1
|
Chen J, Chen M, Yu X. Fluorescent probes in autoimmune disease research: current status and future prospects. J Transl Med 2025; 23:411. [PMID: 40205498 PMCID: PMC11984237 DOI: 10.1186/s12967-025-06430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Autoimmune diseases (AD) present substantial challenges for early diagnosis and precise treatment due to their intricate pathogenesis and varied clinical manifestations. While existing diagnostic methods and treatment strategies have advanced, their sensitivity, specificity, and real-time applicability in clinical settings continue to exhibit significant limitations. In recent years, fluorescent probes have emerged as highly sensitive and specific biological imaging tools, demonstrating substantial potential in AD research.This review examines the response mechanisms and historical evolution of various types of fluorescent probes, systematically summarizing the latest research advancements in their application to autoimmune diseases. It highlights key applications in biomarker detection, dynamic monitoring of immune cell functions, and assessment of drug treatment efficacy. Furthermore, this article analyzes the technical challenges currently encountered in probe development and proposes potential directions for future research. With ongoing advancements in materials science, nanotechnology, and bioengineering, fluorescent probes are anticipated to achieve higher sensitivity and enhanced functional integration, thereby facilitating early detection, dynamic monitoring, and innovative treatment strategies for autoimmune diseases. Overall, fluorescent probes possess substantial scientific significance and application value in both research and clinical settings related to autoimmune diseases, signaling a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Junli Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, Jiangsu, China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Pandey S, Kaur G, Rana N, Chopra S, Rather I, Kumar R, Laroiya I, Chadha VD, Satz S, Stabin MG, Mittal BR, Shukla J. Advancing Cancer Theranostics Through Integrin αVβ3-Targeted Peptidomimetic IAC: From Bench to Bedside. Cancer Biother Radiopharm 2024; 39:632-643. [PMID: 38977419 DOI: 10.1089/cbr.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Introduction: The expression of alpha-five beta-three (αVβ3) integrins is upregulated in various malignancies undergoing angiogenesis. The development of integrin antagonists as diagnostic probes makes the αVβ3 integrin a suitable candidate for targeting tumor angiogenesis. The goal of this study was to optimize the radiolabeling and evaluate the potential of conjugated integrin antagonist carbamate (IAC), a peptidomimetic, as a theranostic radiopharmaceutical for targeting tumor angiogenesis. Methodology: Radiolabeling of DOTAGA [2,2',2"-{10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl} triacetic-acid]-IAC with [68Ga]Ga, [177Lu]Lu, and [225Ac]Ac was optimized. The binding affinity (Kd) of DOTAGA-IAC for the αVβ3 receptor and cancer cell lines was quantified. The biodistribution studies were conducted in healthy Wistar rats. Dosimetry analysis was performed on [177Lu]Lu-DOTAGA-IAC distribution data. A pilot study of [68Ga]Ga-DOTAGA-IAC and [18F]FDG Positron Emission Tomography (PET/CT) imaging was performed in five patients with histopathologically confirmed breast cancer. PET/CT findings were compared between [68Ga]Ga-DOTAGA-IAC and [18F]FDG in these patients. Results: Radiopharmaceuticals were prepared with high radiochemical purity (>99.9%). Kd and Bmax measurements were 15.02 nM and 417 fmol for αVβ3 receptor protein: 115.7 nM and 295.3 fmol for C6 glioma cells. Biodistribution studies in rats suggested the excretion via kidneys and partially through the hepatobiliary route. The effective dose of [177Lu]Lu-DOTAGA-IAC was found to be 0.17 mSv/MBq. The dynamic study in patients revealed the optimal imaging time to be 30-35 mins postadministration. Out of the cohort, [68Ga]Ga-DOTAGA-IAC detected the primary lesions in all five patients with a mean standard uptake value (SUVmax) of 3.94 ± 0.58 compared with [18F]FDG (SUVmax 13.8 ± 6.53). Conclusion: The study demonstrates that DOTAGA-IAC exhibits strong binding to αVβ3 integrin, positioning it as a promising PET agent for assessing primary and metastatic cancers. The outcomes from the pilot study suggest the potential of [68Ga]Ga-DOTAGA-IAC PET/CT in breast carcinoma diagnosis. While recognizing the theranostic potential of DOTAGA-IAC for αVβ3 integrin-expressing tumors, further clinical investigations are warranted to comprehensively assess therapeutic efficacy.
