1
|
Tran PV. Function of Amino Acids and Neuropeptides in Feeding Behavior in Chicks. J Poult Sci 2025; 62:2025013. [PMID: 40093301 PMCID: PMC11903097 DOI: 10.2141/jpsa.2025013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Regulation of food intake, especially during the neonatal period, is important to ensure optimal nutrition and meet the metabolic requirements of growing and healthy animals. However, many problems associated with neonatal chicks remain unsolved. Feeding behavior during the neonatal stage is characterized by short resting periods between very brief times spent taking up food. Accordingly, neuropeptides, which take time to synthesize and release, as well as nutrients that are taken up via feeding, may be involved in feeding regulation. The present review summarizes current knowledge about the role of amino acids and their interaction with neuropeptides on the regulation of food intake in neonatal chicks with special emphasis on L-arginine metabolism and neuropeptide Y. Fasting and subsequent short-term refeeding influence amino acid metabolism in the brain. Short-term refeeding induces a rapid increase in the concentrations of several amino acids, which may contribute to satiety signals in the neonatal chick brain. The function of L-arginine is related to its metabolite, L-ornithine, which acts as an innate satiety signal in the control of food intake. Co-injection with L-ornithine attenuates the orexigenic effect of neuropeptide Y in a dose-dependent manner. This implies a potent interaction in the brain between the regulation of food intake by neuropeptide Y and acute satiety signals by L-ornithine. The roles of other amino acids in feeding and their relationship with the stress response are also discussed in this review. In conclusion, endogenous neuropeptides and endogenous and/or exogenous nutrients such as amino acids are believed to coordinate the feeding behavior of neonatal chicks.
Collapse
Affiliation(s)
- Phuong V. Tran
- Laboratory of Regulation in Metabolism and Behavior,
Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka
819-0395, Japan
| |
Collapse
|
2
|
Mahdavi K, Zendehdel M, Baghbanzadeh A. Central effects of opioidergic system on food intake in birds and mammals: a review. Vet Res Commun 2023; 47:1103-1114. [PMID: 37209184 DOI: 10.1007/s11259-023-10142-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Undoubtedly, the food intake process is one of the most necessary physiological functions for the survival of animals and humans. Although; this operation seems simple on the surface, the regulation of the mechanisms involved in it requires the cooperation of many neurotransmitters, peptides, and hormonal factors in the nervous and endocrine systems. Understanding the signals that regulate energy levels and appetite, may open new approaches to therapeutics and drugs used in obesity-related complications. Improving the quality of animal products and health is also possible due to this research. The present review is aimed to sum up the current findings on central effects of opioids on the food consumption of birds and mammals. Based on the reviewed articles, the opioidergic system appears to be one of the key elements in the birds' and mammals' food intake and is closely related to other systems involved in appetite regulation. According to the findings, it seems that the effects of this system on nutritional mechanisms are often applied via kappa- and mu-opioid receptors. Controversial observations have been made regarding opioid receptors, highlighting the need for further studies, especially at the molecular level. The role of opiates in taste or diet craving also showed the efficacy of this system, especially the mu-opioid receptor, on preferences such as diets containing high sugar and fat. Finally, putting the results of this study together with the findings of human experiments and other primates can lead to a correct comprehension of the appetite regulation processes, especially the role of the opioidergic system.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| |
Collapse
|
3
|
Liu X, Jin Z, Summers S, Derous D, Li M, Li B, Li L, Speakman JR. Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep 2022; 39:110835. [PMID: 35584669 DOI: 10.1016/j.celrep.2022.110835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Caloric restriction is a robust intervention to increase lifespan. Giving less food (calorie restriction [CR]) or allowing free access to a diluted diet with indigestible components (calorie dilution [CD]) are two methods to impose restriction. CD does not generate the same lifespan effect as CR. We compare responses of C57BL/6 mice with equivalent levels of CR and CD. The two groups have different responses in fat loss, circulating hormones, and metabolic rate. CR mice are hungrier, as assessed by behavioral assays. Although gene expression of Npy, Agrp, and Pomc do not differ between CR and CD groups, CR mice had a distinctive hypothalamic gene-expression profile with many genes related to starvation upregulated relative to CD. While both result in lower calorie intake, CR and CD are not equivalent procedures. Increased hunger under CR supports the hypothesis that hunger signaling is a key process mediating the benefits of CR.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Technische Universität München, Ismaningerstraße 22, 81675 München, Germany
| | - Zengguang Jin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Stephanie Summers
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Davina Derous
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC
| | - Min Li
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, PRC.
