1
|
Soberanes-Chávez P, de Gortari P, García-Luna C, Cruz SL. Repeated toluene and cyclohexane inhalation produces differential effects on HPA and HPT axes in adolescent male rats. Neurotoxicology 2023; 99:244-253. [PMID: 37944760 DOI: 10.1016/j.neuro.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation. However, a comprehensive examination of the effects of TOL and CHX on stress regulation and energy balance is lacking. Here, we compared the effect of a binge-pattern exposure to TOL or CHX (4,000 or 8,000 ppm) on body weight, food intake, the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-thyroid (HPT) axes in male adolescent Wistar rats. At 8,000 ppm, TOL decreased body weight gain without affecting food intake. In addition, TOL and CHX altered the HPA and HPT axes' function in a solvent- and concentration-dependent manner. The highest TOL concentration produced HPA axis hyperactivation in animals not subjected to stress, which was evidenced by increased corticotropin-releasing-factor (CRF) release from the median eminence (ME), elevated adrenocorticotropin hormone (ACTH) and corticosterone serum levels, and decreased CRF mRNA levels in the hypothalamic paraventricular nucleus (PVN). TOL (8,000 ppm) also increased triiodothyronine (T3) serum levels, decreased pro-thyrotropin-releasing-hormone (pro-TRH) mRNA transcription in the PVN, pro-TRH content in the ME, and serum thyroid stimulating hormone (TSH) levels. CHX did not affect the HPA axis. We propose that the increased HPT axis activity induced by TOL can be related to the impaired body weight gain associated with inhalant misuse. These findings may contribute to a better understanding of the effects of the misused solvents TOL and CHX.
Collapse
Affiliation(s)
- P Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, 14370, Mexico.
| | - P de Gortari
- Laboratorio de Neurofisiología Molecular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, 14370, Mexico
| | - C García-Luna
- Laboratorio de Neurofisiología Molecular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, 14370, Mexico
| | - S L Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), Calzada de los Tenorios 235, Tlalpan, CP 14330 Mexico City, Mexico
| |
Collapse
|
2
|
Islas-Preciado D, López-Rubalcava C, Estrada-Camarena E, de Gortari P, Castro-García M. Effect of chronic unpredictable stress in female Wistar-Kyoto rats subjected to progesterone withdrawal: Relevance for Premenstrual Dysphoric Disorder neurobiology. Psychoneuroendocrinology 2023; 155:106331. [PMID: 37437420 DOI: 10.1016/j.psyneuen.2023.106331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is related to an abrupt drop in progesterone and impairments in the HPA axis that cause anxiety. Suffering persons report higher daily-life stress and anxiety proneness that may contribute to developing PMDD, considered a chronic stress-related disorder. Here, we explored the effect of chronic unpredictable stress (CUS) in rats subjected to progesterone withdrawal (PW) and evaluated gene expression of HPA axis activation in the stress-vulnerable Wistar-Kyoto (WKY) rat strain that is prone to anxiety. Ovariectomized WKY rats were randomly assigned to CUS or Standard-housed conditions (SHC) for 30 days. To induce PW, animals received 2 mg/kg of progesterone on day 25th for 5 days; 24 h later, they were tested using the anxiety-like burying behavior test (BBT). After behavioral completion, rats were euthanized, and brains were extracted to measure Crh (PVN) and Nr3c1 (hippocampus) mRNA. Blood corticosterone and vasopressin levels were determined. Results showed that PW exacerbated anxiety-like behaviors through passive coping in CUS-WKY. PW decreased Crh-PVN mRNA and the Nr3c1-hippocampal mRNA expression in SHC. CUS decreased Crh-PVN mRNA compared to SHC, and no further changes were observed by PW or BBT exposure. CUS reduced Nr3c1-hippocampal gene expression compared to SHC animals, and lower Nr3c1 mRNA was detected due to BBT. The PW increased corticosterone in SHC and CUS rats; however, CUS blunted corticosterone when combined with PW+BBT and similarly occurred in vasopressin concentrations. Chronic stress blunts the response of components of the HPA axis regulation when PW and BBT (systemic and psychogenic stressors, respectively) are presented. This response may facilitate less adaptive behaviors through passive coping in stress-vulnerable subjects in a preclinical model of premenstrual anxiety.
