1
|
Magnussen J. Advances in PET Imaging of α7 Nicotinic Receptors: From Radioligand Development to CNS Applications. Basic Clin Pharmacol Toxicol 2025; 136:e70025. [PMID: 40084546 PMCID: PMC11907392 DOI: 10.1111/bcpt.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Positron emission tomography (PET) has significantly advanced our understanding of the brain by enabling non-invasive imaging and quantification of molecular processes, including receptor binding. In this review, we explore the development and application of PET radioligands targeting the α7 nicotinic acetylcholine receptor (α7 nAChR), a receptor implicated in various central nervous system (CNS) diseases, such as Alzheimer's disease, schizophrenia and cognitive disorders. Despite challenges associated with the low density of α7 nAChRs and difficulties in achieving adequate brain penetration, several promising radioligands have been developed, including 11C-(R)-MeQAA, 11C-NS14492 and 18F-ASEM. These radioligands facilitate the evaluation of the 'three pillars of survival' in drug development: tissue accessibility, target engagement and downstream pharmacology. PET imaging offers critical insights into drug distribution across the blood-brain barrier, receptor occupancy and the pharmacodynamic effects of α7 nAChR-targeted therapies. By reviewing current radioligands and their applications, we highlight the potential of PET imaging to deepen our understanding of α7 nAChR-mediated signalling pathways and its implications for CNS drug discovery. Future innovations in radioligand development, including more selective and brain-penetrant compounds, will be key to fully realizing the potential of PET imaging in α7 nAChR-targeted research and treatment.
Collapse
|
2
|
Carroll L, Holt D, Cha H, Catazaro J, Thorley KJ, Dannals RF, Pomper MG. Investigating the Mechanism of Aluminum Fluoride Chelation. Inorg Chem 2024; 63:9831-9841. [PMID: 38739498 DOI: 10.1021/acs.inorgchem.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aluminum fluoride (AlF) complexes have been used over the past decade to incorporate [18F]fluoride into large biomolecules in a highly selective fashion by using relatively facile conditions. However, despite their widespread usage, there are a large number of variations in the reaction conditions, without a definitive discussion provided on the mechanism to understand how these changes would alter the end result. Herein, we report a detailed mechanistic investigation of the reaction, using a mixture of theoretical studies, fluorine-19 and fluorine-18 chemistry, and the consequences it has on the efficient clinical translation of AlF-containing imaging agents.
Collapse
Affiliation(s)
- Laurence Carroll
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Daniel Holt
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Hyojin Cha
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Jonathan Catazaro
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Karl J Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| |
Collapse
|
3
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19:278-288. [PMID: 36977843 DOI: 10.1038/s41582-023-00792-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis - the morphological, molecular and functional transformation of astrocytes during disease - has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Nicotinic Acetylcholine Receptors and Microglia as Therapeutic and Imaging Targets in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092780. [PMID: 35566132 PMCID: PMC9102429 DOI: 10.3390/molecules27092780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) accumulation and tauopathy are considered the pathological hallmarks of Alzheimer’s disease (AD), but attenuation in choline signaling, including decreased nicotinic acetylcholine receptors (nAChRs), is evident in the early phase of AD. Currently, there are no drugs that can suppress the progression of AD due to a limited understanding of AD pathophysiology. For this, diagnostic methods that can assess disease progression non-invasively before the onset of AD symptoms are essential, and it would be valuable to incorporate the concept of neurotheranostics, which simultaneously enables diagnosis and treatment. The neuroprotective pathways activated by nAChRs are attractive targets as these receptors may regulate microglial-mediated neuroinflammation. Microglia exhibit both pro- and anti-inflammatory functions that could be modulated to mitigate AD pathogenesis. Currently, single-cell analysis is identifying microglial subpopulations that may have specific functions in different stages of AD pathologies. Thus, the ability to image nAChRs and microglia in AD according to the stage of the disease in the living brain may lead to the development of new diagnostic and therapeutic methods. In this review, we summarize and discuss the recent findings on the nAChRs and microglia, as well as their methods for live imaging in the context of diagnosis, prophylaxis, and therapy for AD.
