1
|
Yazı Z, Alomari O, Çalışkan E, Gök TK, Altuncu E. Pathologies in a preterm infant exposed to methamphetamine in utero: Case report and literature review. Radiol Case Rep 2025; 20:2742-2750. [PMID: 40151279 PMCID: PMC11937604 DOI: 10.1016/j.radcr.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025] Open
Abstract
Methamphetamine (M-AMP) use among women of childbearing age is a growing global concern Herein we present an unusual clinical presentation in a preterm infant born to a mother who used M-AMP during pregnancy. A 26-year-old woman, with no prenatal care, presented to the emergency department with aggressive behavior and visible skin wounds led to suspicion of substance abuse. Urine analysis confirmed high levels of amphetamines (2000 ng/mL). The infant was delivered by cesarean section at 30 + 5/7 weeks, with a birth weight of 1580 grams. The infant, admitted to the NICU due to respiratory distress and prematurity, initially required nasal CPAP and exhibited transient tachypnea. Enteral feeding was initiated at 24 hours of life but was halted due to feeding intolerance. Once the baby's symptoms subsided, enteral feeding was gradually reintroduced and slowly increased. The infant successfully transitioned to full enteral feeding by the 15th postnatal day. Cranial ultrasound revealed hyperechoic areas in the right parietal lobe, and subsequent MRI showed millimetric T1 hyperintense areas, indicative of parenchymal microischemia. Preterm infants exposed to methamphetamine in utero may not show typical withdrawal symptoms. Diagnostic challenges arise from prematurity, with significant impacts on brain development and potential neurocognitive deficits.
Collapse
Affiliation(s)
- Zehra Yazı
- University of Health Sciences, Kartal Dr. Lütfi Kırdar City Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Emine Çalışkan
- University of Health Sciences, Kartal Dr. Lütfi Kırdar City Hospital, Department of Pediatric Radiology, Istanbul, Turkey
| | - Tuba Kasapbaşı Gök
- University of Health Sciences, Kartal Dr. Lütfi Kırdar City Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
| | - Emel Altuncu
- University of Health Sciences, Kartal Dr. Lütfi Kırdar City Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
| |
Collapse
|
2
|
Khodagholi F, Dezfouli MA, Yazdanfar N, Rashidi SK, Meymand AZ, Javadpour P, Mirbehbahani SH, Zare N. Prenatal Methamphetamine Exposure Impairs Helping Behaviour in Male Offspring: The Possible Role of miR-223 and NLRP3 Inflammasomes in the Amygdala. Int J Dev Neurosci 2025; 85:e10410. [PMID: 39723593 DOI: 10.1002/jdn.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing prevalence of methamphetamine abuse among women, particularly pregnant females, is a global concern. Methamphetamine can readily cross anatomical barriers like the blood-placenta barrier and cause detrimental impacts on the growing fetus. The current research evaluated the effects of prenatal methamphetamine exposure on helping behaviour and neuroinflammatory cascade in the amygdala of male offspring. On the tenth day of pregnancy, female rats received either saline or methamphetamine (5 mg/kg) until delivery. Once the offspring reached 21 days of age, the male ones were sep arated from their mothers and housed with normal male rats. An empathy-like behaviour test, which measured helping behaviour towards the cage mate, was conducted. The expression levels of miR-223-3p, NLRP3, Caspase 1, and gasdermin D (GSDMD) were evaluated in the amygdala of male offspring. Moreover, interleukin-1β (IL-1β) protein level was measured. Findings of this study revealed that male offspring exposed to methamphetamine during pregnancy had impaired helping behaviour. At the molecular level, prenatal methamphetamine exposure decreased miR-223-3p and increased inflammasome signaling by raising the levels of NLRP3, caspase-1, and GSDMD along with IL-1β levels. These findings indicate that prenatal methamphetamine exposure impairs emotional behaviour and activates inflammasome pathway in the amygdala.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayereh Zare