Collapse
Affiliation(s)
- Somit Pandey
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Gurvinder Kaur
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Nivedita Rana
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sejal Chopra
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Imran Rather
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Rajender Kumar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ishita Laroiya
- Department of Surgery, Post Graduate Institute of Medical Education & Research (P.G.I.M.E.R), Chandigarh, India
| | - Vijayta D Chadha
- Center for Nuclear Medicine, Panjab University, Chandigarh, India
| | - Stanley Satz
- Advanced Innovative Partners, Inc., Miami, Florida, USA
| | | | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Zhou Y, Jiao J, Yang R, Wen B, Wu Q, Xu L, Tong X, Yan H. Temozolomide-based sonodynamic therapy induces immunogenic cell death in glioma. Clin Immunol 2023; 256:109772. [PMID: 37716612 DOI: 10.1016/j.clim.2023.109772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND In our previous study, we found for the first time that temozolomide (TMZ), the first-line chemotherapeutic agent for glioblastoma (GBM), can generate a large amount of reactive oxygen species (ROS) under ultrasound irradiation. Sonodynamic therapy (SDT) using TMZ as the sonosensitizer produced more potent antitumor effects than TMZ alone. Here, we further evaluate the effects of TMZ-based SDT on subcellular structures and investigate the immunogenic cell death (ICD)-inducing capability of TMZ-based SDT. METHODS The sonotoxic effects of TMZ were explored in LN229 and GL261 glioma cells. The morphology of endoplasmic reticulum and mitochondria was observed by transmission electron microscopy. The nuclear DNA damage was represented by γ-H2AX staining. Bone marrow-derived dendritic cells (BMDCs) were employed to assess ICD-inducing capability of TMZ-based SDT. A cyclic arginine-glycine-aspartic (c(RGDyC))-modified nanoliposome drug delivery platform was used to improve the tumor targeting of SDT. RESULTS TMZ-based SDT had a greater inhibitory effect on glioma cells than TMZ alone. Transmission electron microscopy revealed that TMZ-based SDT caused endoplasmic reticulum dilation and mitochondrial swelling. In addition, endoplasmic reticulum stress response (ERSR), nuclear DNA damage and mitochondrial permeability transition pore (mPTP) opening were promoted in TMZ-based SDT group. Most importantly, we found that TMZ-based SDT could promote the "danger signals" produced by glioma cells and induce the maturation and activation of BMDCs, which was associated with the mitochondrial DNA released into the cytoplasm in glioma cells. In vivo experiments showed that TMZ-based SDT could remodel glioma immune microenvironment and provoke durable and powerful anti-tumor immune responses. What's more, the engineered nanoliposome vector of TMZ conferred SDT tumor targeting, providing an option for safer clinical application of TMZ in combination with SDT in the future. CONCLUSIONS TMZ-based SDT was capable of triggering ICD in glioma. The discovery of TMZ as a sonosensitizer have shown great promise in the treatment of GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Rongyan Yang
- College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binli Wen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
4
|
68Ga-DOTAGA-IAC PET/CT for Imaging Metastatic and Recurrent Adrenocortical Carcinoma: A Case Series. Clin Nucl Med 2023; 48:e95-e98. [PMID: 36607383 DOI: 10.1097/rlu.0000000000004497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ABSTRACT Adrenocortical carcinoma (ACC) is a rare malignancy with a prevalence of 1 to 2 cases/million/year. The diagnosis depends upon endocrine workup followed by imaging with CT, MRI, and 18F-FDG PET/CT. The treatment includes surgical resection, debulking surgery, chemotherapy, and radiotherapy. However, patients do not respond well to any of the available therapies. We present noninvasive imaging of histopathology-proven ACC patients using 68Ga-DOTAGA-IAC PET/CT, specific for integrin αvβ3. 68Ga-DOTAGA-IAC PET/CT 45 minutes after IV injection showed a decent tumor-to-background ratio and could be used as a promising radiotracer for metastatic and recurrent ACC.