Collapse
|
6
|
Gao H, Wang S, Qiang B, Wang S, Zhang H. Radioiodinated 9-fluorenone derivatives for imaging α7-nicotinic acetylcholine receptors. MEDCHEMCOMM 2019; 10:2102-2110. [PMID: 32904124 DOI: 10.1039/c9md00415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
A series of 9H-fluoren-9-one substituents were synthesized and evaluated for imaging cerebral α7-nAChRs. Meta-iodine substituted 9-fluorenone 5 with high binding affinity (K i = 9.3 nM) and selectivity was radiolabeled with 125I. Fully in vitro and in vivo studies of [125I]5 have been performed. [125I]5 exhibited well brain uptake with a peak concentration of 7.5 ± 0.9% ID/g in mice brains. Moreover, ex vivo autoradiography studies and micro single-photon emission computed tomography (micro-SPECT/CT) dynamic imaging in mice confirmed its in vivo imaging properties. Besides, molecular docking and MD studies were also performed to interpret the binding mechanisms of the two series of ligands towards α7-nAChRs. To conclude, the meta-iodine substituted 9-fluorenone [125I]5 could be a promising tracer for imaging α7-nAChRs.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Shuxia Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Bingchao Qiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Sixuan Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| |
Collapse
|
7
|
Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyl-technetium-labeled A-85380: An imaging probe for single-photon emission computed tomography investigation of nicotinic acetylcholine receptors in the brain. Bioorg Med Chem 2019; 27:2245-2252. [PMID: 31047775 DOI: 10.1016/j.bmc.2019.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 10/27/2022]
Abstract
We have designed (S)-(5-(azetidin-2-ylmethoxy)pyridine-3-yl)methyl cyclopentadienyltricarbonyl technetium carboxylate ([99mTc]CPTT-A-E) with high affinity for nicotinic acetylcholine receptors (nAChRs) using (2(S)-azetidinylmethoxy)-pyridine (A-85380) as the lead compound to develop a Tc-99m-cyclopentadienyltricarbonyl-technetium (99mTc)-labeled nAChR imaging probe. Because technetium does not contain a stable isotope, cyclopentadienyltricarbonyl rhenium (CPTR) was synthesized by coordinating rhenium, which is a homologous element having the same coordination structure as technetium. Further, the binding affinity to nAChR was evaluated. CPTR-A-E exhibited a high binding affinity to nAChR (Ki = 0.55 nM). Through the radiosynthesis of [99mTc]CPTT-A-E, an objective compound could be obtained with a radiochemical yield of 33% and a radiochemical purity of greater than 97%. In vitro autoradiographic study of the brain exhibited that the local nAChR density strongly correlated with the amount of [99mTc]CPTT-A-E that was accumulated in each region of interest. Further, the in vivo evaluation of biodistribution revealed a higher accumulation of [99mTc]CPTT-A-E in the thalamus (characterized by the high nAChR density) when compared with that in the cerebellum (characterized by the low nAChR density). Although additional studies will be necessary to improve the uptake of [99mTc]CPTT-A-E to the brain, [99mTc]CPTT-A-E met the basic requirements for nAChR imaging.
Collapse
|
8
|
|
9
|
Potential of α7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods 2017; 130:90-104. [PMID: 28602809 DOI: 10.1016/j.ymeth.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.
Collapse
|
10
|
Kassenbrock A, Vasdev N, Liang SH. Selected PET Radioligands for Ion Channel Linked Neuroreceptor Imaging: Focus on GABA, NMDA and nACh Receptors. Curr Top Med Chem 2017; 16:1830-42. [PMID: 26975506 DOI: 10.2174/1568026616666160315142457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a developing area of preclinical and clinical research. The present review focuses on recent advances with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
Collapse
Affiliation(s)
| | | | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Cheng G, Werner TJ, Newberg A, Alavi A. Failed PET Application Attempts in the Past, Can We Avoid Them in the Future? Mol Imaging Biol 2016; 18:797-802. [DOI: 10.1007/s11307-016-1017-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Chalon S, Vercouillie J, Guilloteau D, Suzenet F, Routier S. PET tracers for imaging brain α7 nicotinic receptors: an update. Chem Commun (Camb) 2016; 51:14826-31. [PMID: 26359819 DOI: 10.1039/c5cc04536c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Positron emission tomography (PET) molecular imaging of brain targets is a powerful tool to diagnose, follow up, and develop treatments and personalized medicine for a number of acute and chronic brain disorders. The availability of β+ emitter tracers labelled with [(11)C] or [(18)F] having optimal characteristics of affinity and selectivity for alpha-7 nicotinic receptors (α7R) has received considerable attention, due to the major implication of these receptors in brain functions. The aim of this review is to identify the interest and need for the in vivo exploration of α7R by PET molecular imaging, which tools are currently available for this and how to progress.
