1
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia 2022; 37:682-690. [PMID: 31780319 DOI: 10.1016/j.nrl.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address two factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, México
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| |
Collapse
|
2
|
Si Y, Guo C, Xiao F, Mei B, Meng B. Noncognitive species-typical and home-cage behavioral alterations in conditional presenilin 1/presenilin 2 double knockout mice. Behav Brain Res 2021; 418:113652. [PMID: 34758364 DOI: 10.1016/j.bbr.2021.113652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Impairments in activities of daily living (ADL) are common clinical symptoms of human Alzheimer's disease (AD). Describing the ADL in AD animal models might provide more insights into the mechanism/treatment of the disease. Here, we demonstrated that the forebrain presenilin 1(Psen1)/presenilin 2 (Psen2) conditional double knockout (DKO) mice exhibited deficits in nest building, marble burying and food burrowing starting at 3 months old and worsening at later ages. At 4 months of age, spontaneous activities in the home cage were also impaired in DKO mice, including physically demanding activities, habituation-like behaviors, and nourishment behaviors during the first two hours in the dark phase. These results indicated that loss of function of Psen1 and Psen2 in mice impaired a series of noncognitive behaviors in the early phase of neurodegeneration. This observation suggests that DKO mice are an ideal model for further mechanistic studies of Psen1 and Psen2 functions in regulating noncognitive behaviors.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Chao Guo
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegne, Netherlands
| | - Fan Xiao
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
3
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:682-690. [PMID: 34509401 DOI: 10.1016/j.nrleng.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address 2 factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, Mexico
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
4
|
Nakajima R, Hattori S, Funasaka T, Huang FL, Miyakawa T. Decreased nesting behavior, selective increases in locomotor activity in a novel environment, and paradoxically increased open arm exploration in Neurogranin knockout mice. Neuropsychopharmacol Rep 2020; 41:111-116. [PMID: 33270377 PMCID: PMC8182962 DOI: 10.1002/npr2.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Neurogranin (NRGN) is a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. Recent studies suggest that NRGN is involved in neuropsychiatric disorders, including schizophrenia, ADHD, and Alzheimer's disease. Previous behavioral studies of Nrgn knockout (Nrgn KO) mice identified hyperactivity, deficits in spatial learning, impaired sociability, and decreased prepulse inhibition, which suggest that these mice recapitulate some symptoms of neuropsychiatric disorders. To further validate Nrgn KO mice as a model of neuropsychiatric disorders, we assessed multiple domains of behavioral phenotypes in Nrgn KO mice using a comprehensive behavioral test battery including tests of homecage locomotor activity and nesting behavior. Methods Adult Nrgn KO mice (28‐54 weeks old) were subjected to a battery of comprehensive behavioral tests, which examined general health, nesting behavior, neurological characteristics, motor function, pain sensitivity, locomotor activity, anxiety‐like behavior, social behavior, sensorimotor gating, depression‐like behavior, and working memory. Results The Nrgn KO mice displayed a pronounced decrease in nesting behavior, impaired motor function, and elevated pain sensitivity. While the Nrgn KO mice showed increased locomotor activity in the open field test, these mice did not show hyperactivity in a familiar environment as measured in the homecage locomotor activity test. The Nrgn KO mice exhibited a decreased number of transitions in the light‐dark transition test and decreased stay time in the center of the open field test, which is consistent with previous reports of increased anxiety‐like behavior. Interestingly, however, these mice stayed on open arms significantly longer than wild‐type mice in the elevated plus maze. Consistent with previous studies, the mutant mice exhibited decreased prepulse inhibition, impaired working memory, and decreased sociability. Conclusions In the current study, we identified behavioral phenotypes of Nrgn KO mice that mimic some of the typical symptoms of neuropsychiatric diseases, including impaired executive function, motor dysfunction, and altered anxiety. Most behavioral phenotypes that had been previously identified, such as hyperlocomotor activity, impaired sociability, tendency for working memory deficiency, and altered sensorimotor gating, were reproduced in the present study. Collectively, the behavioral phenotypes of Nrgn KO mice detected in the present study indicate that Nrgn KO mice are a valuable animal model that recapitulates a variety of symptoms of neuropsychiatric disorders, such as schizophrenia, ADHD, and Alzheimer's disease. We found that Neurogranin knockout mice exhibit decreased nesting behavior, selective increases in locomotor activity in a novel environment, and paradoxically increased open arm exploration. Considering the behavioral phenotypes that had been previously identified, we propose that Neurogranin KO mice are a valuable animal model that recapitulates a variety of symptoms of neuropsychiatric disorders, such as schizophrenia, ADHD, and Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Teppei Funasaka
- Department of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Freesia L Huang