Collapse
|
5
|
Piras M, Testa A, Fleming IN, Dall'Angelo S, Andriu A, Menta S, Mori M, Brown GD, Forster D, Williams KJ, Zanda M. High-Affinity “Click” RGD Peptidomimetics as Radiolabeled Probes for Imaging αv
β3
Integrin. ChemMedChem 2017; 12:1142-1151. [DOI: 10.1002/cmdc.201700328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Monica Piras
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Andrea Testa
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Ian N. Fleming
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Alexandra Andriu
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Menta
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; P.le A. Moro 5 00185 Rome Italy
- Current affiliation: IRBM Science Park SpA; Via Pontina km 30 600 00071 Pomezia RM Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza; Istituto Italiano di Tecnologia; Viale Regina Elena 291 00161 Roma RM Italy
| | - Gavin D. Brown
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Duncan Forster
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Kaye J. Williams
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Manchester Cancer Research Centre, Division of Pharmacy and Optometry; The University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Matteo Zanda
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
- C.N.R.-I.C.R.M.; via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
6
|
Sun Y, Xiong X, Pandya D, Jung Y, Mintz A, Hayasaka S, Wadas TJ, Li KCP. Enhancing tissue permeability with MRI guided preclinical focused ultrasound system in rabbit muscle: From normal tissue to VX2 tumor. J Control Release 2017; 256:1-8. [PMID: 28412225 PMCID: PMC6047512 DOI: 10.1016/j.jconrel.2017.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
High Intensity Focused Ultrasound (HIFU) is an emerging noninvasive, nonionizing physical energy based modality to ablate solid tumors with high power, or increase local permeability in tissues/tumors in pulsed mode with relatively low power. Compared with traditional ablative HIFU, nondestructive pulsed HIFU (pHIFU) is present in the majority of novel applications recently developed for enhancing the delivery of drugs and genes. Previous studies have demonstrated the capability of pHIFU to change tissue local permeability for enhanced drug delivery in both mouse tumors and mouse muscle. Further study based on bulk tissues in large animals and clinical HIFU system revealed correlation between therapeutic effect and thermal parameters, which was absent in the previous mouse studies. In this study, we further investigated the relation between the therapeutic effect of pHIFU and thermal parameters in bulky normal muscle tissues based on a rabbit model and a preclinical HIFU system. Correlation between therapeutic effect and thermal parameters was confirmed in our study on the same bulk tissues although different HIFU systems were used. Following the study in bulky normal muscle tissues, we further created bulky tumor model with VX2 tumors implanted on both hind limbs of rabbits and investigated the feasibility to enhance tumor permeability in bulky VX2 tumors in a rabbit model using pHIFU technique. A radiolabeled peptidomimetic integrin antagonist, 111In-DOTA-IA, was used following pHIFU treatment in our study to target VX2 tumor and serve as the radiotracer for follow-up single-photon emission computed tomography (SPECT) scanning. The results have shown significantly elevated uptake of 111In-DOTA-IA in the area of VX2 tumors pretreated by pHIFU compared with the control VX2 tumors not being pretreated by pHIFU, and statistical analysis revealed averaged 34.5% enhancement 24h after systematic delivery of 111In-DOTA-IA in VX2 tumors pretreated by pHIFU compared with the control VX2 tumors.
