1
|
Noone J, Rooney MF, Karavyraki M, Yates A, O’Sullivan SE, Porter RK. Cancer-Cachexia-Induced Human Skeletal Muscle Myotube Degeneration Is Prevented via Cannabinoid Receptor 2 Agonism In Vitro. Pharmaceuticals (Basel) 2023; 16:1580. [PMID: 38004445 PMCID: PMC10675367 DOI: 10.3390/ph16111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cachexia syndrome, leading to reduced skeletal muscle and fat mass, is highly prevalent in cancer patients, resulting in further negative implications for these patients. To date, there is no approved therapy for cachexia syndrome. The objective of this study was to establish an in vitro model of cancer cachexia in mature human skeletal muscle myotubes, with the intention of exploiting the cell model to assess potential cachexia therapeutics, specifically cannabinoid related drugs. Having cultured and differentiated primary human muscle myoblasts to mature myotubes, we successfully established two cancer cachexia models using conditioned media (CM) from human colon adenocarcinoma (SW480) and from non-small-cell lung carcinoma (H1299) cultured cells. The cancer-CM-induced extensive myotube degeneration, demonstrated by a significant reduction in mature myotube diameter, which progressed over the period studied. Myotube degeneration is a characteristic feature of cancer cachexia and was used in this study as an index of cachexia. Expression of cannabinoid 1 and 2 receptors (CB1R and CB2R) was confirmed in the mature human skeletal muscle myotubes. Subsequently, the effect of cannabinoid compounds on this myotube degeneration were assessed. Tetrahydrocannabinol (THC), a partial CB1R/CB2R agonist, and JWH133, a selective CB2R agonist, proved efficacious in protecting mature human myotubes from the deleterious effects of both (SW480 and H1299) cancer cachexia conditions. ART27.13, a full, peripherally selective CB1R/CB2R agonist, currently being trialled in cancer cachexia (IRAS ID 278450, REC 20/NE/0198), was also significantly protective against myotube degeneration in both (SW480 and H1299) cancer cachexia conditions. Furthermore, the addition of the CB2R antagonist AM630, but not the CB1R antagonist Rimonabant, abolished the protective effect of ART27.13. In short, we have established a convenient and robust in vitro model of cancer-induced human skeletal muscle cachexia. The data obtained using the model demonstrate the therapeutic potential of ART27.13 in cancer-induced cachexia prevention and provides evidence indicating that this effect is via CB2R, and not CB1R.
Collapse
Affiliation(s)
- John Noone
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Mary F. Rooney
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Marilena Karavyraki
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Andrew Yates
- Artelo Bioscience, Ltd., Alderly Edge, Cheshire SK10 4TG, UK (S.E.O.)
| | | | - Richard K. Porter
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| |
Collapse
|
2
|
Whiting ZM, Yin J, de la Harpe SM, Vernall AJ, Grimsey NL. Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future. Trends Pharmacol Sci 2022; 43:754-771. [PMID: 35906103 DOI: 10.1016/j.tips.2022.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Cannabinoid Receptor 2 (CB2) is a G protein-coupled receptor (GPCR) with considerable, though as yet unrealised, therapeutic potential. Promising preclinical data supports the applicability of CB2 activation in autoimmune and inflammatory diseases, pain, neurodegeneration, and osteoporosis. A diverse pharmacopoeia of cannabinoid ligands is available, which has led to considerable advancements in the understanding of CB2 function and extensive preclinical evaluation. However, until recently, most CB2 ligands were highly lipophilic and as such not optimal for clinical application due to unfavourable physicochemical properties. A number of strategies have been applied to develop CB2 ligands to achieve closer to 'drug-like' properties and a few such compounds have now undergone clinical trial. We review the current state of CB2 ligand development and progress in optimising physicochemical properties, understanding advanced molecular pharmacology such as functional selectivity, and clinical evaluation of CB2-targeting compounds.
Collapse
Affiliation(s)
- Zak M Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiazhen Yin
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Sara M de la Harpe
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
3
|
Varrone A, Bundgaard C, Bang-Andersen B. PET as a Translational Tool in Drug Development for Neuroscience Compounds. Clin Pharmacol Ther 2022; 111:774-785. [PMID: 35201613 PMCID: PMC9305164 DOI: 10.1002/cpt.2548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/29/2022] [Indexed: 11/05/2022]
Abstract
In central nervous system drug discovery programs, early development of new chemical entities (NCEs) requires a multidisciplinary strategy and a translational approach to obtain proof of distribution, proof of occupancy, and proof of function in specific brain circuits. Positron emission tomography (PET) provides a way to assess in vivo the brain distribution of NCEs and their binding to the target of interest, provided that radiolabeling of the NCE is possible or that a suitable radioligand is available. PET is therefore a key tool for early phases of drug discovery programs. This review will summarize the main applications of PET in early drug development and discuss the usefulness of PET microdosing studies performed with direct labelling of the NCE and PET occupancy studies. The purpose of this review is also to propose an alignment of the nomenclatures used by drug metabolism and pharmacokinetic scientists and PET imaging scientists to indicate key pharmacokinetic parameters and to provide guidance in the performance and interpretation of PET studies.
