1
|
Braun A, Manavis J, Yamanaka A, Ootsuka Y, Blumbergs P, Bobrovskaya L. The role of orexin in Parkinson's disease. J Neurosci Res 2024; 102:e25322. [PMID: 38520160 DOI: 10.1002/jnr.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.
Collapse
Affiliation(s)
- Alisha Braun
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Youichirou Ootsuka
- College of Medicine and Public Health, Flinders Medical and Health Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Yuan W, Wang H, Gong Y. Prevention of cisplatin-induced nausea and vomiting by seabuckthorn ( Hippophae rhamnoides L.) seed oil: Insights at the level of orexin-A in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:248-255. [PMID: 33953865 PMCID: PMC8061333 DOI: 10.22038/ijbms.2020.47599.10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Nausea and vomiting are perennial problems in cancer patients undergoing chemotherapy. Orexin-A (OXA) has been shown to regulate feeding and gastric motility. Seabuckthorn (Hippophae rhamnoides L.) seed oil (SSO) has been proved to promote digestion and bowel movements. We investigated whether SSO alleviated cisplatin-induced vomiting and its possible mechanism involved in OXA. MATERIALS AND METHODS Rats were randomly divided into normal control group (NCG), cisplatin group (CG), SSO low-dose group (SLG), SSO middle-dose group (SMG) SSO high-dose group (SHG), and ondansetron group (OG). Rats were pretreated respectively with SSO (0.850, 1.675, and 3.350 g/kg·BW) and ondansetron (2 mg/kg·BW) in SLG, SMG, SHG, and OG for 6 days, and the same volume of saline in NCG and CG groups. On the 6th day, cisplatin (6 mg/kg, IP) was administered in all groups except NCG. The cumulative food and kaolin intake, gastric emptying, plasma OXA level, OX1R mRNA and protein expression in the hypothalamus and brainstem, and OXA expression in the lateral hypothalamic area (LHA) were observed, and the HPLC method was used to analyze the composition of SSO. RESULTS Kaolin intake in cisplatin-induced vomiting rats was significantly reduced (P<0.05) and gastric emptying delayed by cisplatin was improved (P<0.05-0.01) by pretreatment with SSO. Plasma OXA concentration, OX1R expression in the hypothalamus and brainstem increased significantly (P<0.05-0.01). Furthermore, OXA expression in LHA also increased significantly (P<0.05). CONCLUSION SSO prevents cisplatin-induced vomiting in rats, which is possibly involved in increasing peripheral and central OXA and the expression of OX1R in the hypothalamus and brainstem.
Collapse
Affiliation(s)
- Wen Yuan
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Hongbo Wang
- Qingdao Jimo People’s hospital, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wang Q, Zhang X, Leng H, Luan X, Guo F, Sun X, Gao S, Liu X, Qin H, Xu L. Zona incerta projection neurons and GABAergic and GLP-1 mechanisms in the nucleus accumbens are involved in the control of gastric function and food intake. Neuropeptides 2020; 80:102018. [PMID: 32000986 DOI: 10.1016/j.npep.2020.102018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Our aim was to explore the effect of γ-aminobutyric acid (GABA) signaling in the nucleus accumbens (NAc) on promoting gastric function and food intake through glucagon-like peptide 1 (GLP-1)-sensitive gastric distension (GD) neurons under the regulatory control of the zona incerta (ZI). METHODS GABA neuronal projections were traced using retrograde tracing following fluorescence immunohistochemistry. An extracellular electrophysiological recording method was used to observe the firing of neurons in the NAc. HPLC was used to quantify the GABA and glutamate levels in the NAc after electrical stimulation of the ZI. Gastric functions including gastric motility and secretion, as well as food intake, were measured after the administration of different concentrations of GABA in the NAc or electrical stimulation of the ZI. RESULTS Some of the GABA-positive neurons arising from the ZI projected to the NAc. Some GABA-A receptor (GABA-AR)-immunoreactive neurons in the NAc were also positive for GLP-1 receptor (GLP-1R) immunoreactivity. The firing of most GLP-1-sensitive GD neurons was decreased by GABA infusion in the NAc. Intra-NAc GABA administration also promoted gastric function and food intake. The responses induced by GABA were partially blocked by the GABA-AR antagonist bicuculline (BIC) and weakened by the GLP-1R antagonist exendin 9-39 (Ex9). Electrical stimulation of the ZI changed the firing patterns of most GLP-1-sensitive GD neurons in the NAc and promoted gastric function and food intake. Furthermore, these excitatory effects induced by electrical stimulation of the ZI were weakened by preadministration of BIC in the NAc. CONCLUSION Retrograde tracing and immunohistochemical staining showed a GABAergic pathway from the ZI to the NAc. GABAergic and GLP-1 mechanisms in the NAc are involved in the control of gastric function and food intake. In addition, the interaction (direct or indirect) between the ZI and these NAc mechanisms is involved in the control of gastric function and food intake.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, KU Leuven, B-300 Leuven, Belgium; Family Medicine Department, Qingdao United Family Hospital, Qingdao, Shandong 266001, China
