1
|
Fischer M, Wolf R, Hannemann R, Braunbeck T. Generalized additive modeling as a tool for the analysis of the time course of tail coiling behavior in zebrafish (Danio rerio) embryos - A proof-of-concept study with nicotine, a known developmental neurotoxicant. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107373. [PMID: 40288008 DOI: 10.1016/j.aquatox.2025.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
The early detectable tail coiling behavior of zebrafish (Danio rerio) embryos is receiving increasing attention in the context of (developmental) neurotoxicity testing and may be used as a rapid screening tool for compounds with unknown or suspected neurotoxic potential. The observation of this behavior over a longer period of time already offered advantages such as the possibility of detecting effects that only occur after a few hours of development. The two major parameters, duration and frequency of coiling, allow a detailed characterization of the movements. However, this approach usually leads to complex data sets, which are often heavily simplified to allow for simpler analysis of the effects on an hourly basis. In this study, the suitability of generalized additive modeling (GAM) for the analysis of coiling behavior was tested in order to obtain an integrated impression of the trends in movement patterns. To this end, nicotine, a known potent developmental neurotoxicant, was used in a proof-of-concept study. The main advantage of GAM for biological data lies in the relaxation of assumptions, such as effect monotony, data distribution and homogeneity of variances and is, therefore, more flexible in describing different trends over time. The possibility to consider replicates and individuals as additional sources of (biological) variance is a further benefit, as highly variable data are common in behavioral studies. Here, the modeling approach demonstrates a monotone reduction of movement duration as a direct consequence of nicotine exposure. Additional pathomorphological studies revealed structural damage in secondary motoneurons and skeletal muscles as potential underlying mechanisms of changes in movement patterns. The GAM proved well-suited to illustrate and analyze complex non-linear behavioral data with high natural variability. The model also allows to reliably extract no observed effect (NOEC) and lowest observed effect concentrations (LOEC) from complex data sets, which may be of relevance in a regulatory context.
Collapse
Affiliation(s)
- Maria Fischer
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany.
| | - Raoul Wolf
- NGI Norwegian Geotechnical Institute, Sandakerveien 140, N-0484 Oslo, Norway
| | - Robin Hannemann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Coppola L, Lori G, Tait S, Sogorb MA, Estevan C. Evaluation of developmental toxicity of chlorpyrifos through new approach methodologies: a systematic review. Arch Toxicol 2025; 99:935-981. [PMID: 39869190 PMCID: PMC11821739 DOI: 10.1007/s00204-024-03945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models. The comparison of the collected evidence with available adverse outcome pathways allows us to conclude that adverse outcomes observed in animals, such as memory and learning impairments as well as reduction in cognitive function, could involve several mechanisms of action including inhibition of acetylcholinesterase, overactivation of glutamate receptors and activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, followed by both disruption of neurotransmitter release and increase in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- L Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - G Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - M A Sogorb
- Bioengineering Institute, Miguel Hernández de Elche University, Elche, Spain
| | - C Estevan
- Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
| |
Collapse
|
3
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
4
|
Audira G, Lee JS, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD. Assessments of carbon nanotubes toxicities in zebrafish larvae using multiple physiological and molecular endpoints. Chem Biol Interact 2024; 392:110925. [PMID: 38452846 DOI: 10.1016/j.cbi.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 900391, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
5
|
Sampaio CF, Gravato C, de Oliveira DP, Dorta DJ. Deleterious effects of benzotriazoles on zebrafish development and neurotransmission: 5-Chloro-benzotriazole versus 1H-benzotriazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168741. [PMID: 38040350 DOI: 10.1016/j.scitotenv.2023.168741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