Collapse
Affiliation(s)
- D Islas-Preciado
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados IPN (Cinvestav-IPN), Mexico
| | - E Estrada-Camarena
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| | - P de Gortari
- Lab. de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - M Castro-García
- Lab de Etología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
3
|
Cruz SL, Bowen SE. The last two decades on preclinical and clinical research on inhalant effects. Neurotoxicol Teratol 2021; 87:106999. [PMID: 34087382 DOI: 10.1016/j.ntt.2021.106999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
This paper reviews the scientific evidence generated in the last two decades on the effects and mechanisms of action of most commonly misused inhalants. In the first section, we define what inhalants are, how they are used, and their prevalence worldwide. The second section presents specific characteristics that define the main groups of inhalants: (a) organic solvents; (b) aerosols, gases, and volatile anesthetics; and (c) alkyl nitrites. We include a table with the molecular formula, structure, synonyms, uses, physicochemical properties and exposure limits of representative compounds within each group. The third and fourth sections review the direct acute and chronic effects of common inhalants on health and behavior with a summary of mechanisms of action, respectively. In the fifth section, we address inhalant intoxication signs and available treatment. The sixth section examines the health effects, intoxication, and treatment of nitrites. The seventh section reviews current intervention strategies. Finally, we propose a research agenda to promote the study of (a) solvents other than toluene; (b) inhalant mixtures; (c) effects in combination with other drugs of abuse; (d) age and (e) sex differences in inhalant effects; (f) the long-lasting behavioral effects of animals exposed in utero to inhalants; (g) abstinence signs and neurochemical changes after interrupting inhalant exposure; (h) brain networks involved in inhalant effects; and finally (i) strategies to promote recovery of inhalant users.
Collapse
Affiliation(s)
- Silvia L Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies (Cinvestav), Calzada de los Tenorios No. 235, Col. Granjas Coapa, México City 14330, México.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward Ave., Suite 7906.1, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Crossin R, Arunogiri S. Harms associated with inhalant misuse in adolescent females - a review of the pre-clinical and clinical evidence. Drug Alcohol Depend 2020; 216:108232. [PMID: 32862119 DOI: 10.1016/j.drugalcdep.2020.108232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inhalant misuse, or the misuse of products containing toluene is common in adolescents, and is associated with diverse physiological and psychological harms. Females comprise over half those who misuse inhalants in adolescence, however, the majority of the evidence has been derived from male-only or mixed-sex studies without exploration of sex differences. Female adolescence is a critical maturational period with potential for growth, reproductive, cognitive and psychological harms that may lead to long-term health consequences. We therefore summarise evidence of female-specific harms arising from inhalant misuse. METHODS We synthesised pre-clinical and clinical studies of inhalant misuse which were conducted in females, or where sex-differences were reported, into a narrative literature review. RESULTS Females experience growth impairments and metabolic dysfunction arising from inhalant misuse, but data on sex-differences are inconclusive. Inhalant misuse in early adolescence may impact menarche and subsequent reproductive capacity, but studies have predominantly focused on the effects of inhalants on offspring rather than on the exposed female. There is limited evidence of sex-differences in relation to cognitive outcomes following exposure to inhalants in pre-clinical models. Females are at an increased risk of psychological harms associated with inhalant misuse, particularly depression and suicidal behaviour. CONCLUSIONS The type and magnitude of harms associated with inhalant misuse are sex-specific, but data are limited. We recommend that both pre-clinical and clinical studies of inhalant misuse include both males and females, and should specifically test for and report sex-differences. This can be used to build an evidence base for screening and interventions tailored to females.
Collapse
Affiliation(s)
- Rose Crossin
- Department of Population Health, University of Otago Christchurch campus, 34 Gloucester Street, Christchurch, 8140, New Zealand; Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia.
