1
|
Antonaglia C, Citton GM, Soave S, Salton F, Ruaro B, Confalonieri P, Confalonieri M. Deciphering loop gain complexity: a primer for understanding a pathophysiological trait of obstructive sleep apnea patients. Respir Med 2024; 234:107820. [PMID: 39332779 DOI: 10.1016/j.rmed.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Loop Gain (LG), a concept borrowed from engineering used to describe the stability of electrical circuits under negative feedback, has emerged as a crucial pathophysiological trait in sleep respiratory disorders. In simple terms, LG measures how the respiratory control system reacts to changes in breathing. A high LG suggests that minor disturbances in breathing prompt exaggerated responses, potentially leading to instability and oscillations in respiratory patterns. Conversely, a low LG implies that the system responds more gently to disturbances, resulting in stable and well-regulated breathing. However, understanding the concept of loop gain presents challenges due to its dynamic nature across various sleep respiratory disorders, sleep stages, positions, and interactions with other pathophysiological traits. Recent efforts have aimed to identify a non-invasive method for assessing LG, with some evidence suggesting that information regarding pathophysiological traits can be extracted from polysomnography. There exists a clinical imperative for physician to unravel the intricacies of LG when managing Obstructive Sleep Apnea (OSA) patients, because LG abnormalities delineate a distinct pathophysiological phenotype of OSA. Specifically, certain patients exhibit a high LG as the primary factor driving sleep apnea, influencing treatment outcomes. For instance, individuals with high LG may respond differently to therapies such as continuous positive airway pressure (CPAP) or oral appliances compared to those with normal LG, or they can be treated with specific drugs or combination therapies. Thus, understanding LG becomes paramount for precise assessment of OSA patients and is fundamental for optimizing a personalized and effective treatment approach.
Collapse
Affiliation(s)
- Caterina Antonaglia
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy.
| | - Gloria Maria Citton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Sara Soave
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| |
Collapse
|
2
|
Biswas DD, Sethi R, Woldeyohannes Y, Scarrow ER, El Haddad L, Lee J, ElMallah MK. Respiratory pathology in the TDP-43 transgenic mouse model of amyotrophic lateral sclerosis. Front Physiol 2024; 15:1430875. [PMID: 39403566 PMCID: PMC11471906 DOI: 10.3389/fphys.2024.1430875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 03/28/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in death within 2-5 years of diagnosis. Respiratory failure is the most common cause of death in ALS. Mutations in the transactive response DNA binding protein 43 (TDP-43) encoded by the TARDBP gene are associated with abnormal cellular aggregates in neurons of patients with both familial and sporadic ALS. The role of these abnormal aggregates on breathing is unclear. Since respiratory failure is a major cause of death in ALS, we sought to determine the role of TDP-43 mutations on the respiratory motor unit in the Prp-hTDP-43A315T mouse model - a model that expresses human TDP-43 containing the A315T mutation. We assessed breathing using whole-body plethysmography, and investigated neuropathology in hypoglossal and phrenic respiratory motor units. Postmortem studies included quantification of hypoglossal and putative phrenic motor neurons, activated microglia and astrocytes in respiratory control centers, and assessment of hypoglossal and phrenic nerves of TDP43A315T mice. The male TDP43A315T mice display an early onset of rapid progression of disease, and premature death (less than 15 weeks) compared to control mice and compared to female TDP43A315T mice who die between 20 and 35 weeks of age. The TDP43A315T mice have progressive and profound breathing deficits at baseline and during a respiratory challenge. Histologically, hypoglossal and putative phrenic motor neurons of TDP43A315T mice are decreased and have increased microglial and astrocyte activation, indicating pronounced neurodegeneration and neuroinflammation. Further, there is axonopathy and demyelination in the hypoglossal and phrenic nerve of TDP43A315T mice. Thus, the TDP-43A315T mice have significant respiratory pathology and neuropathology, which makes them a useful translatable model for the study of novel therapies on breathing in ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mai K. ElMallah
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
3
|