- Department of Anatomical Sciences and Cognitive Neurosciences, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Reyentanz E, Gerlach J, Kuitunen-Paul S, Golub Y. Systematic review: the impact of maternal pre-and postnatal cannabis use on the behavioral and emotional regulation in early childhood. Eur Child Adolesc Psychiatry 2025; 34:423-463. [PMID: 38878224 PMCID: PMC11868184 DOI: 10.1007/s00787-024-02494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 02/28/2025]
Abstract
Prenatal exposure to alcohol and tobacco has been associated with child regulatory abilities and problems, but less is known about the associations with cannabis exposure. This review seeks to address this gap primarily focusing on the effects of maternal cannabis use on the child. Thus, we investigate the association between pre- and postnatal cannabis exposure of the child and regulatory abilities and problems, as well as the underlying neurobiological mechanisms potentially mediating the associations. According to the PRISMA guidelines, a systematic literature review was performed based on a systematic literature search through Medline (PubMed), Web of Science and PsycInfo, including studies assessing children aged 0-6 years with cannabis exposure in the preconception, pre-or postnatal period (preconception, pre- and postnatal cannabis exposure [PCE]) and investigating child regulatory abilities, regulatory problems or neurobiological mechanisms. Of n = 1061 screened articles, n = 33 were finally included. Diminished regulatory abilities are more likely to be found in infants after PCE, while specific regulatory problems tend to be more frequently found after two years of age. Possible mechanisms are related to changes in methylation and expression of key genes involved in endocannabinoid, dopaminergic and opioid systems, increased cortisol reactivity and altered Secretory Immunoglobulin A levels. Furthermore, PCE has been associated with changes in brain structure and connectivity. Current findings indicate that PCE is associated with both age-dependent alterations in self-regulation and neurobiological changes in young children. However, evidence is limited due to the number of studies, small sample sizes and lack of control for maternal psychopathology. Longitudinal studies including psychometric data from mothers are needed in order to further understand the implications of PCE.Trial registration: The review is registered with PROSPERO (ID: CRD42023425115).
Collapse
Affiliation(s)
- Emely Reyentanz
- Department of Child and Adolescent Psychiatry, Carl Von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Jennifer Gerlach
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Kuitunen-Paul
- Chair of Clinical Child and Adolescent Psychology and Psychotherapy, Technische Universität Chemnitz, Chemnitz, Germany
- Chair of Clinical Psychology and Psychotherapy, Technische Universität Chemnitz, Chemnitz, Germany
- Chair of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Yulia Golub
- Department of Child and Adolescent Psychiatry, Carl Von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Kelley W, Ngo N, Dalca AV, Fischl B, Zöllei L, Hoffmann M. BOOSTING SKULL-STRIPPING PERFORMANCE FOR PEDIATRIC BRAIN IMAGES. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2024; 2024:10.1109/isbi56570.2024.10635307. [PMID: 39371473 PMCID: PMC11451993 DOI: 10.1109/isbi56570.2024.10635307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the <1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.
Collapse
Affiliation(s)
- William Kelley
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Ngo
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Kelley W, Ngo N, Dalca AV, Fischl B, Zöllei L, Hoffmann M. BOOSTING SKULL-STRIPPING PERFORMANCE FOR PEDIATRIC BRAIN IMAGES. ARXIV 2024:arXiv:2402.16634v1. [PMID: 38463507 PMCID: PMC10925384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the <1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.