| | - Hui Leng
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiao Luan
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Feifei Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiangrong Sun
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Shengli Gao
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xuehuan Liu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Hao Qin
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Luo Xu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
4
|
Wang C, Han X, Sun X, Guo F, Luan X, Xu L. Orexin-A signaling in the paraventricular nucleus promote gastric acid secretion and gastric motility through the activation neuropeptide Y Y 1 receptors and modulated by the hypothalamic lateral area. Neuropeptides 2019; 74:24-33. [PMID: 30700376 DOI: 10.1016/j.npep.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Abnormal gastric acid secretion and gastric dyskinesia are common gastroenterological ailments. Our study aims to investigate the effect of orexin-A in the paraventricular nucleus (PVN) gastric motility and gastric acid secretion. METHODS The source of orexin-A neuronal projections to the PVN were explored by retrograde tracing and fluorescence immunohistochemistry experiments. Neuronal discharge recordings of single cells were taken within the PVN. Gastric motility was recorded using a force transducer implanted into the stomach, and gastric acid secretion measured through a pyloric catheter. RESULTS Orexin-A-positive neuronal projections from LHA to PVN were found. Administration of orexin-A to PVN activated the firing of 63.2% NPY-excited/GD-excitatory (GD-E) neurons but suppressed the firing of 55.9% NPY-inhibited/GD-inhibitory (GD-I) neurons, promoted gastric motility and gastric acid secretion in a dose-dependent manner. Responses produced by orexin-A could be partially blocked by Y1 receptor antagonist GR-231118; Electrical stimulation to the the hypothalamic lateral area (LHA) altered NPY-sensitive/GD neuronal activity in the PVN, stimulated gastric motility and gastric acid secretion. Additionally, these effects induced by LHA electrical stimulation were blocked by administration of the OX1R antagonist SB-334867 to the PVN. CONCLUSION Orexin-A from LHA neurons act on the PVN to enhance gastric motility and gastric acid secretion, with Y1 receptor signaling playing a critical role.
Collapse
Affiliation(s)
- Cheng Wang
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China
| | - Xiaohua Han
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China
| | - Xiangrong Sun
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China
| | - Feiei Guo
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China
| | - Xiao Luan
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China
| | - Luo Xu
- Qingdao University, School of Basic Medical Sciences, Shandong, Qingdao 266071, China.
| |
Collapse
|
5
|
Guo F, Gao S, Xu L, Sun X, Zhang N, Gong Y, Luan X. Arcuate Nucleus Orexin-A Signaling Alleviates Cisplatin-Induced Nausea and Vomiting Through the Paraventricular Nucleus of the Hypothalamus in Rats. Front Physiol 2018; 9:1811. [PMID: 30618823 PMCID: PMC6304364 DOI: 10.3389/fphys.2018.01811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
The most common side effects of cisplatin chemotherapy are nausea and vomiting, and the overwhelming majority of research studies on the mechanism of cisplatin-induced nausea have been focused on the “vomiting center.” As a modulatory center of gastric motility, the roles of the hypothalamus in nausea and vomiting remain unclear. In the present study, we investigated the effects of exogenous orexin-A injected into the arcuate nucleus (ARC) on cisplatin-induced nausea and vomiting, and the possible underlying mechanism. Kaolin intake was calculated daily in cisplatin-treated and saline-treated rats. Gastric motility recording, injections into the ARC, and lesions of the paraventricular nucleus (PVN) were used to study the effects of orexin-A and the hypothalamic nucleus on disorders of gastrointestinal function in cisplatin-treated rats. The pathway from the ARC to the PVN was observed through Fluoro-Gold retrograde tracing. Furthermore, an NPY Y1 receptor antagonist was administered to explore the possible mechanisms involved in the effects of orexin-A in the ARC. We illustrated that exogenous orexin-A injected into the ARC reduced kaolin intake and promoted gastric motility in cisplatin-treated rats, and these effects could have been blocked by an ipsilateral PVN lesion or co-injected antagonist of orexin-A-SB334867. Additional results showed that orexin-A-activated neurons in the ARC communicated directly with other neurons in the PVN that express neuropeptide Y (NPY). Furthermore, activation of the downstream NPY pathway was required for the observed effects of orexin in the ARC on cisplatin-induced nausea and vomiting. These findings reveal a novel neurobiological circuit from the ARC to the PVN that might provide a potential target for the prevention and