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Shang FF, Zhao W, Zhao Q, Liu J, Li DW, Zhang H, Zhou XF, Li CY, Wang TH. Upregulation of eIF-5A1 in the paralyzed muscle after spinal cord transection associates with spontaneous hindlimb locomotor recovery in rats by upregulation of the ErbB, MAPK and neurotrophin signal pathways. J Proteomics 2013; 91:188-99. [PMID: 23238062 DOI: 10.1016/j.jprot.2012.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/18/2012] [Accepted: 12/02/2012] [Indexed: 02/05/2023]
Abstract
It is well known that trauma is frequently accompanied by spontaneous functional recovery after spinal cord injury (SCI), but the underlying mechanisms remain elusive. In this study, BBB scores showed a gradual return of locomotor functions after SCT. Proteomics analysis revealed 16 differential protein spots in the gastrocnemius muscle between SCT and normal rats. Of these differential proteins, eukaryotic translation initiation factor 5A1 (elf-5A1), a highly conserved molecule throughout eukaryotes, exhibited marked upregulation in the gastrocnemius muscle after SCT. To study the role of eIF-5A1 in the restoration of hindlimb locomotor functions following SCT, we used siRNA to downregulate the mRNA level of eIF-5A1. Compared with untreated SCT control rats, those subjected to eIF-5A1 knockdown exhibited impaired functional recovery. Moreover, gene expression microarrays and bioinformatic analysis showed high correlation between three main signal pathways (ErbB, MAPK and neurotrophin signal pathways) and eIF-5A1. These signal pathways regulate cell proliferation, differentiation and neurocyte growth. Consequently, eIF-5A1 played a pivotal role via these signal pathways in hindlimb locomotor functional recovery after SCT, which could pave the way for the development of a new strategy for the treatment of spinal cord injury in clinical trials.
Collapse
Affiliation(s)
- Fei-Fei Shang
- Institute of Neurological Disease, The State Key Laboratory of Biotherapy and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurol 2013; 3:183. [PMID: 23403923 PMCID: PMC3567435 DOI: 10.3389/fneur.2012.00183] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 12/14/2022] Open
Abstract
This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.
Collapse
Affiliation(s)
- Pierre A. Guertin
- Department of Psychiatry and Neurosciences, Laval UniversityQuebec City, QC, Canada
- Laval University Medical Center (CHU de Quebec)Quebec City, QC, Canada
| |
Collapse
|
28
|
He BL, Ba YC, Wang XY, Liu SJ, Liu GD, Ou S, Gu YL, Pan XH, Wang TH. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats. Neuropeptides 2013; 47:1-7. [PMID: 22959240 DOI: 10.1016/j.npep.2012.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 05/19/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Neural stem cells (NSC) could promote the repair after spinal cord transection (SCT), the underlying mechanism, however, still keeps to be defined. This study reported that NSC grafts significantly improved sensory and locomotor functions in adult rats with SCT in acute stage after injury. NSC could survive; differentiate towards neurons or glia lineage in vitro and vivo. Biotin dextran amine (BDA) tracing showed that little CST regeneration in the injury site, while SEP was recorded in NSC engrafted rats. Immunohistochemistry and Real time PCR confirmed that engrafted NSC expressed BDNF and increased the level of BDNF mRNA in injured site following transplantation. The present data therefore suggested that the functional recovery following SCT with NSC transplantation was correlated with the expression of BDNF, indicating the usage of BDNF with NSC transplantation in the treatment of SCI following injury.
Collapse
Affiliation(s)
- Bao-Li He
- Institute of Neuroscience, Kunming Medical College, Kunming 650031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Talaverón R, Matarredona ER, de la Cruz RR, Pastor AM. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons. PLoS One 2013; 8:e54519. [PMID: 23349916 PMCID: PMC3548797 DOI: 10.1371/journal.pone.0054519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/12/2012] [Indexed: 12/27/2022] Open
Abstract
Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants.
Collapse
Affiliation(s)
- Rocío Talaverón
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Esperanza R. Matarredona
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R. de la Cruz
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M. Pastor
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
30
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
31
|
Gu YL, Yin LW, Zhang Z, Liu J, Liu SJ, Zhang LF, Wang TH. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol Neurobiol 2012; 32:1089-97. [PMID: 22573254 PMCID: PMC11498527 DOI: 10.1007/s10571-012-9832-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
It is well known that neural stem cells (NSC) could promote the repairment after spinal cord injury, but the underlying mechanism remains to be elucidated. This study showed that the transplantation of NSC significantly improved hindlimb locomotor functions in adult rats subjected to transection of the spinal cord. Biotin dextran amine tracing together with the stimulus experiment in motor sensory area showed that little CST regeneration existed and functional synaptic formation in the injury site. Immunocytochemistry and RT-PCR demonstrated the secretion of NGF, BDNF, and NT-3 by NSC in vitro and in vivo, respectively. However, only mRNA expression of BDNF and NT-3 but not NGF in injury segment following NSC transplantation was upregulated remarkably, while caspase-3, a crucial apoptosis gene, was downregulated simultaneously. These provided us a clue that the functional recovery was correlated with the regulation of BDNF, NT-3, and caspase-3 in spinal cord transected rats following NSC transplantation.