Collapse
Affiliation(s)
- William Kelley
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Ngo
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Boots A, Wiegersma AM, Vali Y, van den Hof M, Langendam MW, Limpens J, Backhouse EV, Shenkin SD, Wardlaw JM, Roseboom TJ, de Rooij SR. Shaping the risk for late-life neurodegenerative disease: A systematic review on prenatal risk factors for Alzheimer's disease-related volumetric brain biomarkers. Neurosci Biobehav Rev 2023; 146:105019. [PMID: 36608918 DOI: 10.1016/j.neubiorev.2022.105019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Environmental exposures including toxins and nutrition may hamper the developing brain in utero, limiting the brain's reserve capacity and increasing the risk for Alzheimer's disease (AD). The purpose of this systematic review is to summarize all currently available evidence for the association between prenatal exposures and AD-related volumetric brain biomarkers. We systematically searched MEDLINE and Embase for studies in humans reporting on associations between prenatal exposure(s) and AD-related volumetric brain biomarkers, including whole brain volume (WBV), hippocampal volume (HV) and/or temporal lobe volume (TLV) measured with structural magnetic resonance imaging (PROSPERO; CRD42020169317). Risk of bias was assessed using the Newcastle Ottawa Scale. We identified 79 eligible studies (search date: August 30th, 2020; Ntotal=24,784; median age 10.7 years) reporting on WBV (N = 38), HV (N = 63) and/or TLV (N = 5) in exposure categories alcohol (N = 30), smoking (N = 7), illicit drugs (N = 14), mental health problems (N = 7), diet (N = 8), disease, treatment and physiology (N = 10), infections (N = 6) and environmental exposures (N = 3). Overall risk of bias was low. Prenatal exposure to alcohol, opioids, cocaine, nutrient shortage, placental dysfunction and maternal anemia was associated with smaller brain volumes. We conclude that the prenatal environment is important in shaping the risk for late-life neurodegenerative disease.
Collapse
Affiliation(s)
- A Boots
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands.
| | - A M Wiegersma
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Y Vali
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - M van den Hof
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - M W Langendam
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - J Limpens
- Amsterdam UMC location University of Amsterdam, Medical Library, Meibergdreef 9, the Netherlands
| | - E V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - S D Shenkin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Ageing and Health Research Group and Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - T J Roseboom
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
| | - S R de Rooij
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Aghazadeh R, Roshan-Milani S, Derafshpour L, Saboory E. Effects of prenatal methamphetamine exposure on spatial cognition and hippocampal synaptic plasticity in adolescent rats. Int J Dev Neurosci 2022; 82:471-485. [PMID: 35707884 DOI: 10.1002/jdn.10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Global rise in methamphetamine (MA) abuse during pregnancy has placed a large number of children at risk for the adverse consequences of prenatal methamphetamine exposure (PME). While behavioral and neurocognitive deficits of PME have been extensively studied in humans and adult rodents, far less is known regarding the sex- and dose-dependent effects of PME as well as the underlying mechanisms. Adolescence in nonhuman primates is also a less explored territory. In the present study, PME was inducted by oral treatment to pregnant rats on gestational days 15-19 with either low dose (0.1 mg/ml) or high dose (0.6 mg/ml) of MA. The cognitive effects of PME were then evaluated in two adolescence age-intervals: early adolescent (started on postnatal day [PND] 21) and mid-adolescent (started on PND 33), among male and female rat offspring using Morris water maze (MWM) test. Alterations in hippocampal synaptic plasticity in Schaffer collaterals-CA1 pathway were also measured in vitro. Results of behavioral test showed that PME led to serious deficits of learning and memory abilities in both male and female rat offspring. PME also depressed LTP in most of the PME subgroups. Moreover, 21-day-old rats were more sensitive to PME-induced cognitive impairment in MWM tasks, but not in hippocampal synaptic plasticity, than 33-day-old rats. No sex-dependent effects of PME were found on the cognitive function and synaptic plasticity. These findings confirmed that PME impacted negatively on cognitive performance in prepubertal male and female rats, and the impairment of hippocampal synaptic functions might partly play a significant role in these effects.
