1
|
Ntamo Y, Samodien E, Burger J, Muller N, Muller CJF, Chellan N. In vitro Characterization of Insulin-Producing β-Cell Spheroids. Front Cell Dev Biol 2021; 8:623889. [PMID: 33585464 PMCID: PMC7876261 DOI: 10.3389/fcell.2020.623889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Over the years, immortalized rodent β-cell lines such as RIN, HIT, MIN, βTC, and INS-1 have been used to investigate pancreatic β-cell physiology using conventional two-dimensional (2D) culture techniques. However, physical and physiological limitations inherent to 2D cell culture necessitates confirmatory follow up studies using sentient animals. Three-dimensional (3D) culture models are gaining popularity for their recapitulation of key features of in vivo organ physiology, and thus could pose as potential surrogates for animal experiments. In this study, we aimed to develop and characterize a rat insulinoma INS-1 3D spheroid model to compare with 2D monolayers of the same cell line. Ultrastructural verification was done by transmission electron microscopy and toluidine blue staining, which showed that both 2D monolayers and 3D spheroids contained highly granulated cells with ultrastructural features synonymous with mature pancreatic β-cells, with increased prominence of these features observed in 3D spheroids. Viability, as assessed by cellular ATP quantification, size profiling and glucose utilization, showed that our spheroids remained viable for the experimental period of 30 days, compared to the limiting 5-day passage period of INS-1 monolayers. In fact, increasing ATP content together with spheroid size was observed over time, without adverse changes in glucose utilization. Additionally, β-cell function, assessed by determining insulin and amylin secretion, showed that the 3D spheroids retained glucose sensing and insulin secretory capability, that was more acute when compared to 2D monolayer cultures. Thus, we were able to successfully demonstrate that our in vitro INS-1 β-cell 3D spheroid model exhibits in vivo tissue-like structural features with extended viability and lifespan. This offers enhanced predictive capacity of the model in the study of metabolic disease, β-cell pathophysiology and the potential treatment thereof.
Collapse
Affiliation(s)
- Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Joleen Burger
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nolan Muller
- National Health Laboratory Service, Anatomical Pathology, Tygerberg Hospital, Cape Town, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Reporter PET Images Bortezomib Treatment-Mediated Suppression of Cancer Cell Proteasome Activity. Sci Rep 2018; 8:12290. [PMID: 30116045 PMCID: PMC6095884 DOI: 10.1038/s41598-018-29642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Proteasomal protein degradation is a promising target for cancer therapy. Here, we developed a positron emission tomography (PET) technique based on the sodium-iodide symporter (NIS) gene fused with the carboxyl-terminal of ornithine decarboxylase (cODC) that noninvasively images cancer cells with inhibited proteasome activity. A retroviral vector was constructed in which the murine cODC degron was fused to the human NIS gene (NIS-cODC). Transiently transduced CT26 and HT29 colon cancer cells and stably expressing CT26/NIS-cODC cells were prepared. In cancer cells transiently transduced with NIS-cODC, NIS expression and transport activity was low at baseline, but NIS protein and 125I uptake was significantly increased by inhibition of proteasome activity with bortezomib. Stable CT26/NIS-cODC cells also showed increased cytosolic and membrane NIS by bortezomib, and four different stable clones displayed bortezomib dose-dependent stimulation of 125I and 99mTc-04− uptake. Importantly, bortezomib dose-dependently suppressed survival of CT26/NIS-cODC clones in a manner that closely correlated to the magnitudes of 125I and 99mTc-04− uptake. CT26/NIS-cODC tumors of bortezomib-treated mice demonstrated greater 124I uptake on PET images and increased NIS expression on tissue staining compared to vehicle-injected animals. NIS-cODC PET imaging may allow noninvasive quantitative monitoring of proteasome activity in cancer cells treated with bortezomib.
Collapse
|
3
|
Diocou S, Volpe A, Jauregui-Osoro M, Boudjemeline M, Chuamsaamarkkee K, Man F, Blower PJ, Ng T, Mullen GED, Fruhwirth GO. [ 18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Sci Rep 2017; 7:946. [PMID: 28424464 PMCID: PMC5430436 DOI: 10.1038/s41598-017-01044-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer cell metastasis is responsible for most cancer deaths. Non-invasive in vivo cancer cell tracking in spontaneously metastasizing tumor models still poses a challenge requiring highest sensitivity and excellent contrast. The goal of this study was to evaluate if the recently introduced PET radiotracer [18F]tetrafluoroborate ([18F]BF4-) is useful for sensitive and specific metastasis detection in an orthotopic xenograft breast cancer model expressing the human sodium iodide symporter (NIS) as a reporter. In vivo imaging was complemented by ex vivo fluorescence microscopy and γ-counting of harvested tissues. Radionuclide imaging with [18F]BF4- (PET/CT) was compared to the conventional tracer [123I]iodide (sequential SPECT/CT). We found that [18F]BF4- was superior due to better pharmacokinetics, i.e. faster tumor uptake and faster and more complete clearance from circulation. [18F]BF4--PET was also highly specific as in all detected tissues cancer cell presence was confirmed microscopically. Undetected comparable tissues were similarly found to be free of metastasis. Metastasis detection by routine metabolic imaging with [18F]FDG-PET failed due to low standard uptake values and low contrast caused by adjacent metabolically active organs in this model. [18F]BF4--PET combined with NIS expressing disease models is particularly useful whenever preclinical in vivo cell tracking is of interest.