- Program of Developmental Neurobiology, NICHD, NIH, Bethesda, MD, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Mondragón-Rodríguez S, Ordaz B, Orta-Salazar E, Díaz-Cintra S, Peña-Ortega F, Perry G. Hippocampal Unicellular Recordings and Hippocampal-dependent Innate Behaviors in an Adolescent Mouse Model of Alzheimer's disease. Bio Protoc 2020; 10:e3529. [PMID: 33654753 PMCID: PMC7842348 DOI: 10.21769/bioprotoc.3529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/02/2022] Open
Abstract
Transgenic mice have been used to make valuable contributions to the field of neuroscience and model neurological diseases. The simultaneous functional analysis of hippocampal cell activity combined with hippocampal dependent innate task evaluations provides a reliable experimental approach to detect fine changes during early phases of neurodegeneration. To this aim, we used a merge of patch-clamp with two hippocampal innate behavior tasks. With this experimental approach, whole-cell recordings of CA1 pyramidal cells, combined with hippocampal-dependent innate behaviors, have been crucial for evaluating the early mechanism of neurodegeneration and its consequences. Here, we present our protocol for ex vivo whole-cell recordings of CA1 pyramidal cells and hippocampal dependent innate behaviors in an adolescent (p30) mice.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- National Council for Science and Technology (CONACYT), México, México
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Benito Ordaz
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Erika Orta-Salazar
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Sofia Díaz-Cintra
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Fernando Peña-Ortega
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - George Perry
- Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio (UTSA), San Antonio, Texas
| |
Collapse
|
6
|
Orta-Salazar E, Feria-Velasco A, Díaz-Cintra S. Primary motor cortex alterations in Alzheimer disease: a study in the 3xTg-AD model. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, Abrunhosa A, Rodrigues-Neves AC, Carecho R, Baptista F, Gomes C, Moreira PI, Ambrósio AF, Castelo-Branco M. A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet 2019; 28:2174-2188. [PMID: 30816415 PMCID: PMC6586150 DOI: 10.1093/hmg/ddz045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
The understanding of the natural history of Alzheimer's disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid β (Aβ) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood-brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased Aβ and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.
Collapse
Affiliation(s)
- Samuel Chiquita
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Mário Ribeiro
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Francisco Oliveira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Marta Batista
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rafael Carecho
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Filipa Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Catarina Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Hollinger KR, Alt J, Rais R, Kaplin AI, Slusher BS. The NAAG’ing Concerns of Modeling Human Alzheimer’s Disease in Mice. J Alzheimers Dis 2019; 68:939-945. [DOI: 10.3233/jad-181251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kristen R. Hollinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Adam I. Kaplin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara S. Slusher
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Cerebral Malaria Causes Enduring Behavioral and Molecular Changes in Mice Brain Without Causing Gross Histopathological Damage. Neuroscience 2017; 369:66-75. [PMID: 29113928 DOI: 10.1016/j.neuroscience.2017.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 01/13/2023]
Abstract
Malaria, parasitic disease considered a major health public problem, is caused by Plasmodium protozoan genus and transmitted by the bite of infected female Anopheles mosquito genus. Cerebral malaria (CM) is the most severe presentation of malaria, caused by P. falciparum and responsible for high mortality and enduring development of cognitive deficits which may persist even after cure and cessation of therapy. In the present study we evaluated selected behavioral, neurochemical and neuropathologic parameters after rescue from experimental cerebral malaria caused by P. berghei ANKA in C57BL/6 mice. Behavioral tests showed impaired nest building activity as well as increased marble burying, indicating that natural behavior of mice remains altered even after cure of infection. Regarding the neurochemical data, we found decreased α2/α3 Na+,K+-ATPase activity and increased immunoreactivity of phosphorylated Na+,K+-ATPase at Ser943 in cerebral cortex after CM. In addition, [3H]-Flunitrazepam binding assays revealed a decrease of benzodiazepine/GABAA receptor binding sites in infected animals. Moreover, in hippocampus, dot blot analysis revealed increased levels of protein carbonyls, suggesting occurrence of oxidative damage to proteins. Interestingly, no changes in the neuropathological markers Fluoro-Jade C, Timm staining or IBA-1 were detected. Altogether, present data indicate that behavioral and neurochemical alterations persist even after parasitemia clearance and CM recovery, which agrees with available clinical findings. Some of the molecular mechanisms reported in the present study may underlie the behavioral changes and increased seizure susceptibility that persist after recovery from CM and may help in the future development of therapeutic strategies for CM sequelae.