Collapse
Affiliation(s)
- Razieh Aghazadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of addiction studies, School of medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Kunkler C, Lewis AJ, Almeida R. Methamphetamine exposure during pregnancy: A meta-analysis of child developmental outcomes. Neurosci Biobehav Rev 2022; 138:104714. [PMID: 35661684 DOI: 10.1016/j.neubiorev.2022.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
This paper examines developmental outcomes for children prenatally exposed to methamphetamine through maternal use. PSYCHINFO, Scopus, PubMed and ERIC databases were systematically searched for studies up to December 2020. The search identified 38 articles examining cognitive, language, motor and neuroanatomical outcomes in children from birth to 16 years. Study quality was appraised using the Newcastle Ottawa Quality Assessment Scale. Findings from neuroanatomical studies suggested that prenatal methamphetamine exposure may alter whole brain microstructure and reduce subcortical volumes across multiple brain regions. Meta-analysis of 14 studies using a random-effects model revealed associations between exposure and poorer intellectual functioning (Cohen's d = 0.89, 95 % CI: 0.47-1.30), problem solving skills (Cohen's d = 0.82, 95 % CI: 0.07 -1.56), short-term memory (Cohen's d = 0.91, 95 % CI: 0.38-1.43), and language development (Cohen's d = 0.74, 95 % CI: 0.30-1.18). These results emphasise the significant impact of intrauterine methamphetamine exposure across multiple areas of child development, noting that limited total sample size, heterogeneity between studies and control for confounds suggested further studies are required. There is a need for further intervention studies to identify effective prevention and harm minimisation approaches.
Collapse
Affiliation(s)
| | - Andrew J Lewis
- School of Psychology, Murdoch University, Australia; Perinatal Mental Health Unit, Level 2, Harry Perkins Institute of Medical Research, 11 Robin Warren Drive, MURDOCH WA 6150.
| | | |
Collapse
|
9
|
Perez FA, Blythe S, Wouldes T, McNamara K, Black KI, Oei JL. Prenatal methamphetamine-impact on the mother and child-a review. Addiction 2022; 117:250-260. [PMID: 33830539 DOI: 10.1111/add.15509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
Methamphetamine (MA) is the second most commonly used illicit drug in the world, after cannabis. There are limited data on the outcomes of pregnant MA users but there is rapidly emerging evidence to suggest that they are more vulnerable, marginalized and impoverished compared with other drug-using mothers. MA use during pregnancy is associated with worse pregnancy outcomes and significantly higher rates of co-existing health and psychosocial problems. Newborn infants exposed to MA are at increased risk of perinatal complications, present differently at birth to infants exposed to other drugs of dependency such as opioids and have poorer neurological adaptation and feeding difficulties. Sparse literature from neuroimaging and cohort studies suggests that the neurocognitive deficits in MA exposed children persist, even into adulthood. Current clinical practice guidelines for the care of substance exposed pregnant women are opioid-centric with little attention paid to the consequences of prenatal MA exposure.
Collapse
Affiliation(s)
- Fatima Anne Perez
- Department of Newborn Care, The Royal Hospital for Women, Randwick, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Stacy Blythe
- School of Nursing and Midwifery, Western Sydney University.,Ingham Institute, Liverpool, Australia
| | - Trecia Wouldes
- School of Medicine, Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | - Kelly McNamara
- Faculty of Medicine and Health, University of Sydney, Sidney, Australia.,School of Women's and Children's Health, University of New SouthWales, Sidney, Australia
| | - Kirsten I Black
- Faculty of Medicine and Health, University of Sydney, Sidney, Australia
| | - Ju Lee Oei
- Department of Newborn Care, The Royal Hospital for Women, Randwick, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Australia
| |
Collapse
|
10
|
Ayed M, Embaireeg A, Ayed A. A Full-term Infant with Seizures. Neoreviews 2021; 22:e696-e698. [PMID: 34599068 DOI: 10.1542/neo.22-10-e696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mariam Ayed
- Neonatal Department, Farwaniya Hospital, Kuwait City, Kuwait
| | - Alia Embaireeg
- Neonatal Department, Farwaniya Hospital, Kuwait City, Kuwait
| | - Amal Ayed
- Fetal Medicine Unit, Obstetrics and Gynecology Department, Farwaniya Hospital, Kuwait City, Kuwait
| |
Collapse
|
11
|
Sanjari Moghaddam H, Mobarak Abadi M, Dolatshahi M, Bayani Ershadi S, Abbasi-Feijani F, Rezaei S, Cattarinussi G, Aarabi MH. Effects of Prenatal Methamphetamine Exposure on the Developing Human Brain: A Systematic Review of Neuroimaging Studies. ACS Chem Neurosci 2021; 12:2729-2748. [PMID: 34297546 PMCID: PMC8763371 DOI: 10.1021/acschemneuro.1c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
![]()
Methamphetamine
(MA) can cross the placenta in pregnant women and
cause placental abruption and developmental alterations in offspring.