| |
Collapse
|
4
|
Cao C, Tachibana T, Gilbert ER, Cline MA. Prostaglandin E2-induced anorexia involves hypothalamic brain-derived neurotrophic factor and ghrelin in chicks. Prostaglandins Other Lipid Mediat 2021; 156:106574. [PMID: 34102274 DOI: 10.1016/j.prostaglandins.2021.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Abstract
Central administration of prostaglandin E2 (PGE2) is associated with potent anorexia in rodents and chicks, although hypothalamic mechanisms are not fully understood. The objective of the present study was to identify hypothalamic nuclei and appetite-related factors that are involved in this anorexigenic effect, using chickens as a model. Intracerebroventricular injection of 2.5, 5, and 10 nmol of PGE2 suppressed food and water intake in broiler chicks in a dose-dependent manner. c-Fos immunoreactivity was increased in the paraventricular nucleus (PVN) at 60 min post injection of 5 nmol of PGE2. Under the same treatment condition, hypothalamic expression of melanocortin receptor 3 and ghrelin mRNAs increased, whereas neuropeptide Y receptor sub-type 5 and tropomyosin receptor kinase B (TrkB) mRNAs decreased in PGE2-treated chicks. In the PVN, chicks injected with PGE2 had more brain-derived neurotrophic factor (BDNF), ghrelin, and c-Fos mRNA but less corticotrophin-releasing factor receptor 1 (CRFR1), CRFR2, and TrkB mRNA expression. In conclusion, PGE2 injection resulted in decreased food and water intake that likely involves BDNF and ghrelin originating in the PVN. Because the anorexigenic effect is so potent and hypothalamic mechanisms are similar in chickens and rodents, a greater understanding of the role of PGE2 in acute appetite regulation may have implications for treating eating and metabolic disorders in humans.
Collapse
MESH Headings
- Animals
- Anorexia/chemically induced
- Anorexia/metabolism
- Ghrelin/pharmacology
- Ghrelin/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Chickens
- Dinoprostone/metabolism
- Hypothalamus/metabolism
- Hypothalamus/drug effects
- Male
- Eating/drug effects
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/drug effects
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/genetics
Collapse
Affiliation(s)
- Chang Cao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
6
|
McConn BR, Siegel PB, Cline MA, Gilbert ER. Anorexigenic effects of mesotocin in chicks are genetic background-dependent and are associated with changes in the paraventricular nucleus and lateral hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:79-90. [DOI: 10.1016/j.cbpa.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/15/2022]
|
7
|
McConn BR, Koskinen A, Denbow DM, Gilbert ER, Siegel PB, Cline MA. Central injection of oxytocin reduces food intake and affects hypothalamic and adipose tissue gene expression in chickens. Domest Anim Endocrinol 2019; 67:11-20. [PMID: 30660023 DOI: 10.1016/j.domaniend.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT) is a well-characterized neurotransmitter that participates in a wide range of physiological processes including the inhibition of food intake. The avian ortholog, mesotocin (MT), differs from OT by a single amino acid. Little is known regarding the function of OT in regulating energy balance in birds; thus, this study was designed to determine the effects of central OT injection on food intake and adipose tissue physiology in chicks. At 4-d post-hatch, broiler chicks were fasted for 3 h and injected intracerebroventricularly with 0 (vehicle), 0.63, 2.5, 5.0, or 10 nmol OT. Oxytocin decreased food and water intake during the entire 180-min observation period. The reduction in water intake was likely not prandial because chicks that were food restricted after OT injection also drank less. There was increased c-Fos immunoreactivity in several appetite-associated hypothalamic nuclei in OT-injected chicks at 1 h, including the arcuate (ARC), dorsomedial nucleus (DMN), lateral hypothalamus (LH), paraventricular nucleus (PVN), and ventromedial hypothalamus (VMH). OT treatment was associated with reduced hypothalamic corticotropin-releasing factor (CRF) mRNA and increased cloacal temperature at 1 h post-injection. We then investigated appetite- and adipose tissue-associated effects of OT in chicks from lines that have undergone long-term selection for either low (LWS) or high (HWS) juvenile body weight. Central injection of OT decreased food intake in both lines with the magnitude of response greater in the HWS than LWS chicks. Adipose