Collapse
Affiliation(s)
- Ying-Li Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lu-Wei Yin
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Su-Juan Liu
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lian-Feng Zhang
- Institute of Laboratory Animal Science, CAMS, Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
32
|
Hawryluk GWJ, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 2012; 21:2222-38. [PMID: 22085254 DOI: 10.1089/scd.2011.0596] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion. Trophins may contribute to the benefits associated with cell-based repair strategies for spinal cord injury.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Division of Genetics and Development, Krembil Neuroscience Center, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Bedi SS, Lago MT, Masha LI, Crook RJ, Grill RJ, Walters ET. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors. J Neurotrauma 2011; 29:925-35. [PMID: 21939395 DOI: 10.1089/neu.2011.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.
Collapse
Affiliation(s)
- Supinder S Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Qian DX, Zhang HT, Cai YQ, Luo P, Xu RX. Expression of tyrosine kinase receptor C in the segments of the spinal cord and the cerebral cortex after cord transection in adult rats. Neurosci Bull 2011; 27:83-90. [PMID: 21441969 DOI: 10.1007/s12264-011-1150-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the role of tyrosine kinase receptor C (TrkC), the receptor of neurotrophin-3 (NT-3), in neuroplasticity following spinal cord injury (SCI). METHODS Rats with cord transection were allowed to survive for 1, 3, 7 and 14 d post operation (dpo). TrkC expressions at lower thoracic levels of the spinal cord and in precentral gyrus of cerebral cortex were investigated. RESULTS TrkC protein levels at both the site of injury (T10-T11) and the neighboring segments (T9 and T12) in the spinal cord decreased significantly at 1-7 dpo, followed by a rapid increase at 14 dpo. The temporal changes in TrkC mRNA expression level showed a similar pattern with that of TrkC protein. In addition, the levels of TrkC protein and mRNA at the site of injury (T10-T11) were significantly higher than those at the neighboring spinal segments (T9 and T12). Besides, the levels of TrkC protein and mRNA were higher at the rostral segment than at the caudal segment. However, in the motor cortex, TrkC protein was not detected and TrkC mRNA was expressed at a very low level. CONCLUSION These results suggest that TrkC may be involved in neuroplasticity after SCI.
Collapse
Affiliation(s)
- Dong-Xiang Qian
- Department of Neurosurgery, the Third Affiliated Hospital, Guangzhou Medical College, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
35
|
Abstract
Oligodendrocytes (OLs) are particularly susceptible to the toxicity of the acute lesion environment after spinal cord injury (SCI). They undergo both necrosis and apoptosis acutely, with apoptosis continuing at chronic time points. Loss of OLs causes demyelination and impairs axon function and survival. In parallel, a rapid and protracted OL progenitor cell proliferative response occurs, especially at the lesion borders. Proliferating and migrating OL progenitor cells differentiate into myelinating OLs, which remyelinate demyelinated axons starting at 2 weeks post-injury. The progression of OL lineage cells into mature OLs in the adult after injury recapitulates development to some degree, owing to the plethora of factors within the injury milieu. Although robust, this endogenous oligogenic response is insufficient against OL loss and demyelination. First, in this review we analyze the major spatial-temporal mechanisms of OL loss, replacement, and myelination, with the purpose of highlighting potential areas of intervention after SCI. We then discuss studies on OL protection and replacement. Growth factors have been used both to boost the endogenous progenitor response, and in conjunction with progenitor transplantation to facilitate survival and OL fate. Considerable progress has been made with embryonic stem cell-derived cells and adult neural progenitor cells. For therapies targeting oligogenesis to be successful, endogenous responses and the effects of the acute and chronic lesion environment on OL lineage cells must be understood in detail, and in relation, the optimal therapeutic window for such strategies must also be determined.