Previous studies have found prenatal MA exposure effects on the social
and cognitive performance of children. Recent studies reported some
alterations in structural and functional magnetic resonance imaging
(MRI) of prenatal MA-exposed offspring. In this study, we aimed to
investigate the effect of prenatal MA exposure on brain development
using recently published structural, metabolic, and functional MRI
studies. According to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed
and SCOPUS databases for articles that used each brain imaging modality
in prenatal MA-exposed children. Seventeen studies were included in
this study. We investigated brain imaging alterations using 17 articles
with four different modalities, including structural MRI, diffusion
tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and functional
MRI (fMRI). The participants’ age range was from infancy to
15 years. Our findings demonstrated that prenatal MA exposure is associated
with macrostructural, microstructural, metabolic, and functional deficits
in both cortical and subcortical areas. However, the most affected
regions were the striatum, frontal lobe, thalamus and the limbic system,
and white matter (WM) fibers connecting these regions. The findings
from our study might have valuable implications for targeted treatment
of neurocognitive and behavioral deficits in children with prenatal
MA exposure. Even so, our results should be interpreted cautiously
due to the heterogeneity of the included studies in terms of study
populations and methods of analysis.
Collapse
Affiliation(s)
| | | | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Rezaei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Warton FL, Molteno CD, Warton CMR, Wintermark P, Lindinger NM, Dodge NC, Zöllei L, van der Kouwe AJW, Carter RC, Jacobson JL, Jacobson SW, Meintjes EM. Maternal choline supplementation mitigates alcohol exposure effects on neonatal brain volumes. Alcohol Clin Exp Res 2021; 45:1762-1774. [PMID: 34342017 DOI: 10.1111/acer.14672] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double-blind, placebo-controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE-related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory. METHODS Fifty-two infants born to heavy-drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi-echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline-related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII. RESULTS Usable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (β ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory. CONCLUSIONS High-dose choline supplementation during pregnancy mitigated PAE-related regional volume reductions, with larger volumes associated with improved 12-month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE-related brain structural deficits in humans.
Collapse
Affiliation(s)
- Fleur L Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biomedical Engineering Research Centre, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M R Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pia Wintermark
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Nadine M Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Andre J W van der Kouwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - R Colin Carter
- Division of Pediatric Emergency Medicine, Columbia University Medical Center, New York, New York, USA
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biomedical Engineering Research Centre, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Zhang Y, Gong F, Liu P, He Y, Wang H. Effects of prenatal methamphetamine exposure on birth outcomes, brain structure, and neurodevelopmental outcomes. Dev Neurosci 2021; 43:271-280. [PMID: 34139695 DOI: 10.1159/000517753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- NHC Key Laboratory of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fuhua Gong
- Department of Geriatrics Neurology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Department of Geriatrics Neurology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ya He
- Department of Geriatrics Neurology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Amgalan A, Andescavage N, Limperopoulos C. Prenatal origins of neuropsychiatric diseases. Acta Paediatr 2021; 110:1741-1749. [PMID: 33475192 DOI: 10.1111/apa.15766] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