Collapse
Affiliation(s)
- Yao Sun
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobing Xiong
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Darpan Pandya
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Satoru Hayasaka
- Department of Psychology, The University of Texas at Austin, SEA 2.214, 108 E. Dean Keeton Stop A8000, Austin, TX 78712, USA
| | - Thaddeus J Wadas
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - King C P Li
- Carle Illinois College of Medicine, University of Illinois at Urbana- Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Park K. Moderate enhancement in tissue permeability by preclinical focused ultrasound. J Control Release 2017. [DOI: 10.1016/j.jconrel.2017.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Vasile F, Menchi G, Lenci E, Guarna A, Potenza D, Trabocchi A. Insight to the binding mode of triazole RGD-peptidomimetics to integrin-rich cancer cells by NMR and molecular modeling. Bioorg Med Chem 2016; 24:989-94. [DOI: 10.1016/j.bmc.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
9
|
Baum RP, Kulkarni HR, Müller D, Satz S, Danthi N, Kim YS, Brechbiel MW. First-In-Human Study Demonstrating Tumor-Angiogenesis by PET/CT Imaging with (68)Ga-NODAGA-THERANOST, a High-Affinity Peptidomimetic for αvβ3 Integrin Receptor Targeting. Cancer Biother Radiopharm 2016; 30:152-9. [PMID: 25945808 DOI: 10.1089/cbr.2014.1747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED (68)Ga-NODAGA-THERANOST™ is an αvβ3 integrin antagonist and the first radiolabeled peptidomimetic to reach clinical development for targeting integrin receptors. In this first-in-human study, the feasibility of integrin receptor peptidomimetic positron emission tomography/computed tomography (PET/CT) imaging was confirmed in patients with non-small-cell lung cancer and breast cancer. METHODS Patients underwent PET/CT imaging with (68)Ga NODAGA-THERANOST. PET images were analyzed qualitatively and quantitatively and compared to 2-deoxy-2-((18)F) fluoro-d-glucose ((18)F-FDG) findings. Images were obtained 60 minutes postinjection of 300-500 MBq of (68)Ga-NODAGA-THERANOST. RESULTS (68)Ga-NODAGA-THERANOST revealed high tumor-to-background ratios (SUVmax=4.8) and uptake at neoangiogenesis sites. Reconstructed fused images distinguished cancers with high malignancy potential and enabled enhanced bone metastasis detection. (18)F-FDG-positive lung and lymph node metastases did not show uptake, indicating the absence of neovascularization. CONCLUSIONS (68)Ga-NODAGA-THERANOST was found to be safe and effective, exhibiting in this study rapid blood clearance, stability, rapid renal excretion, favorable biodistribution and PK/PD, low irradiation burden (μSv/MBq/μg), and convenient radiolabeling. This radioligand might enable theranostics, that is, a combination of diagnostics followed by the appropriate therapeutics, namely antiangiogenic therapy, image-guided presurgical assessment, treatment response evaluation, prediction of pathologic response, neoadjuvant-peptidomimetic-radiochemotherapy, and personalized medicine strategies. Further clinical trials evaluating (68)Ga-NODAGA-THERANOST are warranted.
Collapse
Affiliation(s)
- Richard P Baum
- 1 THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, ENETS Center of Excellence , Bad Berka, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen CN, Chang CC, Lai HS, Jeng YM, Chen CI, Chang KJ, Lee PH, Lee H. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion. Gastric Cancer 2015; 18:504-15. [PMID: 24985492 DOI: 10.1007/s10120-014-0400-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. METHODS CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. RESULTS CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. CONCLUSIONS Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.
