1
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Leibold NS, Despa F. Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis. Biophys Chem 2024; 310:107252. [PMID: 38663120 PMCID: PMC11111340 DOI: 10.1016/j.bpc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/15/2024]
Abstract
Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.
Collapse
Affiliation(s)
- Noah S Leibold
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Rees TA, Tasma Z, Garelja ML, O'Carroll SJ, Walker CS, Hay DL. Calcitonin receptor, calcitonin gene-related peptide and amylin distribution in C1/2 dorsal root ganglia. J Headache Pain 2024; 25:36. [PMID: 38481170 PMCID: PMC10938748 DOI: 10.1186/s10194-024-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Michael L Garelja
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand.
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
5
|
Ashina M, Hoffmann J, Ashina H, Hay DL, Flores-Montanez Y, Do TP, De Icco R, Dodick DW. Pharmacotherapies for Migraine and Translating Evidence From Bench to Bedside. Mayo Clin Proc 2024; 99:285-299. [PMID: 38180396 DOI: 10.1016/j.mayocp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 01/06/2024]
Abstract
Migraine is a ubiquitous neurologic disorder that afflicts more than 1 billion people worldwide. Recommended therapeutic strategies include the use of acute and, if needed, preventive medications. During the past 2 decades, tremendous progress has been made in better understanding the molecular mechanisms underlying migraine pathogenesis, which in turn has resulted in the advent of novel medications targeting signaling molecule calcitonin gene-related peptide or its receptor. Here, we provide an update on the rational use of pharmacotherapies for migraine to facilitate more informed clinical decision-making. We then discuss the scientific discoveries that led to the advent of new medications targeting calcitonin gene-related peptide signaling. Last, we conclude with recent advances that are being made to identify novel drug targets for migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience.), King's College Hospital, London, United Kingdom; NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Yadira Flores-Montanez
- BIDMC Comprehensive Headache Center, Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA; University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | | |
Collapse
|
6
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
7
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
8
|
Sisakht M, Khoshdel Z, Mahmoodazdeh A, Shafiee SM, Takhshid MA. Adrenomedullin increases cAMP accumulation and BDNF expression in rat DRG and spinal motor neurons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:978-985. [PMID: 34712429 PMCID: PMC8528252 DOI: 10.22038/ijbms.2021.54796.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/23/2021] [Indexed: 11/06/2022]
Abstract
Objectives Adrenomedullin (AM) has high expression in the spinal cord. In this study, we investigated the expression of AM and its receptor components, including calcitonin receptor-like receptor (CLR) and receptor activity modifying proteins (RAMPs) in dorsal root ganglion (DRG) and spinal motor (SM) neurons. Furthermore, the effects of AM on cAMP/cAMP response element-binding protein (CREB), AKT/glycogen synthase kinase-3 beta (GSK-3β) signaling pathways, and expressions of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were evaluated. Materials and Methods Rat embryonic DRG and SM neurons were isolated, purified, and cultured. Real-time PCR was used to assess expressions of AM, CLR, and RAMPs. cAMP levels, p-CREB, BDNF, and NT-3 were determined using an enzyme-linked immunosorbent assay. p-AKT and p-GSK-3β levels were determined by western blotting. Real-time PCR showed expressions of AM, CLR, RAMP2, and RAMP3 in both DRG and SM neurons. Results AM increased cAMP accumulation and p-CREB levels in DRG and SM neurons. AM increased p-AKT and p-GSK-3β in DRG, but not SM neurons. AM significantly increased BDNF expression in both DRG and SM neurons. There was also an increase in NT-3 level in both DRG and SM neurons, which is statistically significant in SM neurons. Conclusion These results showed both DRG and SM neurons are targets of AM actions in the spinal cord. An increase in BDNF expression by AM in both DRG and SM neurons suggests the possible beneficial role of AM in protecting, survival, and regeneration of sensory and motor neurons.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodazdeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Ghanizada H, Al-Karagholi MAM, Walker CS, Arngrim N, Rees T, Petersen J, Siow A, Mørch-Rasmussen M, Tan S, O’Carroll SJ, Harris P, Skovgaard LT, Jørgensen NR, Brimble M, Waite JS, Rea BJ, Sowers LP, Russo AF, Hay DL, Ashina M. Amylin Analog Pramlintide Induces Migraine-like Attacks in Patients. Ann Neurol 2021; 89:1157-1171. [PMID: 33772845 PMCID: PMC8486152 DOI: 10.1002/ana.26072] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christopher S. Walker
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tayla Rees
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Paul Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margaret Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jayme S. Waite