Benzotriazoles are heterocyclic compounds typically presenting a benzene ring fused with a triazole molecule. The industry uses these compounds as anti-corrosion agents and recently, they have been employed in the pharmaceutical industry and in detergent formulations. Benzotriazoles persist in the environment, and water treatment plants cannot degrade them completely. Consequently, these compounds have been detected in rivers, lakes, and drinking water, which makes assessing their safety for the human and aquatic animal populations crucial. Here, we have evaluated and compared how exposure to 1H-benzotriazole or 5-chloro-benzotriazole affect the zebrafish embryo-larval stages. We have determined the acute toxicity, morphometric alterations, and acetylcholinesterase activity on zebrafish embryos, as well as behavioral endpoints using the tail coiling assay. The estimated LC50 of 5-chloro-benzotriazole was 19 mg/L, whereas 1H-benzotriazole caused no mortality. The zebrafish embryos exposed to 20 and 25 mg/L 5-chloro-benzotriazole had decreased hatching rate and exhibited pericardial and yolk sac edemas. Furthermore, the embryo length and eye area were decreased, in contrast with an increased yolk sac after exposure to 20 mg/L 5-chloro-benzotriazole. In turn, 1H-benzotriazole also decreased the eye area of zebrafish embryos, but no other significant morphological alterations were observed. The tail coiling assay showed that the zebrafish embryos increased the percentage of time moving and the number of embryonic movements per minute after exposure to 1H-benzotriazole (15 mg/L) or 5-chloro-benzotriazole (20 and 25 mg/L), indicating that these compounds were potentially neurotoxic. However, acetylcholinesterase activity was not significantly altered in embryos exposed to 1H-benzotriazole, but significantly decreased when exposed to 0.05 mg/L 5-chloro benzotriazole confirming its neurotoxicity at a much lower concentration. Our findings showed that 5-chloro-benzotriazole seems to induce more harmful alterations to zebrafish embryos than 1H-benzotriazole. Nevertheless, 1H-benzotriazole seems to induce a direct effect on eye development for concentrations lower than the ones of 5-chloro-benzotriazole affecting zebrafish embryos.
Collapse
Affiliation(s)
- Carolina Ferreira Sampaio
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre Ribeirao Preto, SP CEP 14040901, Brazil
| | - Carlos Gravato
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre Ribeirao Preto, SP CEP 14040901, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Daniel Junqueira Dorta
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
7
|
de Oliveira AÁS, Vieira LC, Dreossi SC, Dorta DJ, Gravato C, da Silva Ferreira ME, Oliveira DPD. Integrating morphological, biochemical, behavioural, and molecular approaches to investigate developmental toxicity triggered by tebuthiuron in zebrafish (Danio rerio). CHEMOSPHERE 2023; 340:139894. [PMID: 37607599 DOI: 10.1016/j.chemosphere.2023.139894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 μg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding - after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2-20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.
Collapse
Affiliation(s)
| | - Luiz Carlos Vieira
- Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Sônia Carvalho Dreossi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14800-060, Araraquara, Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14800-060, Araraquara, Brazil
| |
Collapse
|
8
|
von Hellfeld R, Gade C, Baumann L, Leist M, Braunbeck T. The sensitivity of the zebrafish embryo coiling assay for the detection of neurotoxicity by compounds with diverse modes of action. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27662-2. [PMID: 37213015 DOI: 10.1007/s11356-023-27662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the aim to determine neurotoxicity, new methods are being validated, including tests and test batteries comprising in vitro and in vivo approaches. Alternative test models such as the zebrafish (Danio rerio) embryo have received increasing attention, with minor modifications of the fish embryo toxicity test (FET; OECD TG 236) as a tool to assess behavioral endpoints related to neurotoxicity during early developmental stages. The spontaneous tail movement assay, also known as coiling assay, assesses the development of random movement into complex behavioral patterns and has proven sensitive to acetylcholine esterase inhibitors at sublethal concentrations. The present study explored the sensitivity of the assay to neurotoxicants with other modes of action (MoAs). Here, five compounds with diverse MoAs were tested at sublethal concentrations: acrylamide, carbaryl, hexachlorophene, ibuprofen, and rotenone. While carbaryl, hexachlorophene, and rotenone consistently induced severe behavioral alterations by ~ 30 h post fertilization (hpf), acrylamide and ibuprofen expressed time- and/or concentration-dependent effects. At 37-38 hpf, additional observations revealed behavioral changes during dark phases with a strict concentration-dependency. The study documented the applicability of the coiling assay to MoA-dependent behavioral alterations at sublethal concentrations, underlining its potential as a component of a neurotoxicity test battery.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK.
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK.
