1
|
Choudhary M, Katare P, Deshpande M, Chaudhari N, Rajpoot K, Jain A, Tekade RK. Dendrimers in targeted drug delivery: design, development, and modern applications. PROGRESS AND PROSPECT OF NANOCARRIERS 2024:181-240. [DOI: 10.1016/b978-0-12-819979-4.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Balbom ÉB, Gritzenco F, Sperança A, Godoi M, Alves D, Barcellos T, Godoi B. Copper-catalyzed Csp-chalcogen bond formation: Versatile approach to N-(3-(organochalcogenyl)prop-2-yn-1-yl)amides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Zhu WJ, Kobayashi M, Yamada K, Nishi K, Takahashi K, Mizutani A, Nishii R, Flores LG, Shikano N, Kunishima M, Kawai K. Development of radioiodine labeled acetaminophen for specific, high-contrast imaging of malignant melanoma. Nucl Med Biol 2018; 59:16-21. [PMID: 29413752 DOI: 10.1016/j.nucmedbio.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Due to its poor prognosis, specific imaging for early detection of malignant melanoma is strongly desired. Although radioiodine labeled 4-hydroxyphenylcysteamine, which we previously developed, has good affinity for tyrosinase, an enzyme in the melanin metabolic pathway, image contrast of the melanoma:organ ratios is not sufficiently high for detection of primary melanoma and metastases at early injection times. In this study, we developed radioiodine labeled acetaminophen (I-AP) for specific, high-contrast imaging of malignant melanoma. METHODS Radioiodine-125-labeled AP (125I-AP) was prepared using the chloramine-T method under no carrier-added conditions. Accumulation of radioactivity and the mechanism were evaluated in vitro using B16 melanoma cells incubated with 125I-AP or 14C(U)-labeled AP (14C-AP) with and without l-tyrosine as a substrate of tyrosinase, phenylthiourea as an inhibitor of tyrosinase, and thymidine as an inhibitor of DNA polymerase. The biological distribution of radioactivity in B16 melanoma-bearing mice was evaluated to determine the accumulation of 125I-AP. The stability of 125I-AP over time was evaluated in mice. RESULTS The labeling efficiency and radiochemical purity of 125I-AP were >80% and 95%, respectively. Accumulation of 125I-AP was higher than that of 14C-AP at 60 min of incubation in vitro. The affinity of 14C-AP for tyrosinase and DNA polymerase was higher than that of 125I-AP, whereas the Vmax of 125I-AP was higher than that of 14C-AP. 125I-AP showed the highest accumulation in the gall bladder, and clearance from the blood and kidney was rapid. Melanoma:muscle and melanoma:normal skin ratios of 125I-AP for imaging contrast were the highest at 15 min after injection, whereas the melanoma:blood and melanoma:bone ratios gradually increased over time. 125I-AP remained stable for 60 min after injection in mice. CONCLUSIONS 125I-AP has affinity for tyrosinase and high image contrast at early time points after injection. Therefore, 123I-AP imaging has great potential for specific, high-contrast detection of malignant melanoma. ADVANCES IN KNOWLEDGE: 123I-AP will provide specific, high-contrast imaging for malignant melanoma at early injection times. IMPLICATIONS FOR PATIENT CARE: 123I-AP has good potential for the diagnosis of malignant melanoma compared with 123I-labeled 4-hydroxyphenylcysteamine, which we previously developed.