tissue abundance of fatty acid-binding protein 4, monoglyceride lipase (MGLL), MT, and perilipin-1 mRNA was greater in LWS than HWS chicks. Lipoprotein lipase, MGLL, and MT mRNAs increased in response to OT injection in LWS but not HWS chicks. In conclusion, central injection of OT induced anorexia, reduced water intake, increased body temperature, and was associated with activation of the ARC, DMN, LH, PVN, and VMH in the hypothalamus. The effects on appetite and body temperature may involve CRF signaling in the hypothalamus and lipolysis in the adipose tissue, respectively. There were differences in the appetite, and adipose tissue response to OT in body weight-selected lines of chicks supports that MT plays a role in energy balance regulation in chickens.
Collapse
Affiliation(s)
- Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anna Koskinen
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - D Michael Denbow
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Effect of internal diffusional restrictions on the selectivity of α-chymotrypsin in a series-parallel reaction of peptide synthesis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
10
|
Tran PV, Chowdhury VS, Do PH, Bahry MA, Yang H, Furuse M. L-Ornithine is a potential acute satiety signal in the brain of neonatal chicks. Physiol Behav 2015; 155:141-8. [PMID: 26687893 DOI: 10.1016/j.physbeh.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Recently, we observed that neonatal chicks exhibit feeding behavior characterized by frequent food intake and short resting intervals, with changes detected in the brain amino acid and monoamine concentrations. In this study, we aimed to clarify further the relationship between the appetite of neonatal chicks and brain amino acid metabolism. In Experiment 1, changes were investigated in free amino acids in the brain under conditions of regulated appetite induced by fasting and subsequent short-term re-feeding. Chicks (5 days old) were distributed into four treatment groups--namely, fasting for 3h, and fasting for 3h followed by re-feeding for 10, 20 or 30 min. Brain samples were collected after treatment to analyze free amino acid concentrations. Amino adipic acid and proline in all brain parts as well as arginine and ornithine in all brain parts--except mesencephalic arginine and cerebellar ornithine--were increased in a time-dependent manner following re-feeding. In Experiment 2, we further examined the effect of exogenous administration of some amino acids altered in association with feeding behavior in Experiment 1. We chose L-arginine and its functional metabolite, L-ornithine, to analyze their effects on food intake in chicks. Intracerebroventricular injection (2 μmol) of L-ornithine, but not L-arginine, significantly inhibited food intake in neonatal chicks. In Experiment 3, we found that central injection of L-ornithine (2, 4, and 6 μmol) dose-dependently suppressed food intake in chicks. These results suggested that L-ornithine may have an important role in the control of food intake as an acute satiety signal in the neonatal chick brain.
Collapse
Affiliation(s)
- Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
11
|
Shipp SL, Smith ML, Gilbert ER, Cline MA. Beta-cell-tropin is associated with short-term stimulation of food intake in chicks. Gen Comp Endocrinol 2015; 224:278-82. [PMID: 26248228 DOI: 10.1016/j.ygcen.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/20/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Beta-cell-tropin, a peptide derived from adrenocorticotropic hormone, is an insulin secretagogue. When centrally injected, it increases food intake in rats, but its appetite-associated effects have not been reported in any other species. Thus, the present study was designed to evaluate the effects of central beta-cell-tropin on appetite-associated parameters in an alternative vertebrate model, the chick. Central injection of 2 or 4 nmol beta-cell-tropin increased food intake for 60 min. Whole hypothalamus was collected at 60 min post-injection, and real-time PCR performed to measure mRNA abundance of agouti-related peptide, corticotropin releasing factor, galanin, melanin concentrating hormone, neuropeptide Y, orexin, prohormone convertase 2, pro-opiomelanocortin, peroxisome proliferator-activated receptor γ, urotensin 2, and visfatin, not one of which were affected by beta-cell-tropin treatment. Results demonstrate that beta-cell-tropin is associated with short-term stimulation of food intake.