AIM The main objective is to review the available evidence in the literature for developmental origins of neuropsychiatric diseases and their underlying mechanisms. We also probe emerging cutting-edge prenatal MR imaging tools and their future role in advancing our understanding the prenatal footprints of neuropsychiatric disorders. OBSERVATIONS Both human and animal studies support early intrauterine origins of neuropsychiatric disease, particularly autism spectrum disorders (ASD), attention and hyperactivity disorders, schizophrenia, depression, anxiety and mood disorders. Specific mechanisms of intrauterine injury include infection, inflammation, hypoxia, hypoperfusion, ischaemia polysubstance use/abuse, maternal mental health and placental dysfunction. CONCLUSIONS AND RELEVANCE There is ample evidence to suggest developmental vulnerability of the foetal brain to intrauterine exposures that increases and individual's risk for neuropsychiatric disease, especially the risk of ASD, depression and anxiety. Elucidating the exact timing and mechanisms of injury can be difficult and require novel, non-invasive approaches to the study emerging structural and functional brain development of the foetus. Clinical care should both emphasise maternal health during pregnancy, as well as close, continued monitoring for at risk offspring throughout young adulthood for the early identification and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
| | - Nickie Andescavage
- Division of Neonatology Children’s National Health System Washington DC USA
- Department of Pediatrics George Washington University School of Medicine Washington DC USA
| | - Catherine Limperopoulos
- Department of Pediatrics George Washington University School of Medicine Washington DC USA
- Division of Diagnostic Imaging & Radiology Children’s National Health System Washington DC USA
- Department of Radiology George Washington University School of Medicine Washington DC USA
| |
Collapse
|
15
|
Radhakrishnan R, Grecco G, Stolze K, Atwood B, Jennings SG, Lien IZ, Saykin AJ, Sadhasivam S. Neuroimaging in infants with prenatal opioid exposure: Current evidence, recent developments and targets for future research. J Neuroradiol 2021; 48:112-120. [PMID: 33065196 PMCID: PMC7979441 DOI: 10.1016/j.neurad.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Prenatal opioid exposure (POE) has shown to be a risk factor for adverse long-term cognitive and behavioral outcomes in offspring. However, the neural mechanisms of these outcomes remain poorly understood. While preclinical and human studies suggest that these outcomes may be due to opioid-mediated changes in the fetal and early postnatal brain, other maternal, social, and environmental factors are also shown to play a role. Recent neuroimaging studies reveal brain alterations in children with POE. Early neuroimaging and novel methodology could provide an in vivo mechanistic understanding of opioid mediated alterations in developing brain. However, this is an area of ongoing research. In this review we explore recent imaging developments in POE, with emphasis on the neonatal and infant brain, and highlight some of the challenges of imaging the developing brain in this population. We also highlight evidence from animal models and imaging in older children and youth to understand areas where future research may be targeted in infants with POE.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Gregory Grecco
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Brady Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samuel G Jennings
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Izlin Z Lien
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
16
|
Warton FL, Taylor PA, Warton CMR, Molteno CD, Wintermark P, Zöllei L, van der Kouwe AJ, Jacobson JL, Jacobson SW, Meintjes EM. Reduced fractional anisotropy in projection, association, and commissural fiber networks in neonates with prenatal methamphetamine exposure. Dev Neurobiol 2020; 80:381-398. [PMID: 33010114 PMCID: PMC7855045 DOI: 10.1002/dneu.22784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022]
Abstract
Prenatal exposure to methamphetamine is associated with neurostructural changes, including alterations in white matter microstructure. This study investigated the effects of methamphetamine exposure on microstructure of global white matter networks in neonates. Pregnant women were interviewed beginning in mid-pregnancy regarding their methamphetamine use. Diffusion weighted imaging sets were acquired for 23 non-sedated neonates. White matter bundles associated with pairs of target regions within five networks (commissural fibers, left and right projection fibers, and left and right association fibers) were estimated using probabilistic tractography, and fractional anisotropy (FA) and diffusion measures determined within each connection. Multiple regression analyses showed that increasing methamphetamine exposure was significantly associated with reduced FA in all five networks, after control for potential confounders. Increased exposure was associated with lower axial diffusivity in the right association fiber network and with increased radial diffusivity in the right projection and left and right association fiber networks. Within the projection and association networks a subset of individual connections showed a negative correlation between FA and methamphetamine exposure. These findings are consistent with previous reports in older children and demonstrate that microstructural changes associated with methamphetamine exposure are already detectable in neonates.