Collapse
Affiliation(s)
- Akshata Almad
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - F. Rezan Sahinkaya
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - Dana M. McTigue
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
- Department of Neuroscience, Ohio State University, 788 Biomedical Research Tower, 460 W. 12th Ave, Columbus, Ohio 43210 USA
| |
Collapse
|
36
|
Meng B, Zhang Q, Huang C, Zhang HT, Tang T, Yang HL. Effects of a single dose of methylprednisolone versus three doses of rosiglitazone on nerve growth factor levels after spinal cord injury. J Int Med Res 2011; 39:805-814. [PMID: 21819712 DOI: 10.1177/147323001103900313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acute spinal cord lesions result in dramatic changes in neuronal function. Studies have shown that the peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, has neuroprotective properties. The effect of rosiglitazone after acute spinal cord injury was examined in the present study. Rats were subjected to laminectomy only; laminectomy with spinal cord contusion injury; laminectomy with contusion injury plus 30 mg/kg body weight methylprednisolone administered 5 min after surgery; or laminectomy with contusion injury plus 2 mg/kg body weight rosiglitazone administered intraperitoneally 5 min, 6 h and 24 h after surgery. Both drugs increased neurotrophin gene and protein expression 24 h after injury compared with injured rats without drug treatment. Rosiglitazone increased neurotrophin expression at 7 days to a greater extent than methylprednisolone. Early functional recovery was observed in rats treated with rosiglitazone. The greater increase in rosiglitazone-induced nerve growth factor expression soon after injury could explain, at least in part, the improved recovery of motor function compared with methylprednisolone or saline.
Collapse
Affiliation(s)
- B Meng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. J Neurol Sci 2010; 300:86-96. [PMID: 21071039 DOI: 10.1016/j.jns.2010.09.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) have significant therapeutic potential in cell-based therapies following spinal cord injury (SCI). To evaluate this potential, we conducted our preliminary investigations on the remyelination of injured spinal cords with hUCB-MSC transplantations and we observed its long term effects on dogs with SCI. Of the ten injured dogs, seven were transplanted with hUCB-MSCs 1 week after SCI, whereas the remaining three dogs were not transplanted. Two transplanted dogs died over the first month after transplantation because of urinary tract infection, bedsores and sepsis. The SCI dogs showed no improvement in motor and sensory functions and their urinary dysfunction persisted until they were euthanized (from 3 months to 1 year) while hind-limb recovery in 4 dogs among the five transplanted dogs was significantly improved. In the recovered dogs, functional recovery was sustained for three years following transplantation. Histological results from five transplanted dogs showed that many axons were remyelinated by P0-positive myelin sheaths after transplantation. Our results suggest that transplantation of hUCB-derived MSCs may have beneficial therapeutic effects. Furthermore, histological results provided the first in vivo evidence that hUCB-MSCs are able to enhance the remyelination of peripheral-type myelin sheaths following SCI.
Collapse
|
38
|
Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010; 16:302-7. [PMID: 20190766 DOI: 10.1038/nm.2107] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/25/2010] [Indexed: 11/08/2022]
Abstract
Hyperexcitability of spinal reflexes and reduced synaptic inhibition are commonly associated with spasticity after spinal cord injury (SCI). In adults, the activation of gamma-aminobutyric acid(A) (GABAA) and glycine receptors inhibits neurons as a result of low intracellular chloride (Cl-) concentration, which is maintained by the potassium-chloride cotransporter KCC2 (encoded by Slc12a5). We show that KCC2 is downregulated after SCI in rats, particularly in motoneuron membranes, thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. Blocking KCC2 in intact rats reduces the rate-dependent depression (RDD) of the Hoffmann reflex, as is observed in spasticity. RDD is also decreased in KCC2-deficient mice and in intact rats after intrathecal brain-derived neurotrophic factor (BDNF) injection, which downregulates KCC2. The early decrease in KCC2 after SCI is prevented by sequestering BDNF at the time of SCI. Conversely, after SCI, BDNF upregulates KCC2 and restores RDD. Our results open new perspectives for the development of therapeutic strategies to alleviate spasticity.
Collapse
Affiliation(s)
- Pascale Boulenguez
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR6196), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Université, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hyun JK, Lee YI, Son YJ, Park JS. Serial changes in bladder, locomotion, and levels of neurotrophic factors in rats with spinal cord contusion. J Neurotrauma 2010; 26:1773-82. [PMID: 19203225 DOI: 10.1089/neu.2007.0485] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of this study were to evaluate the evolution of the neurogenic bladder after spinal cord contusion and to correlate changes in bladder function with locomotor function and levels of neurotrophic factors. The MASCIS impactor was used to cause a mild contusion injury of the lower thoracic spinal cord of Sprague-Dawley rats. Rats were divided into four groups according to the length of time from injury to sacrifice, at 4, 14, 28, and 56 days after injury. Gait analysis was performed each week, and urodynamic study was performed just before sacrifice. Basso, Beattie, and Bresnahan (BBB) and coupling scores showed gradual recovery, as did the urinary voiding pattern and bladder volume; some parameters of micturition reached normal ranges. Brain-derived neurotrophic factor (BDNF) levels in the spinal cord, as detected by enzyme-linked immunosorbent assay, decreased with time, whereas neurotrophin-3 (NT-3) levels remained unchanged. The micturition pattern, bladder volume, and locomotor function continued to recover during the time of observation; BDNF levels in the spinal cord and bladder were inversely correlated with BBB scores and the restoration of bladder volume. We conclude that urodynamic changes in the bladder correlate with locomotion recovery but not with the levels of BDNF or NT-3 after modified mild contusion injury in rats.