| | - Shalini Arunogiri
- Central Clinical School, Monash Alfred Psychiatry Research Centre, Level 4, 607 St Kilda Road, Melbourne, Victoria, 3004, Australia; Turning Point, Eastern Health, 110 Church Street, Richmond, Melbourne, Victoria, 3121, Australia
| |
Collapse
|
5
|
Wang B, Katsube T, Begum N, Nenoi M. Revisiting the health effects of psychological stress-its influence on susceptibility to ionizing radiation: a mini-review. JOURNAL OF RADIATION RESEARCH 2016; 57:325-35. [PMID: 27242342 PMCID: PMC4973650 DOI: 10.1093/jrr/rrw035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 05/03/2023]
Abstract
Both psychological stress (PS) and ionizing radiation (IR) cause varied detrimental effects on humans. There has been no direct evidence so far showing PS alone could cause cancer; however, long-lasting PS may affect our overall health and ability to cope with cancer. Due to their living conditions and occupations, some people may encounter concurrent exposure to both PS and IR to a high extent. In addition to possible health effects resulting directly from exposure to IR on these people, fear of IR exposure is also a cause of PS. The question of whether PS would influence susceptibility to IR, radiocarcinogenesis in particular, is of great concern by both the academic world and the public. Recently, investigations using animal PS models demonstrated that PS could modulate susceptibility to IR, causing increased susceptibility to radiocarcinogenesis in Trp53-heterozygous mice, hematological toxicity in peripheral blood and elevated chromosome aberration (dicentrics) frequency in splenocytes of Trp53-wild-type mice. To actively reduce health risk from exposure to IR, further studies are needed to cumulate more evidence and provide insights into the mechanisms underlying the alterations in susceptibility due to PS modulation. This mini-review gives a general overview of the significance of PS effects on humans and experimental animals, with a special focus on summarizing the latest weight-of-evidence approaches to radiobiological studies on PS-induced alterations in susceptibility in experimental animal models. The susceptibility being investigated is mainly in the context of the impact of the modulatory effect of PS on radiocarcinogenesis; we seek to improve understanding of the combined effects of exposure to both PS and IR in order to facilitate, via active intervention, strategies for radiation risk reduction.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takanori Katsube
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Nasrin Begum
- Center for Nuclear Medicine and Ultrasound, Rajshahi Medical College Hospital Campus, G.P.O. Box No. 35, Rajshahi, Bangladesh
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Dick ALW, Simpson A, Qama A, Andrews Z, Lawrence AJ, Duncan JR. Chronic intermittent toluene inhalation in adolescent rats results in metabolic dysfunction with altered glucose homeostasis. Br J Pharmacol 2015; 172:5174-87. [PMID: 26282596 DOI: 10.1111/bph.13284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Abuse of toluene-containing inhalants is an increasing public health problem, especially among adolescents. Abuse during adolescence is associated with emaciation, while industrial exposure leads to altered glycaemic control suggesting metabolic instability. However, the relationship between adolescent inhalant abuse and metabolic dysfunction remains unknown. EXPERIMENTAL APPROACH To model human abuse patterns, we exposed male adolescent Wistar rats [postnatal day (PND) 27] to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1 h·day(-1) , three times a week for 4 weeks. Feeding and body composition were monitored. After 4 weeks, circulating metabolic hormone concentrations and responses to a glucose tolerance test (GTT) were measured. Dietary preference was measured by giving animals access to either a 'western diet' plus standard chow (WC + SC) or standard chow alone during 4 weeks of abstinence. Metabolic hormones and GTT were subsequently measured. KEY RESULTS Adolescent CIT exposure significantly retarded weight gain, altered body composition, circulating metabolic hormones and responses to a GTT. While reduced body weight persisted, responses to a GTT and circulating hormones appeared to normalize for animals on standard chow following abstinence. In CIT-exposed WC + SC rats, we observed impaired glucose tolerance associated with altered metabolic hormones. Analysis of hypothalamic genes revealed differential expression profiles in CIT-exposed rats following both the exposure period and abstinence, suggesting a central contribution to inhalant-induced metabolic dysfunction. CONCLUSION AND IMPLICATIONS CIT exposure during adolescence has long-term effects on metabolic function, which may increase the risk of disorders related to energy balance and glycaemic control.