Osmani WA, Gallo A, Tabor M, Eilbes M, Cook-Snyder DR, Hodges MR. Repeated seizure-induced brainstem neuroinflammation contributes to post-ictal ventilatory control dysfunction. Front Physiol 2024; 15:1413479. [PMID: 39175614 PMCID: PMC11339535 DOI: 10.3389/fphys.2024.1413479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Patients with epilepsy face heightened risk of post-ictal cardiorespiratory suppression and sudden unexpected death in epilepsy (SUDEP). Studies have shown that neuroinflammation, mediated by the activation of microglia and astrocytes, may be a cause or consequence of seizure disorders. Kcnj16 (Kir5.1) knockout rats (SS kcnj16-/- ) are susceptible to repeated audiogenic seizures and recapitulate features of human SUDEP, including post-ictal ventilatory suppression, which worsens with repeated seizures and seizure-induced mortality. In this study, we tested the hypothesis that repeated seizures cause neuroinflammation within key brainstem regions that contribute to the control of breathing. Audiogenic seizures were elicited once/day for up to 10 days in groups of adult male SS kcnj16-/- rats, from which frozen brainstem biopsies of the pre-Bötzinger complex/nucleus ambiguus (preBötC/NA), Bötzinger complex (BötC), and raphe magnus (RMg) regions were subjected to a cytokine array. Several cytokines/chemokines, including IL-1α and IL-1ß, were increased selectively in preBötC/NA after 3 or 5 days of seizures with fewer changes in other regions tested. In additional groups of male SS kcnj16-/- rats that underwent repeated seizures, we quantified microglial (IBA-1+) cell counts and morphology, specifically within the preBötC/NA region, and showed increased microglial cell counts, area, and volume consistent with microglial activation. To further test the role of inflammation in physiological responses to seizures and seizure-related mortality, additional groups of SS kcnj16-/- rats were treated with anakinra (IL-1R antagonist), ketoprofen (non-selective COX inhibitor), or saline for 3 days before and up to 10 days of seizures (1/day), and breathing was measured before, during, and after each seizure. Remarkably, IL-1R antagonism mitigated changes in post-ictal ventilatory suppression on days 7-10 but failed to prevent seizure-related mortality, whereas ketoprofen treatment exacerbated post-ictal ventilatory suppression compared to other treatment groups but prevented seizure-related mortality. These data demonstrate neuroinflammation and microglial activation within the key brainstem region of respiratory control following repeated seizures, which may functionally but differentially contribute to the pathophysiological consequences of repeated seizures.
Collapse
Affiliation(s)
- Wasif A. Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Gallo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Madeline Tabor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Denise R. Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Guo X, Akanda N, Fiorino G, Nimbalkar S, Long CJ, Colón A, Patel A, Tighe PJ, Hickman JJ. Human IPSC-Derived PreBötC-Like Neurons and Development of an Opiate Overdose and Recovery Model. Adv Biol (Weinh) 2024; 8:e2300276. [PMID: 37675827 PMCID: PMC10921423 DOI: 10.1002/adbi.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Opioid overdose is the leading cause of drug overdose lethality, posing an urgent need for investigation. The key brain region for inspiratory rhythm regulation and opioid-induced respiratory depression (OIRD) is the preBötzinger Complex (preBötC) and current knowledge has mainly been obtained from animal systems. This study aims to establish a protocol to generate human preBötC neurons from induced pluripotent cells (iPSCs) and develop an opioid overdose and recovery model utilizing these iPSC-preBötC neurons. A de novo protocol to differentiate preBötC-like neurons from human iPSCs is established. These neurons express essential preBötC markers analyzed by immunocytochemistry and demonstrate expected electrophysiological responses to preBötC modulators analyzed by patch clamp electrophysiology. The correlation of the specific biomarkers and function analysis strongly suggests a preBötC-like phenotype. Moreover, the dose-dependent inhibition of these neurons' activity is demonstrated for four different opioids with identified IC50's comparable to the literature. Inhibition is rescued by naloxone in a concentration-dependent manner. This iPSC-preBötC mimic is crucial for investigating OIRD and combating the overdose crisis and a first step for the integration of a functional overdose model into microphysiological systems.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Gabriella Fiorino
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Siddharth Nimbalkar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Long
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Alisha Colón
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Patrick J Tighe
- College of Medicine, Department of Anesthesiology, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| |
Collapse
|
5
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People’s Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| |
Collapse
|
6
|
Biswas DD, Shi Y, El Haddad L, Sethi R, Huston M, Kehoe S, Scarrow ER, Strickland LM, Pucci LA, Dhindsa JS, Hunanyan A, La Spada AR, ElMallah MK. Respiratory neuropathology in spinocerebellar ataxia type 7. JCI Insight 2024; 9:e170444. [PMID: 39053472 PMCID: PMC11457860 DOI: 10.1172/jci.insight.170444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by deleterious CAG repeat expansion in the coding region of the ataxin 7 gene (polyQ-ataxin-7). Infantile-onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile-SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological polyQ-ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and investigated the XII and phrenic nerves and the neuromuscular junctions in the diaphragm and tongue. SCA7266Q/5Q astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transport and myelination. Additionally, SCA7266Q/5Q mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of neuromuscular junction clusters with higher expression of synaptic markers in SCA7266Q/5Q mice compared with WT controls. These preclinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration, and respiratory failure in infantile SCA7.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yihan Shi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Meredith Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sean Kehoe