Collapse
Affiliation(s)
- Chiung-Nien Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bianchini F, Fabbrizzi P, Menchi G, Raspanti S, Bottoncetti A, Passeri A, Andreucci E, Guarna A, Calorini L, Pupi A, Trabocchi A. Radiosynthesis and micro-SPECT analysis of triazole-based RGD integrin ligands as non-peptide molecular imaging probes for angiogenesis. Bioorg Med Chem 2015; 23:1112-22. [DOI: 10.1016/j.bmc.2014.12.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
|
12
|
Kim YS, Nwe K, Milenic DE, Brechbiel MW, Satz S, Baidoo KE. Synthesis and characterization of αvβ₃-targeting peptidomimetic chelate conjugates for PET and SPECT imaging. Bioorg Med Chem Lett 2012; 22:5517-22. [PMID: 22853992 DOI: 10.1016/j.bmcl.2012.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
Abstract
There is growing interest in small peptidomimetic α(v)β(3) integrin antagonists that are readily synthesized and characterized and can be easily handled using physiological conditions. Peptidomimetic 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine (IAC) was successfully conjugated to 1-(1-carboxy-3-carbo-t-butoxypropyl)-4,7-(carbo-tert-butoxymethyl)-1,4,7-triazacyclononane (NODA-GA(tBu)(3)) and 1-(1-carboxy-3-carbotertbutoxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA-GA(tBu)(4)) and radiolabeled with (111)In, (67)Ga and (203)Pb. Results of a radioimmunoassay demonstrated binding to purified α(v)β(3) integrin when 1-4equiv of integrin were added to the reaction. Based on this promising result, investigations are moving forward to evaluate the NODA-GA-IAC and DOTA-GA-IAC conjugates for targeting tumor associated angiogenesis and α(v)β(3) integrin positive tumors to define their PET and SPECT imaging qualities as well as their potential for delivery of therapeutic radionuclides.
Collapse
Affiliation(s)
- Young-Seung Kim
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, MSC-1002, Rm B3B69, Bethesda, MD 20892-1002, USA
| | | | | | | | | | | |
Collapse
|
13
|
Aufort M, Gonera M, Le Gal J, Czarny B, Le Clainche L, Thai R, Dugave C. Oxorhenium-Mediated Assembly of Noncyclic Selective Integrin Antagonists: A Combinatorial Approach. Chembiochem 2011; 12:583-92. [DOI: 10.1002/cbic.201000700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Indexed: 11/11/2022]
|
14
|
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010; 110:2858-902. [PMID: 20415480 PMCID: PMC2874951 DOI: 10.1021/cr900325h] [Citation(s) in RCA: 700] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thaddeus J Wadas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8225 St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
15
|
Rerat V, Laurent S, Burtéa C, Driesschaert B, Pourcelle V, Vander Elst L, Muller RN, Marchand-Brynaert J. Ultrasmall particle of iron oxide—RGD peptidomimetic conjugate: synthesis and characterisation. Bioorg Med Chem Lett 2010; 20:1861-5. [DOI: 10.1016/j.bmcl.2010.01.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 11/25/2022]
|
16
|
Shin IS, Maeng JS, Jang BS, You E, Cheng K, Li KCP, Wood B, Carrasquillo JA, Danthi SN, Paik CH. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands. Curr Radiopharm 2010; 3:1-8. [PMID: 20556233 DOI: 10.2174/1874471011003010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by imaging studies showing higher tumor-to-abdominal contrast for P1 than for P2 at 3 h postinjection. CONCLUSIONS: P1 showed good tumor targeting properties with a rapid tumor uptake, prolonged tumor retention and fast whole-body clearance kinetics. These findings warrant further investigation of the HYNIC method of (99m)Tc labeling of other peptidomimetic antagonists using EDDA as a coligand.