Collapse
|
10
|
Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6473506. [PMID: 29204248 PMCID: PMC5674513 DOI: 10.1155/2017/6473506] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1) was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2), synapsin-2 (SYN2), and synaptosomal-associated protein 25 (SNP25) were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25).
Collapse
|
11
|
Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model. Neurologia 2017; 34:429-436. [PMID: 28433262 DOI: 10.1016/j.nrl.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. METHODS We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). RESULTS Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. CONCLUSIONS Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease.
Collapse
|
12
|
Wu B, Wei Y, Wang Y, Su T, Zhou L, Liu Y, He R. Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 2016; 6:34128-42. [PMID: 26452037 PMCID: PMC4741441 DOI: 10.18632/oncotarget.6021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
In addition to D-Glucose, D-Ribose is also abnormally elevated in the urine of type 2 diabetic patients, establishing a positive correlation between the concentration of uric D-Ribose and the severity of diabetes. Intraperitoneal injection of D-Ribose causes memory loss and brain inflammation in mice. To simulate a chronic progression of age-related cognitive impairment, we orally administered D-Ribose by gavage at both a low and high dose to 8 week-old male C57BL/6J mice daily for a total of 6 months, followed by behavioral, histological and biochemical analysis. We found that long-term oral administration of D-Ribose impairs spatial learning and memory, accompanied by anxiety-like behavior. Tau was hyperphosphorylated at AT8, S396, S214 and T181 in the brain. Aβ-like deposition was also found in the hippocampus for the high dose group. D-Glucose-gavaged mice did not show significant memory loss and anxiety-like behavior under the same experimental conditions. These results demonstrate that a long-term oral administration of D-Ribose not only induces memory loss with anxiety-like behavior, but also elevates Aβ-like deposition and Tau hyperphosphorylation, presenting D-Ribose-gavaged mouse as a model for age-related cognitive impairment and diabetic encephalopathy.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yujing Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Su
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhou
- Animal Experiment Center, Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington's disease. J Neurosci 2015; 35:4440-51. [PMID: 25762686 DOI: 10.1523/jneurosci.2812-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abnormal electrophysiological activity in the striatum, which receives dense innervation from the cerebral cortex, is believed to set the stage for the behavioral phenotype observed in Huntington's disease (HD), a neurodegenerative condition caused by mutation of the huntingtin (mhtt) protein. However, cortical involvement is far from clear. To determine whether abnormal striatal processing can be explained by mhtt alone (cell-autonomous model) or by mhtt in the corticostriatal projection cell-cell interaction model, we used BACHD/Emx1-Cre (BE) mice, a conditional HD model in which full-length mhtt is genetically reduced in cortical output neurons, including those that project to the striatum. Animals were assessed beginning at 20 weeks of age for at least the next 40 weeks, a range over which presymptomatic BACHD mice become symptomatic. Both open-field and nest-building behavior deteriorated progressively in BACHD mice relative to both BE and wild-type (WT) mice. Neuronal activity patterns in the dorsal striatum, which receives input from the primary motor cortex (M1), followed a similar age progression because BACHD activity changed more rapidly than either BE or WT mice. However, in the M1, BE neuronal activity differed significantly from both WT and BACHD. Although abnormal cortical activity in BE mice likely reflects input from mhtt-expressing afferents, including cortical interneurons, improvements in BE striatal activity and behavior suggest a critical role for mhtt in cortical output neurons in shaping the onset and progression of striatal dysfunction.
