1
|
Mathew AA, Panonnummal R. Cortical spreading depression: culprits and mechanisms. Exp Brain Res 2022; 240:733-749. [DOI: 10.1007/s00221-022-06307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/06/2022] [Indexed: 02/14/2023]
|
2
|
Ghorbani Z, Togha M, Rafiee P, Ahmadi ZS, Rasekh Magham R, Djalali M, Shahemi S, Martami F, Zareei M, Razeghi Jahromi S, Ariyanfar S, Mahmoudi M. Vitamin D3 might improve headache characteristics and protect against inflammation in migraine: a randomized clinical trial. Neurol Sci 2020; 41:1183-1192. [PMID: 31897949 DOI: 10.1007/s10072-019-04220-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/20/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Due to anti-inflammatory effects of vitamin D3, we aimed to explore the effects of supplementation with this vitamin on headache characteristics and serum levels of pro/anti-inflammatory markers in migraineurs. METHODS AND MATERIALS This placebo-controlled, double-blind study included 80 episodic migraineurs who randomly assigned into two equal groups to receive either daily dose of vitamin D3 2000 IU (50 μg) or placebo for 12 weeks. At baseline and after the trial, headache characteristics were determined using diaries and serum levels of interleukin (IL)-10, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (Cox-2) were assessed via ELISA method. RESULTS At the end of trial, analysis of covariance (ANCOVA) adjusted for baseline values, and confounders revealed that vitamin D3 supplemented group experienced significantly lower headache days per month (4.71), reduced attacks duration (12.99 h/attack), less severe headaches (5.47, visual analog scale), and lower analgesics use/month (2.85) than placebo group (6.43, 18.32, 6.38 and 4.87, respectively) (P values < 0.05). Using ANCOVA adjusted for baseline levels and confounding variables, it was found that serum levels of IL-10 and Cox-2 did not significantly differ between groups after the experiment; whereas, iNOS serum level was significantly reduced in the intervention group (106.06 U/L) comparing to the controls (156.18 U/L P : 0.001). Also, the patients receiving vitamin D3 yielded a marginally significant lower IL-6 serum concentration (76.43 ng/L) compared to placebo (93.10 ng/L) (P value:0.055). CONCLUSION Based on the results of this study, we found that 2000 IU (50 μg)/day vitamin D3 supplementation for 12 weeks could improve headache characteristics and might reduce neuro-inflammation in episodic migraine.
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina University Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Rafiee
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Sadat Ahmadi
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Rasekh Magham
- Department of Nutrition, Faculty of Medical Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shahemi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Martami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Zareei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Ariyanfar
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoudi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Gastroenterology and Hepatology Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Dietitians and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN)Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Lambert GA, Zagami AS. Does somatostatin have a role to play in migraine headache? Neuropeptides 2018; 69:1-8. [PMID: 29751998 DOI: 10.1016/j.npep.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 04/15/2018] [Indexed: 11/24/2022]
Abstract
Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, UNSW, Australia; School of Medicine, University of Western Sydney, Australia.
| | - Alessandro S Zagami
- Prince of Wales Clinical School, UNSW, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Australia
| |
Collapse
|
4
|
Jiang L, Wang Y, Xu Y, Ma D, Wang M. The Transient Receptor Potential Ankyrin Type 1 Plays a Critical Role in Cortical Spreading Depression. Neuroscience 2018; 382:23-34. [PMID: 29719223 DOI: 10.1016/j.neuroscience.2018.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The transient receptor potential ankyrin type-1 (TRPA1) channels have been proposed as a potential target for migraine therapy. Yet the role of cortical TRPA1 channels in migraine mechanism has not been fully understood. Cortical spreading depression (CSD) is known as an underlying cause of migraine aura. The aim of this study is to investigate if cortical TRPA1 activity is required for CSD genesis and propagation. A mouse brain slice CSD model with intrinsic optical imaging was applied for TRPA1 signaling pharmacology. The results showed that the TRPA1 agonist, umbellulone, facilitated the propagation of submaximal CSD. Correspondingly, an anti-TRPA1 antibody and two selective TRPA1 antagonists, A967079 and HC-030031, prolonged the CSD latency and reduced magnitude, indicating a reduced cortical susceptibility to CSD under TRPA1 deactivation. Furthermore, the TRPA1 agonist, allyl-isothiocyanate (AITC), reversed the suppression of CSD by HC-030031, but not by A967079. Interestingly, the inhibitory action of A967079 on CSD was reversed by exogenous calcitonin-gene-related peptide (CGRP). Consistent to TRPA1 deactivation, the prolonged CSD latency was observed by an anti-CGRP antibody in the mouse brain slice, which was reversed by exogenous CGRP. We conclude that cortical TRPA1 is critical in regulating cortical susceptibility to CSD, which involves CGRP. The data strongly suggest that deactivation of TRPA1 channels and blockade of CGRP would have therapeutic benefits in preventing migraine with aura.