Collapse
Affiliation(s)
- S Chalon
- UMR Inserm U930, Université François-Rabelais de Tours, F-37000 Tours, France.
| | | | | | | | | |
Collapse
|
13
|
Horti AG. Development of [(18)F]ASEM, a specific radiotracer for quantification of the α7-nAChR with positron-emission tomography. Biochem Pharmacol 2015; 97:566-575. [PMID: 26232729 DOI: 10.1016/j.bcp.2015.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
Abstract
The alpha-7 subtype of the nicotinic acetylcholine receptor (α7-nAChR) is fundamental to physiology; it mediates various brain functions and represents an important target for drug discovery. Exploration of the brain nicotinic acetylcholine receptors (nAChRs) using positron-emission tomography (PET) will make it possible to better understand the important role of this receptor and to study its involvement in schizophrenia, bipolar disorder, Alzheimer's and Parkinson's diseases, drug dependence, inflammation and many other disorders and simplify the development of nicotinic drugs for treatment of these disorders. Until recently, PET imaging of α7-nAChRs has been impeded by the absence of good radiotracers. This review describes various endeavors to develop α7-nAChR PET tracers by several research groups including the author's group. Most initial PET tracers for imaging α7-nAChRs did not exhibit suitable imaging properties due to their low specific binding. Newly discovered [(18)F]ASEM is the first highly specific α7-nAChR radioligand and in 2014 it was translated to human PET imaging.
Collapse
Affiliation(s)
- Andrew G Horti
- Department of Radiology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287-0816, USA.
| |
Collapse
|
14
|
Wu A, Li X, Xue Q, Liu Y, Lu X, Yan X, Zhang H. Radio synthesis and in vivo evaluation of two α7 nAChRs radioligands: [125I]CAIPE and [125I]IPPU. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Magnussen JH, Ettrup A, Donat CK, Peters D, Pedersen MHF, Knudsen GM, Mikkelsen JD. Radiosynthesis and in vitro validation of (3)H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand. Eur J Pharmacol 2015; 762:35-41. [PMID: 25941084 DOI: 10.1016/j.ejphar.2015.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
The neuronal α7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer׳s disease and schizophrenia. We have previously described (11)C-NS14492 as a suitable agonist radioligand for in vivo positron emission tomography (PET) occupancy studies of the α7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, (3)H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding assays in pig frontal cortex. (3)H-NS14492 showed specific binding to α7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1±0.7nM and a maximum number of binding sites (Bmax) of 15.7±2.0fmol/mg tissue equivalent. Binding distribution was similar to that of another selective ligand (125)I-α-bungarotoxin ((125)I-BTX) in autoradiography, and unlabeled NS14492 displaced (125)I-BTX with an inhibition constant (Ki) of 23nM. (3)H-NS14492 bound to α7 nicotinic receptors in homogenized pig frontal cortex with a Kd of 0.8±0.3nM and a Bmax of 30.2±11.6fmol/mg protein. This binding assay further revealed the Ki rank order for a number of α7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of (3)H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together, these findings show that (3)H-NS14492 is a useful new in vitro radioligand for the pig α7 nicotinic receptor.
Collapse
Affiliation(s)
- Janus H Magnussen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelius K Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin H F Pedersen
- The Hevesy Laboratory, DTU Nutech, The Technical University of Denmark, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
16
|
[(125)I]Iodo-ASEM, a specific in vivo radioligand for α7-nAChR. Nucl Med Biol 2015; 42:488-493. [PMID: 25687449 DOI: 10.1016/j.nucmedbio.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
[(125)I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (K(i) = 0.5 nM; α7/α4β2 = 3414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1600Ci/mmol; 59.2 MBq/μmol). [(125)I]Iodo-ASEM readily entered the brains of normal CD-1 mice and specifically and selectively labeled cerebral α7-nAChRs. [(125)I]iodo-ASEM is a new useful tool for studying α7-nAChR.
Collapse
|
17
|
Design of α7 nicotinic acetylcholine receptor ligands in quinuclidine, tropane and quinazoline series. Chemistry, molecular modeling, radiochemistry, in vitro and in rats evaluations of a [18F] quinuclidine derivative. Eur J Med Chem 2014; 82:214-24. [DOI: 10.1016/j.ejmech.2014.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
|
18
|
Gao Y, Kellar KJ, Yasuda RP, Tran T, Xiao Y, Dannals RF, Horti AG. Derivatives of dibenzothiophene for positron emission tomography imaging of α7-nicotinic acetylcholine receptors. J Med Chem 2013; 56:7574-89. [PMID: 24050653 DOI: 10.1021/jm401184f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4-20 nM) has been synthesized for positron emission tomography (PET) imaging of α7-nAChRs. Two radiolabeled members of the series [(18)F]7a (Ki = 0.4 nM) and [(18)F]7c (Ki = 1.3 nM) were synthesized. [(18)F]7a and [(18)F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [(18)F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR central nervous system drugs demonstrated that [(18)F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [(18)F]7a (BPND = 5.3-8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [(18)F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates.
Collapse
Affiliation(s)
- Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, The Johns Hopkins University School of Medicine , 600 North Wolfe Street, Baltimore, Maryland 21287-0816, United States
| | | | | | | | | | | | | |
Collapse
|