Collapse
|
14
|
Effects of shenque moxibustion on behavioral changes and brain oxidative state in apolipoprotein e-deficient mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:804804. [PMID: 25793004 PMCID: PMC4352425 DOI: 10.1155/2015/804804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Purpose. To determine whether moxibustion influences the learning and memory behavior of ApoE−/− male mice, and investigate the mechanism of moxibustion on the alteration of oxidized proteins (glial fibrillary acidic protein, β-amyloid) in hippocampus. Methods. Thirty-three ApoE−/− mice were randomly divided into 3 groups (n = 11/group): moxibustion, sham moxibustion, and no treatment control. Wild-type C57BL/6 mice (n = 13) were used for normal control. Moxibustion was performed with Shenque (RN8) moxibustion for 20 minutes per day, 6 days/week for 12 weeks. In sham control, the procedure was similar except burning of the moxa stick. Behavioral tests (step-down test and Morris water maze task) were conducted in the 13th week. The mice were then sacrificed and the tissues were harvested for immune-histochemical staining. Results. In the step-down test, the moxibustion group had shorter reaction time in training record and committed less mistakes compared to sham control. In immune-histochemical study, the moxibustion group expressed lower level of GFAP and less aggregation of β-amyloid in the hippocampus than the sham control. Conclusion. Our findings suggest that moxibustion may enhance learning capability of ApoE−/− mice. The mechanism may be via inhibiting oxidized proteins (GFAP and β-amyloid) in astrocytes.
Collapse
|
15
|
The influence of chronic ibuprofen treatment on proteins expressed in the mouse hippocampus. Eur J Pharmacol 2015; 752:61-8. [PMID: 25659514 DOI: 10.1016/j.ejphar.2015.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/13/2015] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID), treatment with which has been shown to delay the onset, slows the cognitive decline, and decreases the incidence of Alzheimer׳s disease (AD) in epidemiological and clinical studies. However, a comprehensive understanding of its mechanism of action remains unclear. To elucidate the prophylactic effect of ibuprofen on the onset of the learning and memory disturbances of AD, we performed proteomic analysis of the hippocampus of chronic ibuprofen-treated mice using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry. Twenty-eight proteins and seven phosphoproteins were identified to be significantly changed in the hippocampus of chronic ibuprofen-treated mice: translationally controlled tumor protein, thioredoxin-dependent peroxide reductase, and peroxiredoxin 6 were increased, and glial fibrillary acidic protein, dihydropyrimidinase-related protein 2, EF-hand domain-containing protein D2, and 14-3-3ζ were decreased. These identified proteins and phosphoproteins could be classified as cytoskeletal, neuronal development, chaperone, metabolic, apoptosis, neurotransmitter release, ATP synthase, deubiquitination, proteasome, NOS inhibitor, adapter, vesicle transport, signal transduction, antioxidant enzyme, proton transport, synaptogenesis, and serine/threonine phosphatase types. Western blot analysis showed the changes in dihydropyrimidinase-related protein 2, heat shock protein 8, ubiquitin carboxyl-terminal hydrolase PGP9.5, and γ-enolase levels in the hippocampus of chronic ibuprofen-treated mice. These findings showed that the chronic treatment with ibuprofen changed the levels of some proteins and phosphoproteins in the hippocampus. We propose that these identified proteins and phosphoproteins play an important role in decreasing the incidence of AD, especially impaired learning and memory functions.
Collapse
|
16
|
Williams AL, DeSesso JM. Gestational/perinatal chlorpyrifos exposure is not associated with autistic-like behaviors in rodents. Crit Rev Toxicol 2014; 44:523-34. [PMID: 24861450 DOI: 10.3109/10408444.2014.907772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although animal models cannot exactly replicate human psychiatric disorders, they may be useful to investigate whether the behaviors associated with certain exposures in animals parallel those observed in people. According to the most current version of the Diagnostic and Statistical Manual of Mental Disorders, autism is diagnosed based on (1) persistent deficits in social communication and social interaction; and (2) the presence of restricted, repetitive patterns of behavior, interests and activities. To address whether developmental chlorpyrifos (CPF) exposure was associated with the development of autistic behaviors, a literature search was conducted to identify studies in rats and mice involving gestational or early postnatal exposure to CPF or CPF oxon (CPO, the active metabolite of CPF) and subsequent behavioral testing to assess behaviors related to autism. A total of 13 studies conducted in six different laboratories were identified. Analysis of these studies found that perinatal CPF exposure was generally associated with (1) no effect or increased social communications; (2) no effect or increased social encounters; (3) no effect, reduced stereotypies, or conflicting findings on stereotypic behaviors; and (4) no effect or increased preference for novelty and reduced anxiety in novel environments. These behavioral findings are generally inconsistent with the types of behaviors that would be expected in children with clinical autism. Based on the results of this analysis of rodent model studies involving CPF/CPO exposure, it cannot be concluded that gestational and/or perinatal CPF exposure is likely to be associated with the development of autism-like behaviors in humans.
Collapse
|
17
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|