1
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
2
|
Liu RZ, Godbout R. An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis. Cancers (Basel) 2020; 12:E3823. [PMID: 33352874 PMCID: PMC7766576 DOI: 10.3390/cancers12123823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Treatment for early stage and localized prostate cancer (PCa) is highly effective. Patient survival, however, drops dramatically upon metastasis due to drug resistance and cancer recurrence. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. It is therefore crucial to decipher the key genetic alterations and relevant molecular pathways driving PCa metastatic progression so that predictive biomarkers and precise therapeutic targets can be developed. Through PCa cohort analysis, we found that a fatty acid-binding protein (FABP) gene cluster (containing five FABP family members) is preferentially amplified and overexpressed in metastatic PCa. All five FABP genes reside on chromosome 8 at 8q21.13, a chromosomal region frequently amplified in PCa. There is emerging evidence that these FABPs promote metastasis through distinct biological actions and molecular pathways. In this review, we discuss how these FABPs may serve as drivers/promoters for PCa metastatic transformation using patient cohort analysis combined with a review of the literature.
Collapse
Affiliation(s)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| |
Collapse
|
3
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
4
|
Liu RZ, Choi WS, Jain S, Dinakaran D, Xu X, Han WH, Yang XH, Glubrecht DD, Moore RB, Lemieux H, Godbout R. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol Oncol 2020; 14:3100-3120. [PMID: 33031638 PMCID: PMC7718947 DOI: 10.1002/1878-0261.12818] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak Dinakaran
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Hong Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Ronald B Moore
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Ha X, Wang J, Chen K, Deng Y, Zhang X, Feng J, Li X, Zhu J, Ma Y, Qiu T, Wang C, Xie J, Zhang J. Free Fatty Acids Promote the Development of Prostate Cancer by Upregulating Peroxisome Proliferator-Activated Receptor Gamma. Cancer Manag Res 2020; 12:1355-1369. [PMID: 32158268 PMCID: PMC7048952 DOI: 10.2147/cmar.s236301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction As one of the most common forms of cancer that threatens men's health, prostate cancer (PCa) is under a trend of increasing morbidity and mortality in most countries. More and more studies have pointed out that obesity is closely linked to the occurrence and development of PCa, although there are still many undiscovered molecular mechanisms between the two. Methods In the present study, we compare serum lipid levels in patients with PCa and normal individuals. PCa cells (PC3 and 22RV1) were cultured in vitro, the TC/TG/HDL/GLU assay kit was used to detect the glucose and lipid metabolism level of PCa cells, the flow cytometry technique was used to detect the proliferation ability of PCa cells, and the Transwell was used to detect the invasion and migration ability of PCa cells. Western blot/quantitative real-time PCR was used to detect peroxisome proliferator-activated receptor γ (PPARγ) and vimentin/vascular endothelial growth factor-A (VEGF-A) expression levels, and immunohistochemistry was used to observe tumor-associated gene expression levels in nude mice. All data were analysed using the Independent samples t-test or rank sum test. Results We found higher levels of FFA in the serum of patients with PCa. In vitro experiments have demonstrated that high levels of FFA can promote the proliferation, migration and invasion of two PCa cells (PC3 and 22RV1) and affect the energy metabolism of PCa cells. The upregulated PPARγ plays a key role in this process, and vimentin may be involved in this signaling pathway. Conclusion We infer that high levels of FFA may promote PCa development by upregulating PPARγ expression.
Collapse
Affiliation(s)
- Xiaodan Ha
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xue Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiaojiao Zhu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yinghua Ma
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Tongtong Qiu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| |
Collapse
|
6
|
Vayalil PK. Mitochondrial oncobioenergetics of prostate tumorigenesis. Oncol Lett 2019; 18:4367-4376. [PMID: 31611945 PMCID: PMC6781517 DOI: 10.3892/ol.2019.10785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are emerging as key players in the tumorigenic process of cells by maintaining the biosynthetic and energetic capabilities of cancer cells. It is now evident that mitochondria are involved in the malignant transformation, cell proliferation, aggression and metastatic behavior of prostate cancer (PC). Recent comprehensive analysis of the mitochondrial oncobioenergetic (MOB) profile of PC cells using microplate-based high resolution respirometry has clearly demonstrated that characteristic MOB alterations occur at different stages of PC development. Additionally, studies have reported that modification of the MOB profile significantly inhibits the growth of malignant cells. This observation suggests that dynamic alterations in the MOB function are a critical component in the development of malignant disease of the prostate. Therefore, quantification of MOB function may be a good marker for the prediction of tumor stage. Future studies may develop novel approaches to measure oncobioenergetics of tumors with minimal invasive procedures effectively in men to determine the general prostate health and tumor staging, and to predict whether a tumor will proceed to malignancy in patients. Additionally, since PC is a slow growing tumor, modulating the MOB profile at specific stages of tumor development may be a novel approach to treat or prevent PC.