treatment of cisplatin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Luo Xu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiao Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep, a mysterious behavior, has recently been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythms controlling whole-body homeostasis and homeodynamics; therefore, disruption of sleep causes several physical and psychological disorders, including cardiovascular disease, obesity, diabetes, cancer, anxiety, depression, and cognitive dysfunction. However, the mechanism linking sleep disturbances and sleep-related disorders remains unknown. Orexin (also known as hypocretin) is a neuropeptide produced in the hypothalamus. Central levels of orexin oscillate with the daily rhythm and peak at the awake phase. Orexin plays a major role in stabilizing the wakefulness state. Orexin deficiency causes sleep/wake-state instability, resulting in narcolepsy. Hyper-activation of the orexin system also causes sleep disturbances, such as insomnia, and hence, suvorexant, an orexin receptor antagonist, has been clinically used to treat insomnia. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating the central-autonomic nervous systems and endocrine systems. These multiple actions of orexin maintain survival. However, it remains unknown whether chronopharmacological interventions targeting the orexin system ameliorate sleep-related disorders as well as sleep in humans. To understand the significance of adequate orexin action for prevention of these disorders, this review summarizes the physiological functions of daily orexin action and pathological implications of its mistimed or reduced action in sleep disturbances and sleep-related disorders (lifestyle-related physical and neurological disorders in particular). Timed administration of drugs targeting the orexin system may prevent lifestyle-related diseases by improving the quality of life in patients with sleep disturbances.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Ogundele OM, Lee CC, Francis J. Age-dependent alterations to paraventricular nucleus insulin-like growth factor 1 receptor as a possible link between sympathoexcitation and inflammation. J Neurochem 2016; 139:706-721. [PMID: 27626839 DOI: 10.1111/jnc.13842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
Abstract
Modifications to neural circuits of the paraventricular hypothalamic nucleus (PVN) have been implicated in sympathoexcitation and systemic cardiovascular dysfunction. However, to date, the role of insulin-like growth factor 1 receptor (IGF-1R) expression on PVN pathophysiology is unknown. Using confocal immunofluorescence quantification and electrophysiological recordings from acute PVN slices, we investigated the mechanism through which age-dependent IGF-1R depletion contributes to the progression of inflammation and sympathoexcitation in the PVN of spontaneously hypertensive rats (SHR). Four and twenty weeks old SHR and Wistar Kyoto (WKY) rats were used for this study. Our data showed that angiotensin I/II and pro-inflammatory high mobility box group protein 1 (HMGB1) exhibited increased expression in the PVN of SHR versus WKY at 4 weeks (p < 0.01), and were even more highly expressed with age in SHR (p < 0.001). This correlated with a significant decrease in IGF-1R expression, with age, in the PVN of SHR when compared with WKY (p < 0.001) and were accompanied by related changes in astrocytes and microglia. In subsequent analyses, we found an age-dependent change in the expression of proteins associated with IGF-1R signaling pathways involved in inflammatory responses and synaptic function in the PVN. MAPK/ErK was more highly expressed in the PVN of SHR by the fourth week (p < 0.001; vs. WKY), while expression of neuronal nitric oxide synthase (p < 0.001) and calcium-calmodulin-dependent kinase II alpha (CamKIIα; p < 0.001) were significantly decreased by the 4th and 20th week, respectively. Age-dependent changes in MAPK/ErK expression in the PVN correlated with an increase in the expression of vesicular glutamate transporter (p < 0.001 vs. WKY), while decreased levels of CamKIIα was associated with a decreased expression of tyrosine hydroxylase (p < 0.001) by the 20th week. In addition, reduced labeling for ϒ-aminobutyric acid in the PVN of SHR (p < 0.001) correlated with a decrease in neuronal nitric oxide synthase labeling (p < 0.001) when compared with the WKY by the 20th week. Electrophysiological recordings from neurons in acute slice preparations of the PVN of 4 weeks old SHR revealed spontaneous post-synaptic currents of higher frequency when compared with neurons from WKY PNV slices of the same age (p < 0.001; n = 14 cells). This also correlated with an increase in PSD-95 in the PVN of SHR when compared with the WKY (p < 0.001). Overall, we found an age-dependent reduction of IGF-1R, and related altered expression of associated downstream signaling molecules that may represent a link between the concurrent progression of synaptic dysfunction and inflammation in the PVN of SHR.
Collapse
Affiliation(s)
- Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|