Collapse
Affiliation(s)
- In Soo Shin
- Nuclear Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schottelius M, Laufer B, Kessler H, Wester HJ. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 2009; 42:969-80. [PMID: 19489579 DOI: 10.1021/ar800243b] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alpha(v)beta(3)- and alpha(5)beta(1)-integrins play a key role in angiogenesis, the formation of new vessels in tissues that lack them. By serving as receptors for a variety of extracellular matrix proteins containing an arginine-glycine-aspartic acid (RGD) sequence, these integrins mediate migration of endothelial cells into the basement membrane and regulate their growth, survival, and differentiation. Besides being involved in angiogenesis, the alpha(v)beta(3)-integrin is also presented on tumor cells of various origin, where it is involved in the processes that govern metastasis. Because the alpha(v)beta(3)-integrin is an attractive target for cancer treatment, high-affinity ligands containing the RGD sequence, for example, cyclic pentapeptides, have been developed. They inhibit angiogenesis, induce endothelial apoptosis, decrease tumor growth, and reduce invasiveness and spread of metastasis. This development finally resulted in cyclo(RGDf(NMe)V) (cilengitide), which is a drug for the treatment of glioblastoma (currently in phase III clinical trials). With the growing focus on individualized medicine, clinicians would like to be able to assess the severity of the disease and monitor therapy for each patient. Such measurements would be based on a noninvasive visualization and quantification the alpha(v)beta(3)-integrin expression levels before, during, and after antiangiogenic therapy. A wide spectrum of in vivo imaging probes for the nuclear imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT), for optical imaging, and for magnetic resonance imaging (MRI) have been developed with these goals in mind. In this Account, we describe the synthesis and preclinical and clinical assessments of dedicated targeting probes. These molecules ideally accumulate selectively and in high concentrations in alpha(v)beta(3)-integrin-expressing tissues, have low uptake and retention in nontarget tissues, and are highly stable against in vivo degradation. [(123)I]cyclo(RGDyV) was the first radiolabeled "imaging analogue" of cilengitide that we evaluated preclinically in detail. Subsequent studies focused on cyclo(RGDfK) and cyclo(RGDyK), which allowed conjugation with various signaling moieties, such as prosthetic groups, bifunctional chelators (DTPA, DOTA, NOTA, TETA, and TE2A for labeling with (111)In or (177)Lu for SPECT and (86)Y, (68)Ga, or (64)Cu for PET), or fluorescent dyes (Cy5.5, cypate). Furthermore, pharmacokinetic modifiers such as carbohydrates, charged amino acids, or PEG analogues were coupled to the peptide core without significantly affecting the binding affinity. Finally, dimers, tetramers, octamers, and polymers and decorated quantum dots with several dozens of peptide units were constructed and investigated. Some of these multimers demonstrated significantly improved affinity (avidity) and targeting efficiency in vivo. Besides peptidic alpha(v)beta(3)-integrin ligands, researchers have investigated radiolabeled antibodies such as Abegrin and used molecular modeling to design small peptidomimetics with improved activity, in vivo stability, and subtype selectivity (e.g., (111)In-TA138). Furthermore, there is an increasing interest in nanoparticles such as nanotubes, quantum dots, or paramagnetic particles coated with cyclic RGD analogues as targeting agents. [(18)F]Galacto-RGD, a glycosylated cyclo(RGDfK) analogue, was the first such substance applied in patients and has been successfully assessed in more than 100 patients so far. Because of modification with carbohydrates, rapid renal excretion, and inherently low background activity in most regions of the body, imaging of alpha(v)beta(3) expression with high tumor/background ratios and high specificity is possible. Other (18)F-labeled RGD analogues recently developed by Siemens and GE Healthcare have entered clinical trials.