Collapse
Affiliation(s)
- A L W Dick
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Simpson
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - A Qama
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - Z Andrews
- Department of Physiology, Monash University, Clayton, Vic., Australia
| | - A J Lawrence
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - J R Duncan
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia.,Department Anatomy and Neuroscience, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
7
|
Wang B, Tanaka K, Katsube T, Ninomiya Y, Vares G, Liu Q, Morita A, Nakajima T, Nenoi M. Chronic restraint-induced stress has little modifying effect on radiation hematopoietic toxicity in mice. JOURNAL OF RADIATION RESEARCH 2015; 56:760-7. [PMID: 26045492 PMCID: PMC4576999 DOI: 10.1093/jrr/rrv030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/01/2015] [Indexed: 05/16/2023]
Abstract
Both radiation and stresses cause detrimental effects on humans. Besides possible health effects resulting directly from radiation exposure, the nuclear plant accident is a cause of social psychological stresses. A recent study showed that chronic restraint-induced stresses (CRIS) attenuated Trp53 functions and increased carcinogenesis susceptibility of Trp53-heterozygous mice to total-body X-irradiation (TBXI), having a big impact on the academic world and a sensational effect on the public, especially the residents living in radioactively contaminated areas. It is important to investigate the possible modification effects from CRIS on radiation-induced health consequences in Trp53 wild-type (Trp53wt) animals. Prior to a carcinogenesis study, effects of TBXI on the hematopoietic system under CRIS were investigated in terms of hematological abnormality in the peripheral blood and residual damage in the bone marrow erythrocytes using a mouse restraint model. Five-week-old male Trp53wt C57BL/6J mice were restrained 6 h per day for 28 consecutive days, and TBXI (4 Gy) was given on the 8th day. Results showed that CRIS alone induced a marked decrease in the red blood cell (RBC) and the white blood cell (WBC) count, while TBXI caused significantly lower counts of RBCs, WBCs and blood platelets, and a lower concentration of hemoglobin regardless of CRIS. CRIS alone did not show any significant effect on erythrocyte proliferation and on induction of micronucleated erythrocytes, whereas TBXI markedly inhibited erythrocyte proliferation and induced a significant increase in the incidences of micronucleated erythrocytes, regardless of CRIS. These findings suggest that CRIS does not have a significant impact on radiation-induced detrimental effects on the hematopoietic system in Trp53wt mice.
Collapse
Affiliation(s)
- Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takanori Katsube
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Guillaume Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Akinori Morita
- Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
8
|
Connors EJ, Shaik AN, Migliore MM, Kentner AC. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun 2014; 42:178-90. [PMID: 25011058 DOI: 10.1016/j.bbi.2014.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022] Open
Abstract
Modest environmental enrichment (EE) is well recognized to protect and rescue the brain from the consequences of a variety of insults. Although animal models of maternal immune activation (MIA) are associated with several neurodevelopmental impairments in both the behavioral and cognitive functioning of offspring, the impact of EE in protecting or reversing these effects has not been fully evaluated. In the present study, female Sprague-Dawley rats were randomized into EE (pair-housed in a large multi-level cage with toys, tubes and ramps) or animal care control (ACC; pair-housed in standard cages) conditions. Each pair was bred, following assignment to their housing condition, and administered 100μg/kg of lipopolysaccharide (LPS) on gestational day 11. After birth, and until the end of the study, offspring were maintained in their respective housing conditions. EE protected against both the social and hypothalamic pituitary adrenal axis consequences of MIA in juvenile male rats, but surprisingly not against the spatial discrimination deficits or accompanying decrease in glutamate levels within the hippocampus (as measured via LCMS-MS). Based on these preliminary results, the mechanisms that underlie the sex-specific consequences that follow MIA appear to be dependent on environmental context. Together, this work highlights the importance of environmental complexity in the prevention of neurodevelopmental deficits following MIA.
Collapse
Affiliation(s)
- E J Connors
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States
| | - A N Shaik
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| | - M M Migliore
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| | - A C Kentner
- School of Arts & Sciences, Health Psychology Program, MCPHS University (formerly Massachusetts College of Pharmacy & Health Sciences), Boston, MA 02115, United States.
| |
Collapse
|
9
|
Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK‐3α, β and NR2B in adult offspring during fear extinction in rats. Int J Dev Neurosci 2014; 35:16-24. [PMID: 24631206 DOI: 10.1016/j.ijdevneu.2014.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/23/2014] [Accepted: 02/23/2014] [Indexed: 12/26/2022] Open
|
10
|
Cruz SL, Rivera-García MT, Woodward JJ. Review of toluene action: clinical evidence, animal studies and molecular targets. ACTA ACUST UNITED AC 2014; 3. [PMID: 25360325 DOI: 10.4303/jdar/235840] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly used drugs of abuse such as psychostimulants, alcohol and nicotine. This imbalance has begun to shift in recent years as the serious effects of abused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a representative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and pre-clinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs. This is highlighted by tables highlighting toluene's effect on behaviors (reward, motor effects, learning, etc.) and cellular proteins (e.g. voltage and ligand-gated ion channels) closely associated the actions of abused substances. These sections demonstrate not only the significant progress that has been made in understanding the neurobiological basis for solvent abuse but also reveal the challenges that remain in developing a coherent understanding of this often overlooked class of drugs of abuse.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, México, D.F., University of South Carolina, Charleston, SC
| | | | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|