Collapse
Affiliation(s)
- Liwen Jiang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yan Wang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yuewei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dongqing Ma
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Minyan Wang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
5
|
Wang Y, Tye AE, Zhao J, Ma D, Raddant AC, Bu F, Spector BL, Winslow NK, Wang M, Russo AF. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia 2016; 39:333-341. [PMID: 27919019 DOI: 10.1177/0333102416678388] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The neuropeptide calcitonin gene-related peptide (CGRP) has now been established as a key player in migraine. However, the mechanisms underlying the reported elevation of CGRP in the serum and cerebrospinal fluid of some migraineurs are not known. A candidate mechanism is cortical spreading depression (CSD), which is associated with migraine with aura and traumatic brain injury. The aim of this study was to investigate whether CGRP gene expression may be induced by experimental CSD in the rat cerebral cortex. METHODS CSD was induced by topical application of KCl and monitored using electrophysiological methods. Quantitative PCR and ELISA were used to measure CGRP mRNA and peptide levels in discrete ipsilateral and contralateral cortical regions of the rat brain 24 hours following CSD events and compared with sham treatments. RESULTS The data show that multiple, but not single, CSD events significantly increase CGRP mRNA levels at 24 hours post-CSD in the ipsilateral rat cerebral cortex. Increased CGRP was observed in the ipsilateral frontal, motor, somatosensory, and visual cortices, but not the cingulate cortex, or contralateral cortices. CSD also induced CGRP peptide expression in the ipsilateral, but not contralateral, cortex. CONCLUSIONS Repeated CSD provides a mechanism for prolonged elevation of CGRP in the cerebral cortex, which may contribute to migraine and post-traumatic headache.
Collapse
Affiliation(s)
| | - Anne E Tye
- 3 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), SIP, Suzhou 215123, China
| | | | - Dongqing Ma
- 1 Centre for Neuroscience and.,2 Neuroscience Program, Departments of
| | | | - Fan Bu
- 1 Centre for Neuroscience and.,2 Neuroscience Program, Departments of
| | | | | | - Minyan Wang
- 1 Centre for Neuroscience and.,2 Neuroscience Program, Departments of
| | - Andrew F Russo
- 3 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), SIP, Suzhou 215123, China.,4 Molecular Physiology and Biophysics, and.,5 Neurology, University of Iowa, Iowa City, IA 52242, USA.,6 Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
6
|
Luvisetto S, Gazerani P, Cianchetti C, Pavone F. Botulinum Toxin Type a as a Therapeutic Agent against Headache and Related Disorders. Toxins (Basel) 2015; 7:3818-44. [PMID: 26404377 PMCID: PMC4591645 DOI: 10.3390/toxins7093818] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/24/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a “glamour” drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council (CNR) of Italy, Institute of Cell Biology and Neurobiology, Roma 00185, Italy.
| | - Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg East 9220, Denmark.
| | - Carlo Cianchetti
- Former Professor of Child & Adolescent Neuropsychiatry, University of Cagliari, Cagliari 09124, Italy.
| | - Flaminia Pavone
- National Research Council (CNR) of Italy, Institute of Cell Biology and Neurobiology, Roma 00185, Italy.
| |
Collapse
|