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn R Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura M Strickland
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Logan A Pucci
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin S Dhindsa
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ani Hunanyan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology and Behavior, and
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Yamada R, Koike T, Nakakariya M, Kimura H. Orexin receptor 2 agonist activates diaphragm and genioglossus muscle through stimulating inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons in rodents. PLoS One 2024; 19:e0306099. [PMID: 38917189 PMCID: PMC11198781 DOI: 10.1371/journal.pone.0306099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Orexin-mediated stimulation of orexin receptors 1/2 (OX[1/2]R) may stimulate the diaphragm and genioglossus muscle via activation of inspiratory neurons in the pre-Bötzinger complex, which are critical for the generation of inspiratory rhythm, and phrenic and hypoglossal motoneurons. Herein, we assessed the effects of OX2R-selective agonists TAK-925 (danavorexton) and OX-201 on respiratory function. In in vitro electrophysiologic analyses using rat medullary slices, danavorexton and OX-201 showed tendency and significant effect, respectively, in increasing the frequency of inspiratory synaptic currents of inspiratory neurons in the pre-Bötzinger complex. In rat medullary slices, both danavorexton and OX-201 significantly increased the frequency of inspiratory synaptic currents of hypoglossal motoneurons. Danavorexton and OX-201 also showed significant effect and tendency, respectively, in increasing the frequency of burst activity recorded from the cervical (C3-C5) ventral root, which contains axons of phrenic motoneurons, in in vitro electrophysiologic analyses from rat isolated brainstem-spinal cord preparations. Electromyogram recordings revealed that intravenous administration of OX-201 increased burst frequency of the diaphragm and burst amplitude of the genioglossus muscle in isoflurane- and urethane-anesthetized rats, respectively. In whole-body plethysmography analyses, oral administration of OX-201 increased respiratory activity in free-moving mice. Overall, these results suggest that OX2R-selective agonists enhance respiratory function via activation of the diaphragm and genioglossus muscle through stimulation of inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons. OX2R-selective agonists could be promising drugs for various conditions with respiratory dysfunction.
Collapse
Affiliation(s)
- Ryuji Yamada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
8
|
MacFarlane PM, Martin RJ, Di Fiore JM, Raffay TM, Tatsuoka C, Chen Z, Minich N, Quintas G, Sánchez-Illana Á, Kuligowski J, Piñeiro-Ramos JD, Vento M, Hibbs AM. Plasma serotonergic biomarkers are associated with hypoxemia events in preterm neonates. Pediatr Res 2023; 94:1436-1443. [PMID: 37188799 PMCID: PMC11414210 DOI: 10.1038/s41390-023-02620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.
Collapse
Affiliation(s)
- Peter Mathew MacFarlane
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| | - Richard John Martin
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Juliann Marie Di Fiore
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas Michael Raffay
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengyi Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nori Minich
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Guillermo Quintas
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225, Terrassa, Spain
- Analytical Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ángel Sánchez-Illana
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
- Department of Analytical Chemistry, Chemistry Faculty, Universtitat de València, Burjassot, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute La Fe (IISLAFE), University & Polytechnic Hospita La Fe (HULAFE), Valencia, Spain
| | - Anna Maria Hibbs
- Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Biswas DD, El Haddad L, Sethi R, Huston ML, Lai E, Abdelbarr MM, Mhandire DZ, ElMallah MK. Neuro-respiratory pathology in spinocerebellar ataxia. J Neurol Sci 2022; 443:120493. [PMID: 36410186 PMCID: PMC9808489 DOI: 10.1016/j.jns.2022.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Meredith L Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mariam M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Galassi G, Marchioni A. Reply to respiratory failure due to neuro-COVID by Finsterer J et al. J Clin Neurosci 2022; 106:229-230. [PMID: 35987791 PMCID: PMC9385399 DOI: 10.1016/j.jocn.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Giuliana Galassi
- Department of Biomedical, Metabolic, Neural Sciences, University of Modena and Reggio Emilia, Italy.