Collapse
Affiliation(s)
- S Diocou
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - A Volpe
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - M Jauregui-Osoro
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - M Boudjemeline
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - K Chuamsaamarkkee
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - F Man
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - P J Blower
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - T Ng
- King's College London, The Richard Dimbleby Department of Cancer Research, Randall Division of Molecular Biophysics and Cancer Division, Guy's Campus, London, SE1 1UL, UK
- UCL, Cancer Institute, Paul O'Gorman Building, London, WC1E 6BT, UK
| | - G E D Mullen
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - G O Fruhwirth
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
4
|
Wrzesinski K, Fey SJ. After trypsinisation, 3D spheroids of C3A hepatocytes need 18 days to re-establish similar levels of key physiological functions to those seen in the liver. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20060k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
5
|
Quach CHT, Jung KH, Paik JY, Park JW, Lee EJ, Lee KH. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging. Nucl Med Biol 2012; 39:1251-60. [DOI: 10.1016/j.nucmedbio.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 01/01/2023]
|
6
|
Richard-Fiardo P, Franken PR, Lamit A, Marsault R, Guglielmi J, Cambien B, Graslin F, Lindenthal S, Darcourt J, Pourcher T, Vassaux G. Normalisation to blood activity is required for the accurate quantification of Na/I symporter ectopic expression by SPECT/CT in individual subjects. PLoS One 2012; 7:e34086. [PMID: 22470517 PMCID: PMC3309932 DOI: 10.1371/journal.pone.0034086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used (99m)Tc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to 'noisy', and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy.
Collapse
Affiliation(s)
- Peggy Richard-Fiardo
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Philippe R. Franken
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Audrey Lamit
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Robert Marsault
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Julien Guglielmi
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Béatrice Cambien
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Fanny Graslin
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Sabine Lindenthal
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Thierry Pourcher
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Georges Vassaux
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- * E-mail:
| |
Collapse
|
7
|
Affiliation(s)
- Angel T Chan
- Department of Cardiology, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | |
Collapse
|
8
|
Heng BC, Bezerra PP, Preiser PR, Law SKA, Xia Y, Boey F, Venkatraman SS. Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture. Cytotherapy 2010; 13:606-17. [PMID: 21171823 DOI: 10.3109/14653249.2010.542455] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Characterization of endothelial cell-biomaterial interaction is crucial for the development of blood-contacting biomedical devices and implants. However, a crucial parameter that has largely been overlooked is the cell-seeding density. METHODS This study investigated how varying cell-seeding density influences human umbilical vein endothelial cell (HUVEC) proliferation on three different substrata: gelatin, tissue culture polystyrene (TCPS) and poly-l-lactic acid (PLLA). RESULTS The fastest proliferation was seen on gelatin, followed by TCPS and PLLA, regardless of seeding density. On both TCPS and gelatin, maximal proliferation was attained at an initial seeding density of 1000 cells/cm(2). At seeding densities above and below 1000 cells/cm(2), the proliferation rate decreased sharply. On PLLA, there was a decrease in cell numbers over 7 days of culture, below a certain threshold seeding density (c. 2500-3000 cells/cm(2)), which meant that some of the cells were dying off rather than proliferating. Above this threshold seeding density, HUVEC displayed slow proliferation. Subsequently, quantitative real-time polymerase chain reaction (RT-qPCR) analysis of eight gene markers associated with adhesion and endothelial functionality (VEGF-A, integrin-α5, VWF, ICAM1, ICAM2, VE-cadherin, endoglin and PECAM1) was carried out on HUVEC seeded at varying densities on the three substrata. A significant downregulation of gene expression was observed at an ultralow cell-seeding density of 100 cells/cm(2). This was accompanied by an extremely slow proliferation rate, probably because of an acute lack of intercellular contacts and paracrine signaling. CONCLUSION Hence, this study demonstrates that seeding density has a profound effect on the proliferation and gene expression profile of endothelial cells seeded on different biomaterial surfaces.
Collapse
Affiliation(s)
- Boon Chin Heng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | |
Collapse
|