Collapse
Affiliation(s)
- Wen Jing Zhu
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masato Kobayashi
- Wellness Promotion Science Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kohei Yamada
- Department of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kotaro Takahashi
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Asuka Mizutani
- Graduate School of Medicine, Division of Health Science, Osaka University, Osaka, Japan; Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryuichi Nishii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Leo G Flores
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural Sciences of Health Sciences, Ibaraki, Japan
| | - Munetaka Kunishima
- Department of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Keiichi Kawai
- Department of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Lakshminarayanan N, Kumar A, Roy S, Pawar Y, Chaudhari P, Rajan M. Improved method for preparing Ni(II) complex of (S)-tyrosine Schiff base and its use in the automated synthesis of O-(2′-[ 18 F]fluoroethyl)- l -tyrosine using solid-phase extraction purification. Appl Radiat Isot 2017; 127:122-129. [DOI: 10.1016/j.apradiso.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/13/2017] [Accepted: 05/21/2017] [Indexed: 11/27/2022]
|
5
|
Kandil SA, Aglan H, EL-Kafrawy AF, Seddik U. An optimization study for radioiodination of a new synthesized benzamide derivative as an analogue tracer for malignant melanoma imaging. RADIOCHIM ACTA 2016. [DOI: 10.1515/ract-2016-2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iodobenzamides are reported to possess some affinity for melanoma. This study describes the synthesis of a new benzamide analogue, N-(2-diethylamino-ethyl)-4-(4-chloro-nicotinamido)-5-[125I]iodo-2-methoxybenzamide ([125I]H4) designed to target melanoma. The synthesis was simply achieved in four steps. There were two PyCIU/DIPEA amide condensations and a transfer hydrogenation using an ammonium formate hydrogen donor. The radioiodination step was carried out with 125I via an electrophilic substitution reaction. The reaction conditions were optimized. The labeled compound was purified by HPLC. The maximum radiochemical yield was found to be 78% at a radiochemical purity of 98%. All compounds were characterized by MS and NMR techniques. The log P value for [125I]H4 was found as 3.96±0.5.
Collapse
Affiliation(s)
- Shaban A. Kandil
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt , Tel.: +2 02 446 91 743, Fax: +2 0246220086
| | - Hany Aglan
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| | | | - Usama Seddik
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| |
Collapse
|
6
|
d'Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, Galván I, Ghanem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon JD, Zecca L, Zucca FA, Napolitano A, Ito S. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res 2016; 28:520-44. [PMID: 26176788 DOI: 10.1111/pcmr.12393] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022]
Abstract
During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine-based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature. A closer intersectoral interaction between research centers is essential to raise the interests and increase the awareness of the biomedical, biomaterials science and hi-tech sectors of the manifold opportunities offered by pigment cells and related metabolic pathways. Starting from a survey of biological roles and functions, the present review aims at providing an interdisciplinary perspective of melanin pigments and related pathway with a view to showing how it is possible to translate current knowledge about physical and chemical properties and control mechanisms into new bioinspired solutions for biomedical, dermocosmetic, and technological applications.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Fabio Cicoira
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Eduardo Di Mauro
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, Canada
| | | | - Stephane Commo
- L'Oréal Recherche & Innovation, Aulnay sous Bois, France
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana - CSIC, Sevilla, Spain
| | - Ghanem Ghanem
- LOCE, Institut J. Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Koike Kenzo
- Development Research - Hair Care Products, KAO Corporation, Sumida, Tokyo, Japan
| | - Paul Meredith
- Centre for Organic Photonics and Electronics, School of Mathematics and Physics, University of Queensland, Brisbane, Qld, Australia
| | - Alessandro Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Clara Santato
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Simon
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Luigi Zecca
- Institute of Biomedical Technologies - National Research Council of Italy, Milan, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies - National Research Council of Italy, Milan, Italy
| | | | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Kim HJ, Kim DY, Park JH, Yang SD, Hur MG, Min JJ, Yu KH. Synthesis and evaluation of a novel 68Ga-labeled DOTA-benzamide derivative for malignant melanoma imaging. Bioorg Med Chem Lett 2012; 22:5288-92. [DOI: 10.1016/j.bmcl.2012.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/27/2022]
|
8
|
Synthesis and characterization of a (68)Ga-labeled N-(2-diethylaminoethyl)benzamide derivative as potential PET probe for malignant melanoma. Bioorg Med Chem 2012; 20:4915-20. [PMID: 22831797 DOI: 10.1016/j.bmc.2012.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Radiolabeled benzamides have been reported to be attractive agents for targeting malignant melanoma as they bind melanin and display high accumulation in melanoma cells. Herein, we report the synthesis and bioevaluation of a novel (68)Ga-labeled benzamide as a potential PET agent for malignant melanoma. The novel radiotracer was synthesized in good radiochemical yields (80% decay corrected yield) and high specific radioactivity (10 GBq/μmol). Cellular uptake of (68)Ga-SCN-NOTA-BZA was significantly higher in B16F10 cells (mouse melanoma) treated with L-tyrosine. Biodistribution and micro-PET studies of (68)Ga-SCN-NOTA-BZA in B16F10-bearing mice showed selective uptake into the tumor. The radiotracer was cleared via renal excretion without further metabolism. These results demonstrate that (68)Ga-SCN-NOTA-BZA is a potential PET probe for malignant melanoma.