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
- Faculty of Science, Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amersterdam, Netherlands
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitätsstraße 10, 78464, Constance, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
11
|
Santiago MR, Salvo LM, Badaró-Pedroso C, Costa EMF. Single and mixed exposure to distinct groups of pesticides suggests endocrine disrupting properties of imidacloprid in zebrafish embryos. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:217-228. [PMID: 36861322 DOI: 10.1080/03601234.2023.2184158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.
Collapse
Affiliation(s)
- Magda Regina Santiago
- Center of Research and Development of Environmental Protection of the Biological Institute, APTA, São Paulo, Brazil
| | - Lígia Maria Salvo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Elaine Maria Frade Costa
- Chief of Developmental Endocrinology Unit, Clinicas' Hospital University of Sao Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
12
|
von Wyl M, Könemann S, Vom Berg C. Different developmental insecticide exposure windows trigger distinct locomotor phenotypes in the early life stages of zebrafish. CHEMOSPHERE 2023; 317:137874. [PMID: 36646183 DOI: 10.1016/j.chemosphere.2023.137874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Due to their extensive use and high biological activity, insecticides largely contribute to loss of biodiversity and environmental pollution. The regulation of insecticides by authorities is mainly focused on lethal concentrations. However, sub-lethal effects such as alterations in behavior and neurodevelopment can significantly affect the fitness of individual fish and their population dynamics and therefore deserve consideration. Moreover, it is important to understand the impact of exposure timing during development, about which there is currently a lack of relevant knowledge. Here, we investigated whether there are periods during neurodevelopment of fish, which are particularly vulnerable to insecticide exposure. Therefore, we exposed zebrafish embryos to six different insecticides with cholinergic mode of action for 24 h during different periods of neurodevelopment and measured locomotor output using an age-matched behavior assay. We used the organophosphates diazinon and dimethoate, the carbamates pirimicarb and methomyl as well as the neonicotinoids thiacloprid and imidacloprid because they are abundant in the environment and cholinergic signaling plays a major role during key processes of neurodevelopment. We found that early embryonic motor behaviors, as measured by spontaneous tail coiling, increased upon exposure to most insecticides, while later movements, measured through touch-evoked response and a light-dark transition assay, rather decreased for the same insecticides and exposure duration. Moreover, the observed effects were more pronounced when exposure windows were temporally closer to the performing of the respective behavioral assay. However, the measured behavioral effects recovered after a short period, indicating that none of the exposure windows chosen here are particularly critical, but rather that insecticides acutely interfere with neuronal function at all stages as long as they are present. Overall, our results contribute to a better understanding of risks posed by cholinergic insecticides to fish and provide an important basis for the development of safe regulations to improve environmental health.
Collapse
Affiliation(s)
- Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| |
Collapse
|
13
|
Rabezanahary ANA, Piette M, Missawi O, Garigliany MM, Kestemont P, Cornet V. Microplastics alter development, behavior, and innate immunity responses following bacterial infection during zebrafish embryo-larval development. CHEMOSPHERE 2023; 311:136969. [PMID: 36306963 DOI: 10.1016/j.chemosphere.2022.136969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Although the hazards of microplastics (MPs) have been explored, no complete data exists on the effect of MPs on the egg chorion. This study aims to evaluate the modification of immune responses, metabolism, and behavior of zebrafish larvae (Danio rerio) depending on the moment of exposure. Larvae were exposed to 5 μm polystyrene microbeads at a concentration of 0, 100, or 1000 μg/l, according to a specified times of exposure (0-4, 4-8, 0-8 days postfertilization (dpf)), followed by a bacterial challenge at 8 dpf. After every 4 and 8 dpf, swimming activity, gene expression related to oxidative stress and immune system responses were assessed. During embryonic development, larvae exposed to a concentration of 1000 μg/l MPs already showed a significantly reduced tail coiling frequency, yolk sac resorption and heartbeat. At 8 dpf, swimming activity was altered, even without ingestion and a few days after the end of MP exposure. Our results indicated a difference in immune system (nfkb, il1β) and apoptosis (casp3a, bcl2) related gene expression depending on the timing of MP exposure, which highlighted a contrasting sensitivity according to the exposure time in MP studies. This study brings new insight into how MPs might affect zebrafish larvae health and development even without ingestion.