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Brandon J. Rea
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Debbie L. Hay
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
10
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
11
|
Zhong Y, Huang YL, Hu YM, Zhu LR, Zhao YS. Puerarin alleviate radicular pain from lumbar disc herniation by inhibiting ERK-dependent spinal microglia activation. Neuropeptides 2018; 72:30-37. [PMID: 30466510 DOI: 10.1016/j.npep.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Lumbar disc herniation is a common cause of radicular pain, but the mechanism remains ambiguous and the treatment stays unsatisfied. Many studies revealed a traditional Chinese medicine puerarin may moderate chronic pain from diabetes and nerve injury. Thus far, the role and mechanism of puerarin in radicular pain is still unknown. In this study, by using a rat model of lumbar disc herniation, which was induced by autologous nucleus pulposus (NP) implantation, the analgesic effect of puerarin on radicular pain was tested. Puerarin was delivered intraperitoneally form 1 h before surgery, and once daily for 7 days. The results demonstrated that NP implantation induced long-lasting pain, characterized by decrease of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in ipsilateral hindpaws, as long as day 20 after surgery. Spinal phosphorylated extracellular signal-regulated kinase (p-ERK) was up-regulated from day 5 to day 20 after surgery in ipsilateral but not contralateral side, and p-ERK was mainly co-localized with microglia. Puerarin decreased p-ERK expression from day 7 to day 20 after surgery. Puerarin or ERK inhibitor PD98059 alleviated pain behaviors, decreased expression of microglia marker ionized calcium-binding adaptor molecule 1 (Iba-1) in rats with NP implantation. The results suggested puerarin may alleviate radicular pain by inhibiting ERK-dependent or accompanied spinal microglia activation.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Yang-Liang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yet-Sen University, Guangzhou 510080, China
| | - Yu-Ming Hu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Li-Rong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Shu Zhao
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| |
Collapse
|
12
|
Abstract
Amylin is a 37 amino acid peptide hormone that is closely related to calcitonin gene-related peptide (CGRP). Amylin and CGRP share a receptor and are reported to have several similar biological actions. Given the important role of CGRP in migraine and intense efforts to develop drugs against this target, it is important to consider potential areas of overlap between the amylin and CGRP systems. This short review provides a brief introduction to amylin biology, the use of an amylin analog to treat diabetes, and consideration of whether amylin could have any role in headache disorders. Finally, this review informs readers about the AMY1 (amylin subtype 1) receptor, which is a dual receptor for amylin and CGRP and potentially plays a role in the bioactivity of both of these peptides.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Hajimashhadi Z, Aboutaleb N, Nasirinezhad F. Chronic administration of [Pyr 1] apelin-13 attenuates neuropathic pain after compression spinal cord injury in rats. Neuropeptides 2017; 61:15-22. [PMID: 27686494 DOI: 10.1016/j.npep.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Apelin is an endogenous ligand for apelin receptor (APJ) with analgesic effect on visceral, analgesic and proanalgesic influences on acute pains in animal models. The purpose of this study was to determine the possible analgesic effects of [Pyr1] apelin-13 on chronic pain after spinal cord injury (SCI) in rats. Animals were randomly divided into three major groups as intact, sham and SCI. The SCI group randomly allocated to four subgroups as no treatment, vehicle-treatment (normal saline: 10μl, intrathecally) and two subgroups with intrathecal injection (i.t) of 1μg and 5μg of [Pyr1] apelin-13. After laminectomy at T6-T8 level, spinal cord compression injury was induced using an aneurysm clip. Vehicle or [Pyr1] apelin-13 injected from day1 post SCI and continued for a week on a daily basis. Pain behaviors and locomotor activity were monitored up to 8weeks. At the end of the experiments, intracardial paraformaldehyde perfusion was made under deep anesthesia in some animals for histological and immunohistochemistry evaluations. Western blot technique was also done to detect caspase-3 in fresh spinal cord tissues. SCI decreased nociceptive thresholds and locomotor scores. Administration of [Pyr1] apelin-13 (1μg and 5μg) improved locomotor activity and reduced pain symptoms, cavity size and caspase-3 levels. Results showed long-term beneficial effects of [Pyr1] apelin-13 on neuropathic pain and locomotion. Therefore, we may suggest [Pyr1] apelin-13 as a new option for further neuropathic pain research and a suitable candidate for ensuing clinical trials in spinal cord injury arena.
Collapse
Affiliation(s)
- Zahra Hajimashhadi
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|