1
|
Huang D, Guo Y, Cui M, Fu H. Development and Preliminary Evaluation of a 125I-Labeled Radioligand ([ 125I]iodotrazoline) for In Vitro Detection of Imidazoline-2 Binding Site in the Brain. Mol Pharm 2025; 22:2224-2232. [PMID: 40077846 DOI: 10.1021/acs.molpharmaceut.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Astrocytes exert multiple functions within the brain, including regulating neuroinflammation and maintaining homeostasis, and the reactive astrocytes are implicated in many neurodegenerative disorders. Imidazoline-2 binding site (I2BS) has been established as a reliable biomarker for precisely quantifying reactive astrocytes. Here, we reported the development of [125I]iodotrazoline ([125I]8), a novel I2BS radioligand with high affinity (Ki = 6.8 nM) and exceptional selectivity over α2-adrenoceptors (>1400 folds). In vitro autoradiography (ARG) using rat brain sections revealed a heterogeneous distribution of [125I]8, with high signals in the medulla, midbrain, pons, and hypothalamus. Pretreatment with unlabeled I2BS-selective ligands, BU224 and FTIMD, reduced the binding by >30%, indicating high in vitro specificity for I2BS. Ex vivo ARG results confirmed this distribution pattern in the rat brain. Biodistribution results in mice demonstrated a rapid brain uptake of [125I]8 (3.35% ID/g at 2 min postinjection) with slow washout. Metabolite analysis exhibited the desirable biostability of [125I]8 in the rat brain. Altogether, this work provides a new 125I-labeled radioligand featuring a novel 2-trans-styryl-imidazoline scaffold, which shows significant specificity binding for I2BS in vitro, serving as a valuable tool for I2BS detection and astrocyte-related pathology research.
Collapse
Affiliation(s)
- Donglan Huang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yiming Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health and State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P. R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Kikuchi T, Okamura T, Zhang MR. Numerical simulation method for the assessment of the effect of molar activity on the pharmacokinetics of radioligands in small animals. EJNMMI Radiopharm Chem 2024; 9:78. [PMID: 39570519 PMCID: PMC11582259 DOI: 10.1186/s41181-024-00308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND It is well recognized that the molar activity of a radioligand is an important pharmacokinetic parameter, especially in positron emission tomography (PET) of small animals. Occupation of a significant number of binding sites by radioligand molecules results in low radioligand accumulation in a target region (mass effect). Nevertheless, small-animal PET studies have often been performed without consideration of the molar activity or molar dose of radioligands. A simulation study would therefore help to assess the importance of the mass effect in small-animal PET. Here, we introduce a new compartmental model-based numerical method, which runs on commonly used spreadsheet software, to simulate the effect of molar activity or molar dose on the pharmacokinetics of radioligands. RESULTS Assuming a two-tissue compartmental model, time-concentration curves of a radioligand were generated using four simulation methods and the well-known Runge-Kutta numerical method. The values were compared with theoretical values obtained under an ultra-high molar activity condition (pseudo-first-order binding kinetics), a steady-state condition and an equilibrium condition (second-order binding kinetics). For all conditions, the simulation method using the simplest calculation yielded values closest to the theoretical values and comparable with those obtained using the Runge-Kutta method. To satisfy a maximum occupancy less than 5%, simulations showed that a molar activity greater than 150 GBq/μmol is required for a model radioligand when 20 MBq is administered to a 250 g rat and when the concentration of binding sites in target regions is greater than 1.25 nM. CONCLUSIONS The simulation method used in this study is based on a very simple calculation and runs on widely used spreadsheet software. Therefore, simulation of radioligand pharmacokinetics using this method can be performed on a personal computer and help to assess the importance of the mass effect in small-animal PET. This simulation method also enables the generation of a model time-activity curve for the evaluation of kinetic analysis methods.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Parker CA, Nutt DJ, Tyacke RJ. Imidazoline-I2 PET Tracers in Neuroimaging. Int J Mol Sci 2023; 24:9787. [PMID: 37372936 DOI: 10.3390/ijms24129787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Targeting neuroinflammation, and in particular, microglial activation and astrocytosis, is a current area of the focus of new treatment interventions for a number of neurodegenerative disorders. Probing the roles of microglia and astrocytes in human disease requires the development of useful tools, such as PET imaging tools that are specific for the cell type(s) of interest. This review concentrates on the recent advances in the development of Imidazoline2 binding site (I2BS) PET tracers, which are purported to target astrocytes, and hence could represent key clinical imaging tools for targeting astrocytes in neurodegenerative disease. Five PET tracers for the I2BS are described in this review, with only one (11C-BU99008) being currently validated to GMP for clinical use, and data reported from healthy volunteers, Alzheimer's disease patients, and Parkinson's disease patients. The clinical data utilising 11C-BU99008 have revealed the potential early involvement of astrogliosis in neurodegeneration that might precede the activation of microglia, which, if confirmed, could provide a vital new means for potentially targeting neurodegeneration earlier in the disease course.