Collapse
|
9
|
Studies on tolonium chloride labeled with radioiodine. J Radioanal Nucl Chem 2010. [DOI: 10.1007/s10967-010-0604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Green AE, Parker SK, Valliant JF. Synthesis and screening of bifunctional radiolabelled carborane-carbohydrate derivatives. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.12.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Liu X, Pham TQ, Berghofer P, Chapman J, Greguric I, Mitchell P, Mattner F, Loc'h C, Katsifis A. Synthesis and evaluation of novel radioiodinated nicotinamides for malignant melanoma. Nucl Med Biol 2008; 35:769-81. [PMID: 18848662 DOI: 10.1016/j.nucmedbio.2008.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/23/2008] [Accepted: 05/31/2008] [Indexed: 11/26/2022]
Abstract
INTRODUCTION A series of iodonicotinamides based on the melanin-binding iodobenzamide compound N-2-diethylaminoethyl-4-iodobenzamide was prepared and evaluated for the potential imaging and staging of disseminated metastatic melanoma. METHODS [(123)I]Iodonicotinamides were prepared by iododestannylation reactions using no-carrier-added iodine-123 and evaluated in vivo by biodistribution and competition studies and by single photon emission computed tomography (SPECT) imaging in black and albino nude mice bearing B16F0 murine melanotic and A375 human amelanotic melanoma tumours, respectively. RESULTS The iodonicotinamides displayed low-affinity binding for sigma(1)-sigma(2) receptors (K(i)>300 nM). In biodistribution studies in mice, N-(2-(diethylamino)ethyl)-5-[(123)I]iodonicotinamide ([(123)I]1) exhibited the fastest and highest uptake of the nicotinamide series in the B16F0 tumour at 1 h ( approximately 8% ID/g), decreasing slowly over time. No uptake was observed in the A375 tumour. Clearance from the animals by urinary excretion was more rapid for N-alkyl-nicotinamides than for piperazinyl derivatives. At 1 h postinjection, the urinary excretion was 66% ID for [(123)I]1, while the gastrointestinal tract amounted to 17% ID. Haloperidol was unable to reduce the uptake of [(123)I]1 in pigmented mice, indicating that this uptake was likely due to an interaction with melanin. SPECT imaging of [(123)I]1 in black mice bearing the B16F0 melanoma indicated that the radioactivity was predominately located in the tumour and eyes. No specific localisation was observed in nude mice bearing A375 amelanotic tumours. CONCLUSION These findings suggest that [(123)I]1, which displays high tumour uptake with rapid clearance from the body, could be a promising imaging agent for the detection of melanotic tumours.