Collapse
Affiliation(s)
- Andrea Varrone
- Translational Biomarkers and Imaging, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Benny Bang-Andersen
- Translational Biomarkers and Imaging, H. Lundbeck A/S, Copenhagen, Denmark.,Medicinal Chemistry & Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
4
|
Sholler DJ, Huestis MA, Amendolara B, Vandrey R, Cooper ZD. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav 2020; 199:173059. [PMID: 33086126 PMCID: PMC7725960 DOI: 10.1016/j.pbb.2020.173059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.
Collapse
Affiliation(s)
- Dennis J Sholler
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin Amendolara
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziva D Cooper
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
6
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
8
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
9
|
PET microdosing of CNS drugs. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Varnäs K, Juréus A, Johnström P, Ahlgren C, Schött P, Schou M, Gruber S, Jerning E, Malmborg J, Halldin C, Afzelius L, Farde L. Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676. J Pharmacol Exp Ther 2016; 358:464-71. [PMID: 27402278 DOI: 10.1124/jpet.116.234146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/06/2016] [Indexed: 03/08/2025] Open
Abstract
Positron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5-hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer's disease. Here, we evaluated the properties of AZD3676 as a CNS drug by combining in vitro and ex vivo radioligand binding techniques, behavioral pharmacology in rodents, and PET imaging in nonhuman primates. Target engagement in the nonhuman primate brain was assessed in PET studies by determination of drug-induced occupancy using receptor-selective radioligands. AZD3676 showed preclinical properties consistent with CNS drug potential, including nanomolar receptor affinity and efficacy in rodent models of learning and memory. In PET studies of the monkey brain, AZD3676 inhibited radioligand binding in a dose-dependent manner with similar affinity at both receptors. The equally high affinity at 5-HT1A and 5-HT1B receptors as determined in vivo was not predicted from corresponding estimates obtained in vitro, suggesting more than 10-fold selectivity for 5-HT1A versus 5-HT1B receptors. These findings support the further integrated use of PET for confirmation of multitarget occupancy of CNS drugs. Importantly, earlier introduction of PET studies in nonhuman primates may reduce future development costs and the requirement for animal experiments in preclinical CNS drug development programs.
Collapse
Affiliation(s)
- Katarina Varnäs
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Anders Juréus
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Peter Johnström
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Charlotte Ahlgren
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Pär Schött
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Susanne Gruber
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Eva Jerning
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Jonas Malmborg
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Lovisa Afzelius
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| | - Lars Farde
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (K.V., P.J., M.S., C.H., L.F.); AstraZeneca Translational Science Centre at Karolinska Institutet, PET CoE, Stockholm (P.J., M.S., L.F.); AstraZeneca R&D, Södertälje (A.J., C.A., P.S., S.G., E.J., J.M., L.A.), Sweden
| |
Collapse
|
11
|
Teodoro R, Moldovan RP, Lueg C, Günther R, Donat CK, Ludwig FA, Fischer S, Deuther-Conrad W, Wünsch B, Brust P. Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors. Org Med Chem Lett 2013; 3:11. [PMID: 24063584 PMCID: PMC3856494 DOI: 10.1186/2191-2858-3-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background The level of expression of cannabinoid receptor type 2 (CB2R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB2R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers [18F]1 and [18F]2 as CB2 receptor PET imaging agents. Results High binding affinity and specificity towards CB2 receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and [18F]1 and [18F]2 were achieved in radiochemical yields of ≥30% with radiochemical purities of ≥98% and specific activities of 250 to 450 GBq/μmol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood–brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized [18F]1 and [18F]2 accounted for 60% and 2% as well as 68% and 88% of the total activity in the plasma and brain, respectively. The main radiometabolite of [18F]2 could be identified as the free acid [18F]10, which has no affinity towards the CB1 and CB2 receptors but can cross the BBB. Conclusions N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of [18F]1 and [18F]2 in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of [18F]1 and [18F]2 will help to elucidate the potential of this class of compounds for CB2R PET studies.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 58-62, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|