Collapse
Affiliation(s)
- Jung Keun Hyun
- Department of Rehabilitation Medicine, Dankook University, Cheonan, Korea.
| | | | | | | |
Collapse
|
40
|
Yara T, Kato Y, Kataoka H, Kanchiku T, Suzuki H, Gondo T, Yoshii S, Taguchi T. Environmental factors involved in axonal regeneration following spinal cord transection in rats. Med Mol Morphol 2009; 42:150-4. [PMID: 19784741 DOI: 10.1007/s00795-009-0454-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
A recent study of a rat model treated with grafted collagen filament (CF) after spinal cord transection showed dramatic recovery of motor function but did not report on the acute-stage phenomenon. In the present study, we describe molecular and histological aspects of the axonal regeneration process during the acute stage following spinal cord transection. The spinal cord of 8-week-old rats was completely transected, and a scaffold of almost the same size as the resected portion was implanted in the gap. Changes in the mRNA expression of four neurotrophic factors [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and glial cell-derived neurotrophic factor (GDNF)] were analyzed after 72 h. The expression of BDNF and NT-3 mRNA increased significantly in the CF-grafted group compared to the nongrafted group. Immunostaining for BDNF and NT-3 revealed that cells positive for these neurotrophic factors extended along the collagen filaments in the CF-grafted group. Similarly, astrocytes extended into the collagen filament scaffold together with the neurotrophic factors and partly across a border line. These findings indicate that collagen filament helps to reduce scar tissue, supports the expression of neurotrophic factors, and serves as a scaffold for the outgrowth of regenerating axons.
Collapse
Affiliation(s)
- Takahiro Yara
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Comparison of adult neurospheres derived from different origins for treatment of rat spinal cord injury. Neurosci Lett 2009; 458:116-21. [DOI: 10.1016/j.neulet.2009.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/21/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
|
42
|
Guertin PA. A technological platform to optimize combinatorial treatment design and discovery for chronic spinal cord injury. J Neurosci Res 2008; 86:3039-51. [DOI: 10.1002/jnr.21761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Fumagalli F, Madaschi L, Brenna P, Caffino L, Marfia G, Di Giulio AM, Racagni G, Gorio A. Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: Comparison with methylprednisolone. Eur J Pharmacol 2008; 578:19-27. [PMID: 17936749 DOI: 10.1016/j.ejphar.2007.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/31/2007] [Accepted: 09/24/2007] [Indexed: 11/30/2022]
|
44
|
Lapointe NP, Ung RV, Guertin PA. Plasticity in Sublesionally Located Neurons Following Spinal Cord Injury. J Neurophysiol 2007; 98:2497-500. [PMID: 17881483 DOI: 10.1152/jn.00621.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasticity has been traditionally associated with learning and memory processes in the hippocampal regions of the brain. It is now generally accepted that plasticity phenomena are also associated with other kinds of cellular changes and modifications occurring in all areas of the CNS after injury or intense neuronal activity. For instance, spinal cord injuries have been associated with a series of cellular modifications and adaptations taking place distally in sublesional areas. Some of these modifications include changes in the expression of immediate early genes (e.g., c-fos and nor-1), TNF-alpha, preprodynorphin, neurotrophic factors (e.g., BDNF and NT-3), and several subtypes of transmembranal receptors (e.g., 5-HT1A and 5-HT2A). This review constitutes an update of the current knowledge regarding this broadly defined plasticity phenomenon that occurs spontaneously or can be modulated by training in sublesional segments of the spinal cord. Spinal cord plasticity is an increasingly popular field of research, believed by many as being a complex phenomenon that may contribute to the development of innovative therapeutics and rehabilitative approaches for spinal cord injured patients.
Collapse
Affiliation(s)
- Nicolas P Lapointe
- Laval University Medical Center (CHUL-CHUQ Neuroscience Unit, RC-9800, Quebec City, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|