Collapse
Affiliation(s)
- Fleur L Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul A Taylor
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- African Institute for Mathematical Sciences, Muizenberg, South Africa
- Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, MA, USA
| | - Christopher M R Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pia Wintermark
- Department of Pediatrics, McGill University, Montreal Children's Hospital, Montreal, QC, Canada
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Andre J van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Roos A, Fouche JP, du Toit S, du Plessis S, Stein DJ, Donald KA. Structural brain network development in children following prenatal methamphetamine exposure. J Comp Neurol 2020; 528:1856-1863. [PMID: 31953852 DOI: 10.1002/cne.24858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Brain imaging studies in children with prenatal methamphetamine exposure (PME) suggest structural and functional alterations of striatal, frontal, parietal, and limbic regions. However, no longitudinal studies have investigated changes in structural connectivity during the first 2 years of formal schooling. The aim of this study was to explore the effects of PME on structural connectivity of brain networks in children over the critical first 2 years of formal schooling when foundational learning takes place. Networks are expected to gradually increase in global connectedness while segregating into defined systems. Graph theoretical analysis was used to investigate changes in structural connectivity at age 6 and 8 years in children with and without PME. While healthy control children showed increased connectivity in frontal and limbic hubs over time, children with PME showed increased connectivity in the superior parietal cortex and striatum in their global network. Furthermore, compared to control children, those with PME were characterized by less change in segregation of structural networks over time. These findings are consistent with previous work on regions implicated in children with PME, but they additionally demonstrate alterations in structural connectivity between regions that underlie primary cognitive, behavioral, and emotional development. Understanding patterns of network development during critical periods in at-risk children may inform strategies for supporting this group of children in these developmental tasks important for lifelong brain health and development.
Collapse
Affiliation(s)
- Annerine Roos
- Department Psychiatry, SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Division of Developmental Pediatrics, Red Cross War Memorial Children's Hospital and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Stefani du Toit
- Department Psychiatry, SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Division of Developmental Pediatrics, Red Cross War Memorial Children's Hospital and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Passera S, Contarino V, Scarfone G, Scola E, Fontana C, Peccatori F, Cinnante C, Counsell S, Ossola M, Pisoni S, Pesenti N, Grossi E, Amant F, Mosca F, Triulzi F, Fumagalli M. Effects of in-utero exposure to chemotherapy on fetal brain growth. Int J Gynecol Cancer 2019; 29:1195-1202. [PMID: 31395614 DOI: 10.1136/ijgc-2019-000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Children exposed to chemotherapy in the prenatal period demonstrate normal neurocognitive development at 3 years but concerns regarding fetal brain growth remain high considering its vulnerability to external stimuli. Our aim was to evaluate the impact of in-utero chemotherapy exposure on brain growth and its effects on neurodevelopmental outcome. METHODS The protocol was approved by the local ethics committee. Brain regional volumes at term postmenstrual age were measured by MRI in children exposed to in-utero chemotherapy and compared with normal MRI controls. Brain segmentation was performed by Advanced Normalization Tools (ANTs)-based transformations of the Neonatal Brain Atlas (ALBERT). Neurodevelopmental assessment (Bayley-III scales) was performed at 18 months corrected age in both exposed infants and in a group of healthy controls. Multiple linear regressions and false discovery rate correction for multiple comparisons were performed. RESULTS Twenty-one newborns prenatally exposed to chemotherapy (epirubicin administered in 81% of mothers) were enrolled in the study: the mean gestational age was 36.4±2.4 weeks and the mean birthweight was 2,753±622 g. Brain MRI was performed at mean postmenstrual age of 41.1±1.4 weeks. No statistically significant differences were identified between the children exposed to chemotherapy and controls in both the total (398±55 cm3 vs 427±56 cm3, respectively) and regional brain volumes. Exposed children showed normal Bayley-III scores (cognitive 110.2±14.5, language 99.1±11.3, and motor 102.6±7.3), and no significant correlation was identified between the brain volumes and neurodevelopmental outcome. CONCLUSION Prenatal exposure to anthracycline/cyclophosphamide-based chemotherapy does not impact fetal brain growth, thus supporting the idea that oncological treatment in pregnant women seems to be feasible and safe for the fetus.
