1
|
Darias MJ, Estivals G, Andree KB, Fernández-Méndez C, Bazán R, Cahu C, Gisbert E, Castro-Ruiz D. Histological and molecular characterization of the digestive system of early weaned juveniles of Arapaima sp. reared in a recirculating aquaculture system. PLoS One 2025; 20:e0323012. [PMID: 40367026 PMCID: PMC12077701 DOI: 10.1371/journal.pone.0323012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/01/2025] [Indexed: 05/16/2025] Open
Abstract
Arapaima spp., the world's largest scaled freshwater fish, native to the Amazon and Essequibo river basins, are valued in aquaculture for their rapid growth and ornamental appeal. However, reliance on natural breeding and parental care in earthen ponds results in variable fingerling survival, hindering production. This study investigated the morphology and functionality of the digestive system of Arapaima sp. fingerlings from the Peruvian Amazon and evaluated the feasibility of early weaning onto compound diets to optimise growth and survival. Fingerlings were collected from a pond at 3.19 ± 0.03 cm total length (TL) and reared in a recirculating aquaculture system at 29 ºC under a 12L:12D photoperiod. Fish were successfully weaned from Artemia spp. nauplii onto an experimental compound diet (60% protein, 15% lipid) from 3.26 ± 0.02 cm TL within three days. Histological and gene expression analyses of key digestive enzyme precursors and appetite-regulating peptides (α-amylase, phospholipase A2, lipoprotein lipase, trypsinogen, chymotrypsinogen, pepsinogen, and peptide YY) revealed a mature digestive system, with enhanced digestive efficiency observed at 5.05 ± 0.34 cm TL. Based on digestive enzyme expression profiles and gut morphology, early juvenile Arapaima sp. possess a digestive physiology consistent with that of an omnivorous species with a preference for animal prey. The middle intestine was identified as a key site for fatty acid absorption and feed intake regulation. This study presents a novel, comprehensive analysis of digestive enzyme gene expression and associated tissue morphology in the genus Arapaima. It provides new insights into their digestive physiology and establishes the feasibility of early weaning onto formulated diets. Future research should explore the interplay between optimised compound feed formulations and refined early rearing protocols to maximise growth and survival throughout development.
Collapse
Affiliation(s)
- Maria J. Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guillain Estivals
- Laboratorio de Biología y Genética Molecular (LBGM), Dirección de Investigación en Ecosistemas Acuáticos Amazónicos (AQUAREC), Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologìa Agroalimentaries (IRTA), Sant Carles de la Ràpita, Spain
| | - Christian Fernández-Méndez
- Laboratorio de Bromatología, Dirección de Investigación en Ecosistemas Acuáticos Amazónicos (AQUAREC), Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru
| | - Roger Bazán
- Dirección de Investigación en Ecosistemas Acuáticos Amazónicos (AQUAREC), Instituto de Investigaciones de la Amazonía Peruana (IIAP), Pucallpa, Peru
| | - Chantal Cahu
- LEMAR, Ifremer, Univ Brest, CNRS, IRD, Plouzané, France
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologìa Agroalimentaries (IRTA), Sant Carles de la Ràpita, Spain
| | - Diana Castro-Ruiz
- Laboratorio de Biología y Genética Molecular (LBGM), Dirección de Investigación en Ecosistemas Acuáticos Amazónicos (AQUAREC), Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru
| |
Collapse
|
2
|
Lindstrom A, Volkoff H. Endocrine regulation of feeding in non-transgenic and transgenic fluorescent orange tiger barb (Puntigrus tetrazona). Gen Comp Endocrinol 2025; 367:114730. [PMID: 40228648 DOI: 10.1016/j.ygcen.2025.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Tiger barbs are popular tropical aquarium fish but despite their economic importance, nothing is known about their feeding physiology, in particular their endocrine regulation of feeding. The tiger barb has also been used to make genetically modified fluorescent fish but the influence of this genetic modification on their physiology is poorly understood. In this study, we submitted both non-transgenic (NT) and transgenic fluorescent orange (T) fish to 2 weeks of fasting or different temperatures (20, 25 and 30 °C) and assessed food intake and the expression of appetite regulators in brain, intestine and liver. Fasting had no effect on appetite regulators in the intestine, and decreased liver leptin expression in NT fish only. Fasting caused an overall increase and decrease in brain orexigenic and anorexigenic factors, respectively. The nature of peptides affected by this response differed between strains (MCH, ghrelin, POMCb in both NT and T, orexin in NT only, CRF and CCK in T only). In both T and NT fish, increasing temperatures increased food intake. Temperature affected the expression of most of the peptides examined, but the effects differed between the two fish strains. A shift from 25 to 20 °C increased hepatic leptin in NT and T, and intestine ghrelin in NT and had no effect on brain expression. A shift from 25 to 30 °C did not affect intestine or liver expressions, increased orexin, MCH and CRF brain expression in NT and T, and increased POMCb and CCKa expressions in T. Our study presents new information on the endocrine regulation of feeding in tiger barb, and provides insights on how transgenesis might affect feeding physiology of fish.