Collapse
Affiliation(s)
- Andry Ny Aina Rabezanahary
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mathilde Piette
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Omayma Missawi
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mutien-Marie Garigliany
- University of Liège, Laboratory of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Liège, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Valérie Cornet
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium.
| |
Collapse
|
14
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Huang W, Xiao J, Shi X, Zheng S, Li H, Liu C, Wu K. Effects of di-(2-ethylhexyl) phthalate (DEHP) on behavior and dopamine signaling in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103885. [PMID: 35595013 DOI: 10.1016/j.etap.2022.103885] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, also known as a developmental toxicant, but its neurobehavioral toxicity remains elusive. This study evaluated the neurobehavioral toxicity and its possible mechanism in larval zebrafish. Embryos at gastrula period (~6 h post fertilization, hpf) were exposure to DEHP (0, 1, 2.5, 5 and 10 mg/L) for 7 days. Spontaneous tail movement in embryos and swimming activity in larvae were monitored. Alterations in the mRNA expression of genes involved in dopamine signaling and apoptosis pathway were assessed. In situ apoptotic cells were assessed by Acridine orange staining, and oxidative damage were measured using enzymatic assay. The behavior results showed that DEHP inhibited spontaneous tail movement and decreased locomotor activities in the light/dark behavioral test. Meanwhile, behavioral changes were accompanied by increased apoptosis and malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) activity and dopamine (DA) content, and perturbed the expression of genes associated with the synthesis (th), reuptake (dat) and metabolism (mao) of DA, with dopamine receptors (DRs), and with the apoptosis pathway (p53, bax, bcl2, caspase-3, caspase-8, caspase-9). The findings will help to illuminate the possible neurobehavioral toxicity mechanisms of organism exposure to DEHP.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Haiyi Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| |
Collapse
|
16
|
Grouping of chemicals into mode of action classes by automated effect pattern analysis using the zebrafish embryo toxicity test. Arch Toxicol 2022; 96:1353-1369. [PMID: 35254489 PMCID: PMC9013687 DOI: 10.1007/s00204-022-03253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
A central element of high throughput screens for chemical effect assessment using zebrafish is the assessment and quantification of phenotypic changes. By application of an automated and more unbiased analysis of these changes using image analysis, patterns of phenotypes may be associated with the mode of action (MoA) of the exposure chemical. The aim of our study was to explore to what extent compounds can be grouped according to their anticipated toxicological or pharmacological mode of action using an automated quantitative multi-endpoint zebrafish test. Chemical-response signatures for 30 endpoints, covering phenotypic and functional features, were generated for 25 chemicals assigned to 8 broad MoA classes. Unsupervised clustering of the profiling data demonstrated that chemicals were partially grouped by their main MoA. Analysis with a supervised clustering technique such as a partial least squares discriminant analysis (PLS-DA) allowed to identify markers with a strong potential to discriminate between MoAs such as mandibular arch malformation observed for compounds interfering with retinoic acid signaling. The capacity for discriminating MoAs was also benchmarked to an available battery of in vitro toxicity data obtained from ToxCast library indicating a partially similar performance. Further, we discussed to which extent the collected dataset indicated indeed differences for compounds with presumably similar MoA or whether other factors such as toxicokinetic differences could have an important impact on the determined response patterns.
Collapse
|
17
|
Jablonski CA, Pereira TCB, Teodoro LDS, Altenhofen S, Rübensam G, Bonan CD, Bogo MR. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 89:107058. [PMID: 34942342 DOI: 10.1016/j.ntt.2021.107058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
The use of pesticides has continue grown over recent years, leading to several environmental and health concerns, such as the contamination of surface and groundwater resources and associated biota, potentially affecting populations that are not primary targets of these complex chemical mixtures. In this work, we investigate lethal and sublethal effects of acute exposure of methomyl commercial formulation in zebrafish embryo and larvae. Methomyl is a broad-spectrum carbamate insecticide and acaricide that acts primarily in acetylcholinesterase inhibition (AChE). Methomyl formulation 96 h-LC50 was determined through the Fish Embryo Acute Toxicity Test (FET) and resulted in 1.2 g/L ± 0.04. Sublethal 6-day exposure was performed in six methomyl formulation concentrations (0.5; 1.0; 2.2; 4.8; 10.6; 23.3 mg/L) to evaluate developmental, physiological, morphological, behavioral, biochemical, and molecular endpoints of zebrafish early-development. Methomyl affected embryo hatching and larva morphology and behavior, especially in higher concentrations; resulting in smaller body and eyes size, failure in swimming bladder inflation, hypolocomotor activity, and concentration-dependent reduction of AChE activity; demonstrating methomyl strong acute toxicity and neurotoxic effect.