Collapse
Affiliation(s)
- Praveen Kumar Vayalil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Beinat C, Haywood T, Chen YS, Patel CB, Alam IS, Murty S, Gambhir SS. The Utility of [ 18F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography. Mol Imaging Biol 2018; 20:1015-1024. [PMID: 29736561 DOI: 10.1007/s11307-018-1194-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE There is a strong, unmet need for superior positron emission tomography (PET) imaging agents that are able to measure biochemical processes specific to prostate cancer. Pyruvate kinase M2 (PKM2) catalyzes the concluding step in glycolysis and is a key regulator of tumor growth and metabolism. Elevation of PKM2 expression was detected in Gleason 8-10 tumors compared to Gleason 6-7 carcinomas, indicating that PKM2 may potentially be a marker of aggressive prostate cancer. We have recently reported the development of a PKM2-specific radiopharmaceutical [18F]DASA-23 and herein describe its evaluation in cell culture and preclinical models of prostate cancer. PROCEDURE The cellular uptake of [18F]DASA-23 was evaluated in a panel of prostate cancer cell lines and compared to that of [18F]FDG. The specificity of [18F]DASA-23 to measure PKM2 levels in cell culture was additionally confirmed through the use of PKM2-specific siRNA. PET imaging studies were then completed utilizing subcutaneous prostate cancer xenografts using either PC3 or DU145 cells in mice. RESULTS [18F]DASA-23 uptake values over 60-min incubation period in PC3, LnCAP, and DU145 respectively were 23.4 ± 4.5, 18.0 ± 2.1, and 53.1 ± 4.6 % tracer/mg protein. Transient reduction in PKM2 protein expression with siRNA resulted in a 50.1 % reduction in radiotracer uptake in DU145 cells. Small animal PET imaging revealed 0.86 ± 0.13 and 1.6 ± 0.2 % ID/g at 30 min post injection of radioactivity in DU145 and PC3 subcutaneous tumor bearing mice respectively. CONCLUSION Herein, we evaluated a F-18-labeled PKM2-specific radiotracer, [18F]DASA-23, for the molecular imaging of prostate cancer with PET. [18F]DASA-23 revealed rapid and extensive uptake levels in cellular uptake studies of prostate cancer cells; however, there was only modest tumor uptake when evaluated in mouse subcutaneous tumor models.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
| | - Yun-Sheng Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
| | - Chirag B Patel
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
| | - Surya Murty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA
- Department of Bioengineering and Materials Science & Engineering, Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 943065, USA.
- Department of Bioengineering and Materials Science & Engineering, Bio-X, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Flavell RR, Truillet C, Regan MK, Ganguly T, Blecha JE, Kurhanewicz J, VanBrocklin HF, Keshari KR, Chang CJ, Evans MJ, Wilson DM. Caged [(18)F]FDG Glycosylamines for Imaging Acidic Tumor Microenvironments Using Positron Emission Tomography. Bioconjug Chem 2015; 27:170-8. [PMID: 26649808 DOI: 10.1021/acs.bioconjchem.5b00584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid tumors are hypoxic with altered metabolism, resulting in secretion of acids into the extracellular matrix and lower relative pH, a feature associated with local invasion and metastasis. Therapeutic and diagnostic agents responsive to this microenvironment may improve tumor-specific delivery. Therefore, we pursued a general strategy whereby caged small-molecule drugs or imaging agents liberate their parent compounds in regions of low interstitial pH. In this manuscript, we present a new acid-labile prodrug method based on the glycosylamine linkage, and its application to a class of positron emission tomography (PET) imaging tracers, termed [(18)F]FDG amines. [(18)F]FDG amines operate via a proposed two-step mechanism, in which an acid-labile precursor decomposes to form the common radiotracer 2-deoxy-2-[(18)F]fluoro-d-glucose, which is subsequently accumulated by glucose avid cells. The rate of decomposition of [(18)F]FDG amines is tunable in a systematic fashion, tracking the pKa of the parent amine. In vivo, a 4-phenylbenzylamine [(18)F]FDG amine congener showed greater relative accumulation in tumors over benign tissue, which could be attenuated upon tumor alkalinization using previously validated models, including sodium bicarbonate treatment, or overexpression of carbonic anhydrase. This new class of PET tracer represents a viable approach for imaging acidic interstitial pH with potential for clinical translation.
Collapse
Affiliation(s)
- Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Melanie K Regan
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Tanushree Ganguly
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center , New York, New York 10065, United States
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California , Berkeley, California 94720, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California , San Francisco, California 94158, United States
| |
Collapse
|