Collapse
Affiliation(s)
- Annika Lindstrom
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9 Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9 Canada.
| |
Collapse
|
3
|
Li J, Sun Y, Qiu W, Zhou Y, Zhou D, Zhao Y, Liu A, Yuan Y, Guo W. Liangxue Tongyu prescription attenuates neuroinflammation by increasing cholecystokinin octapeptide in acute intracerebral hemorrhage rats. Neuropeptides 2024; 107:102452. [PMID: 38941823 DOI: 10.1016/j.npep.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Inflammatory reactions after acute intracerebral hemorrhage (AICH) contribute significantly to a poor prognosis. Liangxue Tongyu Prescription (LTP) has been proven to be clinically effective in treating AICH. Numerous studies have shown that LTP suppresses brain inflammatory damage in AICH, while the internal mechanisms underlying its action remain unclear. The aim of this study was to verify the anti-inflammatory effects of LTP on an AICH rat model and investigate the potential mechanisms. The AICH rat models were created by injecting autologous blood into the right caudate nucleus. LTP markedly decreased cerebral hematoma and brain water content and recovered from neurological deficits. Meanwhile, LTP prevented microglial activation and reduced the inflammatory reaction caused by pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Notably, the expression of cholecystokinin octapeptide (CCK-8) in the brain and intestine was increased by LTP or CCK-8 treatment. LTP further suppressed nuclear factor kappa B (NF-κB) in the brains of rats with AICH. Moreover, LTP increased the protein and mRNA expression of Occludin and Claudin-1 in the intestine and decreased the levels of lipopolysaccharide (LPS) and diamine oxidase (DAO) in serum. Furthermore, the results showed that LTP increased the protein and mRNA expression of Claudin-5 and zonula occludens-1 (ZO-1) in the brain. CCK-8 receptor antagonists increased the expression of NF-κB and the concentration of pro-inflammatory cytokines. These findings suggested that LTP attenuated neuroinflammation by increasing CCK-8 in the brain and intestine, and its mechanism might be related to alterations in the gut-brain axis (GBA).
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yingying Sun
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhe Qiu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Anlan Liu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Weifeng Guo
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Zhang X, Liu Y, Sun H, Chen S, Tang P, Hu Q, He M, Tang N, Li Z, Chen D. Long-term dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) reduced feeding in common carp (Cyprinus carpio): Via the JAK-STAT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123966. [PMID: 38621451 DOI: 10.1016/j.envpol.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Sun
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Hu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
6
|
Norland S, Gomes AS, Rønnestad I, Helvik JV, Eilertsen M. Light conditions during Atlantic salmon embryogenesis affect key neuropeptides in the melanocortin system during transition from endogenous to exogenous feeding. Front Behav Neurosci 2023; 17:1162494. [PMID: 37153936 PMCID: PMC10160384 DOI: 10.3389/fnbeh.2023.1162494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
During the first feeding period, fish will adapt to exogenous feeding as their endogenous source of nutrients is depleted. This requires the development of a functional physiological system to control active search for food, appetite, and food intake. The Atlantic salmon (Salmo salar) melanocortin system, a key player in appetite control, includes neuronal circuits expressing neuropeptide y (npya), agouti-related peptide (agrp1), cocaine- and amphetamine-regulated transcript (cart), and proopiomelanocortin (pomca). Little is known about the ontogeny and function of the melanocortin system during early developmental stages. Atlantic salmon [0-730 day degrees (dd)] were reared under three different light conditions (DD, continuous darkness; LD, 14:10 Light: Dark; LL, continuous light) before the light was switched to LD and the fish fed twice a day. We examined the effects of different light conditions (DD LD , LD LD , and LL LD ) on salmon growth, yolk utilization, and periprandial responses of the neuropeptides npya1, npya2, agrp1, cart2a, cart2b, cart4, pomca1, and pomca2. Fish were collected 1 week (alevins, 830 dd, still containing yolk sac) and 3 weeks (fry, 991 dd, yolk sac fully consumed) into the first feeding period and sampled before (-1 h) and after (0.5, 1.5, 3, and 6 h) the first meal of the day. Atlantic salmon reared under DD LD , LD LD , and LL LD had similar standard lengths and myotome heights at the onset of first feeding. However, salmon kept under a constant light condition during endogenous feeding (DD LD and LL LD ) had less yolk at first feeding. At 830 dd none of the neuropeptides analyzed displayed a periprandial response. But 2 weeks later, and with no yolk remaining, significant periprandial changes were observed for npya1, pomca1, and pomca2, but only in the LD LD fish. This suggests that these key neuropeptides serve an important role in controlling feeding once Atlantic salmon need to rely entirely on active search and ingestion of exogenous food. Moreover, light conditions during early development did not affect the size of salmon at first feeding but did affect the mRNA levels of npya1, pomca1, and pomca2 in the brain indicating that mimicking natural light conditions (LD LD ) better stimulates appetite control.
Collapse
|