Collapse
Affiliation(s)
- Camilo Alexandre Jablonski
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Talita Carneiro Brandão Pereira
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Lilian De Souza Teodoro
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Stefani Altenhofen
- Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Gabriel Rübensam
- Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| | - Carla Denise Bonan
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Lodovichi J, Landucci E, Pitto L, Gisone I, D'Ambrosio M, Luceri C, Salvatici MC, Bergonzi MC. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. Eur J Pharm Sci 2021; 169:106090. [PMID: 34864170 DOI: 10.1016/j.ejps.2021.106090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Thymoquinone (TQ) is a natural compound present in the essential oil and in the fixed oil of Nigella sativa L. Like many natural substances, it is characterized by poor aqueous solubility and low stability which limit its bioavailability. Soluplus®-Solutol® HS15 polymeric micelles (TQ-MP) were developed to increase the permeability of TQ with particular attention to overcoming intestinal barrier and the blood brain barrier, for possible oral and parenteral administration. The optimized micelles have dimensions < 100 nm and PdI < 0.2 indicating that the formulation was homogeneous as confirmed also by TEM experiments. EE% was 92.4 ± 0.3%. Stability studies showed a stable formulation following subsequent dilutions and in the gastric-intestinal media. In vitro studies have revealed that the carrier enhances the permeability of TQ in the intestine and in the blood-brain barrier using Parallel Artificial Membrane Permeability Assay (PAMPA) assay and cellular tests with Caco-2 cells and hCMEC/D3 monolayer cells. Up-take study, cell viability and cytotoxicity studies were also conducted. Fluorescent micelles (FITC-MP), were also optimized to perform in vitro up-take study in Caco-2 cells and to study their toxicity in Zebrafish model. The toxicity was evaluated on three lines of Zebrafish: wild type, transgenic line Tg(Myl7:EGFP) in which cardiomyocytes are marked with green fluorescence protein and Tg(flk1-GFP) line which expresses GFP under the control of the vascular endothelial growth factor receptor 2 (vegfr2) promoter.
Collapse
Affiliation(s)
- Jessika Lodovichi
- Department of Chemistry, University of Florence, via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Italy
| | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1-56124 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1-56124 Pisa, Italy
| | - Mario D'Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Reasearch Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
19
|
Barenys M, Álvarez S, Santamaria A, Teixidó E, Gómez-Catalán J. Developmental exposure to MDMA (ecstasy) in zebrafish embryos reproduces the neurotoxicity adverse outcome 'lower motor activity' described in humans. Neurotoxicology 2021; 88:116-123. [PMID: 34763029 DOI: 10.1016/j.neuro.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The recreational use of MDMA (ecstasy) by pregnant women is associated with impaired neuromotor function in infants, but the Adverse Outcome Pathway behind this effect is not clear yet. We present for the first time the evaluation of developmental neurotoxic (DNT) effects of MDMA in zebrafish embryos. The aim of the study was to determine whether the zebrafish model reproduces the adverse outcome occurring in humans. We have studied the DNT effects of MDMA in zebrafish within a range of 5-250 μM performing different behavioural tests: spontaneous tail-coiling and light-dark locomotor response; after exposing the embryos to 4 different scenarios combining changes in pH, in starting exposure time and exposure duration. In these scenarios we evaluated the effects of MDMA in general embryonic development and compared the concentrations producing them with those inducing specific DNT effects. As a result, we have established the experimental conditions leading to the adverse outcome "lower motor activity" in zebrafish without producing general developmental delay or general toxicity. The experimental condition chosen opens the door to use this model in future mechanistic investigations to better characterize the Adverse Outcome Pathway associated with the adverse effects caused by MDMA prenatal exposure in humans.