Collapse
Affiliation(s)
- Steven L Shipp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Marissa L Smith
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
A novel role for xenopsin: Stimulation of food intake. Behav Brain Res 2015; 292:500-7. [PMID: 26151286 DOI: 10.1016/j.bbr.2015.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
Abstract
Xenopsin (XPN), an extract from frog skin, is comprised of 80 amino acids and exerts effects on the mammalian digestive tract. The purpose of the study presented here was to determine if XPN would affect food intake using chicks as models. Chicks which had been fasted for 180 min did not change food or water intake after central injection of XPN. However, ab libitum fed chicks which received 1 and 3 nmol central XPN increased food intake while water intake was not affected. When the dose was increased to 9 nmol chicks did not increase food intake but their water intake was reduced suggesting malaise. Chicks injected with XPN had increased c-Fos immunoreactivity in the lateral hypothalamus, but other hypothalamic appetite-associated nuclei were not affected. When XPN was directly injected into the lateral hypothalamus food intake was increased, suggesting a primary site of action. When the expression of appetite-associated neuropeptide mRNA was quantified chicks injected with XPN had increased proopiomelanocortin mRNA. Lastly, a comprehensive behavior analysis was performed and while XPN injected chicks had an increase in the number of feeding pecks, jumping, preening, deep rest and sitting were all decreased. Thus, we conclude that exogenous XPN functions as an orexigenic factor in chicks and its effects are mediated by the lateral hypothalamus.
Collapse
|
14
|
McConn B, Wang G, Yi J, Gilbert ER, Osugi T, Ubuka T, Tsutsui K, Chowdhury VS, Furuse M, Cline MA. Gonadotropin-inhibitory hormone-stimulation of food intake is mediated by hypothalamic effects in chicks. Neuropeptides 2014; 48:327-34. [PMID: 25305807 DOI: 10.1016/j.npep.2014.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH), a 12 amino acid peptide, is expressed in the avian brain and inhibits luteinizing hormone secretion. Additionally, exogenous injection of GnIH causes increased food intake of chicks although the central mechanism mediating this response is poorly understood. Hence, the purpose of our study was to elucidate the central mechanism of the GnIH orexigenic response using 12 day post hatch layer-type chicks as models. Firstly, via mass spectrometry we deduced the chicken GnIH amino acid sequence: SIRPSAYLPLRFamide. Following this we used chicken GnIH to demonstrate that intracerebroventricular (ICV) injection of 2.6 and 7.8 nmol causes increased food intake up to 150 min following injection with no effect on water intake. The number of c-Fos immunoreactive cells was quantified in appetite-associated hypothalamic nuclei following ICV GnIH and only the lateral hypothalamic area (LHA) had an increase of c-Fos positive neurons. From whole hypothalamus samples following ICV GnIH injection abundance of several appetite-associated mRNA was quantified which demonstrated that mRNA for neuropeptide Y (NPY) was increased while mRNA for proopiomelanocortin (POMC) was decreased. This was not the case for mRNA abundance in isolated LHA where NPY and POMC were not affected but melanin-concentrating hormone (MCH) mRNA was increased. A comprehensive behavior analysis was conducted after ICV GnIH injection which demonstrated a variety of behaviors unrelated to appetite were affected. In sum, these results implicate activation of the LHA in the GnIH orexigenic response and NPY, POMC and MCH are likely also involved.
Collapse
Affiliation(s)
- Betty McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan; Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, 618-8503, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Vishwajit S Chowdhury
- Division for Arts and Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
15
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|