| | - Alessandro Marchioni
- Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
12
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Fractal and multifractal characterization of in vitro respiratory recordings of the pre-Bötzinger complex. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Rodriguez-Torres EE, Paredes-Hernandez U, Vazquez-Mendoza E, Tetlalmatzi-Montiel M, Morgado-Valle C, Beltran-Parrazal L, Villarroel-Flores R. Characterization and Classification of Electrophysiological Signals Represented as Visibility Graphs Using the Maxclique Graph. Front Bioeng Biotechnol 2020; 8:324. [PMID: 32351953 PMCID: PMC7174547 DOI: 10.3389/fbioe.2020.00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Detection, characterization and classification of patterns within time series from electrophysiological signals have been a challenge for neuroscientists due to their complexity and variability. Here, we aimed to use graph theory to characterize and classify waveforms within biological signals using maxcliques as a feature for a deep learning method. We implemented a compact and easy to visualize algorithm and interface in Python. This software uses time series as input. We applied the maxclique graph operator in order to obtain further graph parameters. We extracted features of the time series by processing all graph parameters through K-means, one of the simplest unsupervised machine learning algorithms. As proof of principle, we analyzed integrated electrical activity of XII nerve to identify waveforms. Our results show that the use of maxcliques allows identification of two distinct types of waveforms that match expert classification. We propose that our method can be a useful tool to characterize and classify other electrophysiological signals in a short time and objectively. Reducing the classification time improves efficiency for further analysis in order to compare between treatments or conditions, e.g., pharmacological trials, injuries, or neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ulises Paredes-Hernandez
- Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Enrique Vazquez-Mendoza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Mexico
| | - Luis Beltran-Parrazal
- Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Mexico
| | - Rafael Villarroel-Flores
- Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| |
Collapse
|
15
|
Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 2019; 60:2346-2358. [PMID: 31705531 DOI: 10.1111/epi.16374] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- John G. R. Jefferys
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Pharmacology Oxford University Oxford UK
| | - Muhammad A. Arafat
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Pedro P. Irazoqui
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Thelma A. Lovick
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| |
Collapse
|
16
|
Does volatile sedation with sevoflurane allow spontaneous breathing during prolonged prone positioning in intubated ARDS patients? A retrospective observational feasibility trial. Ann Intensive Care 2019; 9:41. [PMID: 30911854 PMCID: PMC6434001 DOI: 10.1186/s13613-019-0517-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Lung-protective ventilation and prolonged prone positioning (PP) are presented as essential in treating acute respiratory distress syndrome (ARDS). The optimal respirator mode, however, remains controversial. Pressure-supported spontaneous breathing (PS) during ARDS provides several advantages, but is difficult to achieve during PP because of respiratory depression as a side effect of sedative drugs. This study was designed to evaluate the feasibility and safety of PS during PP in ARDS patients sedated with inhaled sevoflurane. Results Overall, we have observed 4339 h of prone positioning in 62 patients who had a median of four prone episodes during treatment. Within 3948 h (91%), patients were successfully brought into a pressure-supported spontaneous breathing mode. The median duration of each prone episode was 17 h (IQR 3). Median duration of pressure-supported spontaneous breathing per episode was 16 h (IQR 5). Just one self-extubation occurred during 276 episodes of PP. Conclusions and implications Pressure-supported spontaneous breathing during prolonged prone positioning in intubated ARDS patients with or without ECMO can be achieved during volatile sedation with sevoflurane. This finding may provide a basis upon which to question the latest dogma in ARDS treatment. Our concept must be further investigated and compared to controlled ventilation with regard to driving pressure, lung-protective parameters, muscle weakness and mortality before it can be routinely applied.
Collapse
|