Collapse
Affiliation(s)
- Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Shami Álvarez
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ariadna Santamaria
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elisabet Teixidó
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jesús Gómez-Catalán
- GRET, INSA-UB and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Defining drinking water metal contaminant mixture risk by coupling zebrafish behavioral analysis with citizen science. Sci Rep 2021; 11:17303. [PMID: 34453073 PMCID: PMC8397788 DOI: 10.1038/s41598-021-96244-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Contaminated drinking water is an important public health consideration in New England where well water is often found to contain arsenic and other metals such as cadmium, lead, and uranium. Chronic or high level exposure to these metals have been associated with multiple acute and chronic diseases, including cancers and impaired neurological development. While individual metal levels are often regulated, adverse health effects of metal mixtures, especially at concentrations considered safe for human consumption remain unclear. Here, we utilized a multivariate analysis that examined behavioral outcomes in the zebrafish model as a function of multiple metal chemical constituents of 92 drinking well water samples, collected in Maine and New Hampshire. To collect these samples, a citizen science approach was used, that engaged local teachers, students, and scientific partners. Our analysis of 4016 metal-mixture combinations shows that changes in zebrafish behavior are highly mixture dependent, and indicate that certain combinations of metals, especially those containing arsenic, cadmium, lead, and uranium, even at levels considered safe in drinking water, are significant drivers of behavioral toxicity. Our data emphasize the need to consider low-level chemical mixture effects and provide a framework for a more in-depth analysis of drinking water samples. We also provide evidence for the efficacy of utilizing citizen science in research, as the broader impact of this work is to empower local communities to advocate for improving their own water quality.
Collapse
|
21
|
Ogungbemi AO, Teixido E, Massei R, Scholz S, Küster E. Automated measurement of the spontaneous tail coiling of zebrafish embryos as a sensitive behavior endpoint using a workflow in KNIME. MethodsX 2021; 8:101330. [PMID: 34434841 PMCID: PMC8374338 DOI: 10.1016/j.mex.2021.101330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 01/31/2023] Open
Abstract
Neuroactive substances are the largest group of chemicals detected in European surface waters. Mixtures of neuroactive substances occurring at low concentrations can induce adverse neurological effects in humans and organisms in the environment. Therefore, there is a need to develop new screening tools to detect these chemicals. Measurement of behavior or motor effects in rodents and fish are usually performed to assess potential neurotoxicity for risk assessment. However, due to pain and stress inflicted on these animals, the scientific community is advocating for new alternative methods based on the 3R principle (reduce, replace and refine). As a result, the behavior measurement of early stages of zebrafish embryos such as locomotor response, photomotor response and spontaneous tail coiling are considered as a valid alternative to adult animal testing. In this study, we developed a workflow to investigate the spontaneous tail coiling (STC) of zebrafish embryos and to accurately measure the STC effect in the KNIME software. We validated the STC protocol with 3 substances (abamectin, chlorpyrifos-oxon and pyracostrobin) which have different mechanisms of action. The KNIME workflow combined with easy and cost-effective method of video acquisition makes this STC protocol a valuable method for neurotoxicity testing.Video acquisition duration of 60 s at 25 ± 1 hpf was used 20 embryos exposed per dish and acclimatized for 30 min before video acquisition Capability to inspect and correct errors for high accuracy
Collapse
Affiliation(s)
- Afolarin O Ogungbemi
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany.,Institute for Environmental Sciences, University of Koblenz-Landau, 76829, Fortstraße 7, Landau, Germany
| | - Elisabet Teixido
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Riccardo Massei
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Eberhard Küster
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
22
|
Muniz MS, Halbach K, Alves Araruna IC, Martins RX, Seiwert B, Lechtenfeld O, Reemtsma T, Farias D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117096. [PMID: 33866217 DOI: 10.1016/j.envpol.2021.117096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Oliver Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
23
|
Kurnia KA, Santoso F, Sampurna BP, Audira G, Huang JC, Chen KHC, Hsiao CD. TCMacro: A Simple and Robust ImageJ-Based Method for Automated Measurement of Tail Coiling Activity in Zebrafish. Biomolecules 2021; 11:1133. [PMID: 34439799 PMCID: PMC8391278 DOI: 10.3390/biom11081133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tail coiling is a reflection response in fish embryos that can be used as a model for neurotoxic analysis. The previous method to analyze fish tail coiling is largely based on third-party software. In this study, we aim to develop a simple and cost-effective method called TCMacro by using ImageJ macro to reduce the operational complexity. The basic principle of the current method is based on the dynamic change of pixel intensity in the region of interest (ROI). When the fish tail is moving, the average intensity is increasing. In time when the fish freeze, the peak of mean intensity is maintaining at a relatively low level. By using the optimized macro settings and excel VBA scripts, all the tail coiling measurement processes can be archived with few operation steps with high precision. Three major endpoints of tail coiling counts, tail coiling duration and tail coiling intervals can be obtained in batch. To validate this established method, we tested the potential neurotoxic activity of Tricaine (methanesulfonate, MS-222) and psychoactive compound of caffeine. Zebrafish embryos after Tricaine exposure displayed significantly less tail coiling activity in a dose-dependent manner, and were comparable to manual counting through the Wilcoxon test and Pearson correlation double validation. Zebrafish embryos after caffeine exposure displayed significantly high tail coiling activity. In conclusion, the TCMacro method presented in this study provides a simple and robust method that is able to measure the relative tail coiling activities in zebrafish embryos in a high-throughput manner.