Collapse
Affiliation(s)
- Margret Schottelius
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Burkhardt Laufer
- Center for Integrated Protein Science at the Technische Universität München, Department Chemie, 85747 Garching, Germany
| | - Horst Kessler
- Center for Integrated Protein Science at the Technische Universität München, Department Chemie, 85747 Garching, Germany
| | - Hans-Jürgen Wester
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| |
Collapse
|
18
|
Abstract
Skin cancer is the most common form of cancer types. It is generally divided into two categories: melanoma (∼ 5%) and nonmelanoma (∼ 95%), which can be further categorized into basal cell carcinoma, squamous cell carcinoma, and some rare skin cancer types. Biopsy is still the gold standard for skin cancer evaluation in the clinic. Various anatomical imaging techniques have been used to evaluate different types of skin cancer lesions, including laser scanning confocal microscopy, optical coherence tomography, high-frequency ultrasound, terahertz pulsed imaging, magnetic resonance imaging, and some other recently developed techniques such as photoacoustic microscopy. However, anatomical imaging alone may not be sufficient in guiding skin cancer diagnosis and therapy. Over the last decade, various molecular imaging techniques (in particular single photon emission computed tomography and positron emission tomography) have been investigated for skin cancer imaging. The pathways or molecular targets that have been studied include glucose metabolism, integrin αvβ3, melanocortin-1 receptor, high molecular weight melanoma-associated antigen, and several other molecular markers. Preclinical molecular imaging is thriving all over the world, while clinical molecular imaging has not lived up to the expectations because of slow bench-to-bedside translation. It is likely that this situation will change in the near future and molecular imaging will truly play an important role in personalized medicine of melanoma patients.
Collapse
Affiliation(s)
- Hao Hong
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
19
|
Xu L, Adams B, Jeliazkova-Mecheva VV, Trimble L, Kwei G, Harsch A. Identification of novel metabolites of colchicine in rat bile facilitated by enhanced online radiometric detection. Drug Metab Dispos 2008; 36:731-9. [PMID: 18227142 DOI: 10.1124/dmd.107.019463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Three novel conjugation metabolites of colchicine were identified in rat bile facilitated by enhanced on-line liquid chromatography-accurate radioisotope counting. The known 2- and 3-demethylcolchicines (DMCs) underwent O-sulfate conjugation in addition to the previously described O-glucuronidation. 2-DMC was preferably O-glucuronidated, whereas 3-DMC predominantly yielded O-sulfation conjugates, indicating phase II conjugation regiopreferences. Moreover, M1 was identified as a novel glutathione conjugate and a possible biotransformation pathway for its formation was proposed. The known 2-DMC (M6), 3-DMC (M7), 2-DMC glucuronide (M4), and novel 3-DMC sulfate (M3) were confirmed as the major metabolites. Radiometric data were acquired by the XFlow liquid chromatography-accurate radioisotope counting (XFlow LC-ARC) system, a novel technology for dynamic control of both on-column and postcolumn high-performance liquid chromatography flow rates to maximize sensitivity and resolution of radiochromatograms. A comparative evaluation was also performed between the XFlow LC-ARC system and a conventional flow radiometric detection system using bile samples from an in vivo disposition study of colchicine in male Sprague-Dawley rats. Results demonstrated a 20-fold sensitivity improvement of the XFlow LC-ARC system in comparison with radioactivity detection by conventional flow scintillation analyzers. The dynamic flow mode also provided the best chromatographic resolution. Unambiguous metabolite identification was performed by high-resolution mass spectrometry and nuclear magnetic resonance analysis.
Collapse
Affiliation(s)
- Lin Xu
- Drug Metabolism and Pharmacokinetic Department, Merck Research Laboratory, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Escorcia FE, McDevitt MR, Villa CH, Scheinberg DA. Targeted nanomaterials for radiotherapy. Nanomedicine (Lond) 2008; 2:805-15. [PMID: 18095847 DOI: 10.2217/17435889.2.6.805] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomaterials have garnered increasing interest recently as potential therapeutic drug-delivery vehicles. Among the existing nanomaterials are the pure carbon-based particles, such as fullerenes and nanotubes, various organic dendrimers, liposomes and other polymeric compounds. These vehicles have been decorated with a wide spectrum of target-reactive ligands, such as antibodies and peptides, which interact with cell-surface tumor antigens or vascular epitopes. Once targeted, these new nanomaterials can then deliver radioisotopes or isotope generators to the cancer cells. Here, we will review some of the more common nanomaterials under investigation and their current and future applications as drug-delivery scaffolds with particular emphasis on targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Freddy E Escorcia
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY 10021, USA
| | | | | | | |
Collapse
|