Collapse
Affiliation(s)
| | - Valeria Contarino
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Scarfone
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Obstetrics and Gynecology, University of Milan, Milan, Italy
| | - Elisa Scola
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Fedro Peccatori
- Fertility and Procreation Unit, Gynecologic Oncology Programme, European Institute of Oncology, Milan, Italy
| | - Claudia Cinnante
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Counsell
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College, London, UK
| | - Maneula Ossola
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Pisoni
- Neonatology Unit, Mother and Child Department, Del Ponte Hospital, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
| | - Nicola Pesenti
- Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Elena Grossi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Obstetrics and Gynecology, University of Milan, Milan, Italy
| | - Frédéric Amant
- Centre for Gynaecologic Oncology Amsterdam, Antoni van Leeuwenhoek-Netherlands Cancer Institute, and Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Department of Oncology, Katholieke Universiteit Leuven, Loeven, Belgium
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Monica Fumagalli
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Serpa BJ, Bullard JD, Mendiola VC, Smith CJ, Stewart B, Ganser LR. D-Amphetamine Exposure Differentially Disrupts Signaling Across Ontogeny in the Zebrafish. Bioelectricity 2019; 1:85-104. [PMID: 32292892 PMCID: PMC6595799 DOI: 10.1089/bioe.2019.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Prescriptive and illicit amphetamine (AMPH) use continues to increase along with the likelihood that during an individual's lifetime, the drug deleteriously influences the growth and connectivity of behavior circuits necessary for survival. Throughout ontogeny, neural circuits underlying these behaviors grow in complexity, gradually integrating many sensory inputs that trigger higher order coordinated motor responses. In the present study, we examine how AMPH disrupts the establishment of these circuits at critical neurodevelopmental periods, as well as the communication among established survival circuits. Materials and Methods: Zebrafish embryos (from 1 hpf) were raised in AMPH solutions, growth parameters and escape behavior were assessed at 24 and 48 hpf, and spinal cord tissues analyzed for differences in excitatory-inhibitory signaling balance among treatments. Adult fish were fed an acute dosage of AMPH over an 11-day conditioned place preference (PP) paradigm during which behaviors were recorded and brain tissues analyzed for alterations in dopaminergic signaling. Results: AMPH negatively affects embryonic growth and slows the execution of escape behavior, suggesting an imbalance in locomotor signaling. Although local spinal circuits provide primary escape modulation, no differences in inhibitory glycinergic, and excitatory glutamatergic signaling were measured among spinal neurons. AMPH also influenced place preference in adult zebrafish and resulted in the increased expression of dopamine signaling proteins (DRD1) in brain areas governing survival behaviors.
Collapse
Affiliation(s)
- Bradley J. Serpa
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Jennifer D. Bullard
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Victoria C. Mendiola
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Crystal J. Smith
- Medical University of South Carolina, Charleston, South Carolina
| | - Brandon Stewart
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Lisa R. Ganser
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| |
Collapse
|
20
|
Tsai SY, Bendriem RM, Lee CTD. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol Stress 2019; 10:100145. [PMID: 30937351 PMCID: PMC6430408 DOI: 10.1016/j.ynstr.2018.100145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/02/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Prenatal substance exposure is a growing public health concern worldwide. Although the opioid crisis remains one of the most prevalent addiction problems in our society, abuse of cocaine, methamphetamines, and other illicit drugs, particularly amongst pregnant women, are nonetheless significant and widespread. Evidence demonstrates prenatal drug exposure can affect fetal brain development and thus can have long-lasting impact on neurobehavioral and cognitive performance later in life. In this review, we highlight research examining the most prevalent drugs of abuse and their effects on brain development with a focus on endoplasmic reticulum stress and oxidative stress signaling pathways. A thorough exploration of drug-induced cellular stress mechanisms during prenatal brain development may provide insight into therapeutic interventions to combat effects of prenatal drug exposure.
Collapse
Affiliation(s)
- S-Y.A. Tsai
- Integrative Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, The National Institute of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chun-Ting D. Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|