Collapse
Affiliation(s)
- Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Bonifasius Putera Sampurna
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (K.A.K.); (F.S.); (B.P.S.); (G.A.)
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
24
|
Volz DC, Cannon J, Tal T. Introduction to leveraging non-mammalian models for developmental neurotoxicity testing. Neurotoxicol Teratol 2021; 87:107001. [PMID: 34126204 DOI: 10.1016/j.ntt.2021.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- David C Volz
- Department of Environmental Sciences, University of California, Riverside, USA.
| | - Jason Cannon
- School of Health Sciences, Purdue University, USA
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Germany
| |
Collapse
|
25
|
Ogungbemi AO, Massei R, Altenburger R, Scholz S, Küster E. Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. TOXICS 2021; 9:104. [PMID: 34066629 PMCID: PMC8148591 DOI: 10.3390/toxics9050104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023]
Abstract
Risk assessment of chemicals is usually conducted for individual chemicals whereas mixtures of chemicals occur in the environment. Considering that neuroactive chemicals are a group of contaminants that dominate the environment, it is then imperative to understand the combined effects of mixtures. The commonly used models to predict mixture effects, namely concentration addition (CA) and independent action (IA), are thought to be suitable for mixtures of similarly or dissimilarly acting components, respectively. For mixture toxicity prediction, one important challenge is to clarify whether to group neuroactive substances based on similar mechanisms of action, e.g., same molecular target or rather similar toxicological response, e.g., hyper- or hypoactivity (effect direction). We addressed this by using the spontaneous tail coiling (STC) of zebrafish embryos, which represents the earliest observable motor activity in the developing neural network, as a model to elucidate the link between the mechanism of action and toxicological response. Our objective was to answer the following two questions: (1) Can the mixture models CA or IA be used to predict combined effects for neuroactive chemical mixtures when the components share a similar mode of action (i.e., hyper- or hypoactivity) but show different mechanism of action? (2) Will a mixture of chemicals where the components show opposing effect directions result in an antagonistic combined effect? Results indicate that mixture toxicity of chemicals such as propafenone and abamectin as well as chlorpyrifos and hexaconazole that are known to show different mechanisms of action but similar effect directions were predictable using CA and IA models. This could be interpreted with the convergence of effects on the neural level leading to either a collective activation or inhibition of synapses. We also found antagonistic effects for mixtures containing substances with opposing effect direction. Finally, we discuss how the STC may be used to amend risk assessment.
Collapse
Affiliation(s)
- Afolarin O. Ogungbemi
- Department of Bioanalytical Ecotoxicology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; (R.A.); (S.S.); (E.K.)
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Riccardo Massei
- Department of Effect-Directed Analysis, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany;
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; (R.A.); (S.S.); (E.K.)
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; (R.A.); (S.S.); (E.K.)
| | - Eberhard Küster
- Department of Bioanalytical Ecotoxicology, UFZ—Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; (R.A.); (S.S.); (E.K.)
| |
Collapse
|