Collapse
Affiliation(s)
- Xiang Liu
- Radiopharmaceuticals Research Institute, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Labarre P, Papon J, Rose AH, Guerquin-Kern JL, Morandeau L, Wu TD, Moreau MF, Bayle M, Chezal JM, Croisy A, Madelmont JC, Turner H, Moins N. Melanoma affinity in mice and immunosuppressed sheep of [125I]N-(4-dipropylaminobutyl)-4-iodobenzamide, a new targeting agent. Nucl Med Biol 2008; 35:783-91. [DOI: 10.1016/j.nucmedbio.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/11/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
|
13
|
Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC, Moins N. Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 2008; 51:3133-44. [PMID: 18481842 DOI: 10.1021/jm701424g] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted radionuclide therapy using radioiodinated compounds with a specific affinity for melanoma tissue is a promising treatment for disseminated melanoma, but the candidate with the ideal kinetic profile remains to be discovered. Targeted radionuclide therapy concentrates the effects on tumor cells, thereby increasing the efficacy and decreasing the morbidity of radiotherapy. In this context, analogues of N-(2-diethylaminoethyl)-4-iodobenzamide (BZA) are of interest. Various (hetero)aromatic analogues 5 of BZA were synthesized and radioiodinated with (125)I, and their biodistribution in melanoma-bearing mice was studied after i.v. administration. Most [ (125)I] 5-labeled compounds appeared to bind specifically and with moderate-to-high affinity to melanoma tumor. Two compounds, 5h and 5k, stood out with high specific and long-lasting uptake in the tumor, with a 7- and 16-fold higher value than BZA at 72 h, respectively, and kinetic profiles that makes them promising agents for internal targeted radionuclide therapy of melanoma.
Collapse
|
14
|
Synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine and its biological evaluation in B16 melanoma-bearing mice as PET tracer for tumor imaging. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11426-007-0023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Wolf M, Hull WE, Mier W, Heiland S, Bauder-Wüst U, Kinscherf R, Haberkorn U, Eisenhut M. Polyamine-Substituted Gadolinium Chelates: A New Class of Intracellular Contrast Agents for Magnetic Resonance Imaging of Tumors. J Med Chem 2006; 50:139-48. [PMID: 17201417 DOI: 10.1021/jm061003a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new class of intracellular contrast agents (CA) for magnetic resonance imaging has been developed, based on Gd(DTPA) with two positively charged amide-linked substituents. Uptake of Gd(DTPA) into cultured tumor cell lines (B16 mouse melanoma, MH3924A Morris hepatoma) was below the detection limit while CA with the melanin-binding pharmacophore 2-(diethylamino)ethylamine reached intracellular concentrations of ca. 0.03 fmol/cell (ca. 20 microM) for melanoma and 0.02 fmol/cell for hepatoma (24 h at 10 microM CA). With the polyamine substituents bis(2-aminoethyl)amine or spermidine, CA uptake increased up to 3-fold for melanoma (0.083 fmol/cell) and 9-fold for hepatoma (0.18 fmol/cell). Uptake of polyamine-substituted CA was reduced by the polyamine transport inhibitor benzyl viologen. Molar relaxivities for three Gd-DTPA-polyamine complexes were in the range 5.6-6.9 for the free complex in solution and 7.7-23.5 s-1 mM-1 for Morris hepatoma cell pellets. T1-weighted magnetic resonance imaging at 2.35 T of rats with MH3924A tumors showed contrast enhancement in tumor at 1 and 24 h postinjection of polyamine-substituted CA.
Collapse
Affiliation(s)
- Markus Wolf
- Department of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The aim of this work was to synthesize, label and evaluate in vivo [I]N-(2-diethylaminoethyl)-3-iodo-4-methoxybenzamide ([I]IMBA) as a radiotracer for B16-F0 melanoma cells, in C57 mice bearing a subcutaneous melanoma tumour and experimentally induced lung metastases. The average radio-iodination yield achieved, after labelling and Sep-Pak purification, was 65%, with a radiochemical purity of > or = 96%. Biodistribution studies using [I]IMBA (2.2 GBq/micromol) showed high specific tumour uptake, with low non-target tissue background, due to a rapid renal clearance from the animal body (corporal retention was 19.7 +/- 7.1% of the injected dose at 6 h and 4.00 +/- 2.4% of the injected dose at 24 h). The very high targeting efficiency of this radiopharmaceutical was also confirmed by images in which primary subcutaneous tumour and induced lung metastases were clearly visualized. In addition, a clear correlation was found between the uptake of radioactivity in the lungs (percentage of the injected dose per gram of tissue) and the number of metastases carried by them.
Collapse
Affiliation(s)
- Martin M Edreira
- Radiopharmaceutical Division, Ezeiza Atomic Centre, National Atomic Energy Commission, Ezeiza, Buenos Aires, Argentina.
| | | |
Collapse
|