Collapse
Affiliation(s)
- Christine A Parker
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Robin J Tyacke
- Neuropsychopharmacology Unit, Division of Psychiatry, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
6
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Relationship between astrocyte reactivity, using novel 11C-BU99008 PET, and glucose metabolism, grey matter volume and amyloid load in cognitively impaired individuals. Mol Psychiatry 2022; 27:2019-2029. [PMID: 35125495 PMCID: PMC9126819 DOI: 10.1038/s41380-021-01429-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022]
Abstract
Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer 11C-BU99008, 18F-FDG and 18F-florbetaben PET, and T1-weighted MRI. Differences between cognitively impaired patients and healthy controls in regional and voxel-wise levels of astrocyte reactivity, glucose metabolism, grey matter volume and amyloid load were explored, and their relationship to each other was assessed using Biological Parametric Mapping (BPM). Amyloid beta (Aβ)-positive patients showed greater 11C-BU99008 uptake compared to controls, except in the temporal lobe, whilst further increased 11C-BU99008 uptake was observed in Mild Cognitive Impairment subjects compared to those with Alzheimer's disease in the frontal, temporal and cingulate cortices. BPM correlations revealed that regions which showed reduced 11C-BU99008 uptake in Aβ-positive patients compared to controls, such as the temporal lobe, also showed reduced 18F-FDG uptake and grey matter volume, although the correlations with 18F-FDG uptake were not replicated in the ROI analysis. BPM analysis also revealed a regionally-dynamic relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas of the temporal lobe and cingulate cortices was associated with reduced 11C-BU99008 uptake, whilst increased amyloid uptake in primary motor and sensory areas (in which amyloid deposition occurs later) was associated with increased 11C-BU99008 uptake. These novel observations add to the hypothesis that while astrocyte reactivity may be triggered by early Aβ-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy and glucose hypometabolism, although the evidence for glucose hypometabolism here is less strong.
Collapse
|
8
|
Calsolaro V, Matthews PM, Donat CK, Livingston NR, Femminella GD, Guedes SS, Myers J, Fan Z, Tyacke RJ, Venkataraman AV, Perneczky R, Gunn R, Rabiner EA, Gentleman S, Parker CA, Murphy PS, Wren PB, Hinz R, Sastre M, Nutt DJ, Edison P. Astrocyte reactivity with late-onset cognitive impairment assessed in vivo using 11C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry 2021; 26:5848-5855. [PMID: 34267329 PMCID: PMC8758500 DOI: 10.1038/s41380-021-01193-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
11C-BU99008 is a novel positron emission tomography (PET) tracer that enables selective imaging of astrocyte reactivity in vivo. To explore astrocyte reactivity associated with Alzheimer's disease, 11 older, cognitively impaired (CI) subjects and 9 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging (MRI), 18F-florbetaben and 11C-BU99008 PET. The 8 amyloid (Aβ)-positive CI subjects had higher 11C-BU99008 uptake relative to HC across the whole brain, but particularly in frontal, temporal, medial temporal and occipital lobes. Biological parametric mapping demonstrated a positive voxel-wise neuroanatomical correlation between 11C-BU99008 and 18F-florbetaben. Autoradiography using 3H-BU99008 with post-mortem Alzheimer's brains confirmed through visual assessment that increased 3H-BU99008 binding localised with the astrocyte protein glial fibrillary acid protein and was not displaced by PiB or florbetaben. This proof-of-concept study provides direct evidence that 11C-BU99008 can measure in vivo astrocyte reactivity in people with late-life cognitive impairment and Alzheimer's disease. Our results confirm that increased astrocyte reactivity is found particularly in cortical regions with high Aβ load. Future studies now can explore how clinical expression of disease varies with astrocyte reactivity.
Collapse
Affiliation(s)
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Blast Injury Studies, Imperial College London, London, UK
| | | | | | | | - Jim Myers
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zhen Fan
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robin J Tyacke
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Disorders (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Roger Gunn
- Department of Brain Sciences, Imperial College London, London, UK
- Invicro, London, UK
| | | | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Christine A Parker
- Department of Brain Sciences, Imperial College London, London, UK
- GlaxoSmithKline, Stevenage, UK
| | | | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK.
- Cardiff University, Cardiff, Wales, United Kingdom.
| |
Collapse
|
9
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
10
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
11
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Change in the Binding of [ 11C]BU99008 to Imidazoline I 2 Receptor Using Brain PET in Zucker Rats. Mol Imaging Biol 2018; 21:105-112. [PMID: 29736564 DOI: 10.1007/s11307-018-1206-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The imdazoline I2 receptor (I2R) has been found in the feeding centers of the brain, such as the hypothalamus, and certain I2R ligands have been reported to stimulate food intake. Thus, it has been proposed that I2R may play a role in feeding control. [11C]BU99008 was developed as a positron emission tomography (PET) tracer for imaging of I2R. [11C]BU99008 displayed relatively high brain penetration and specific binding by brain PET studies in preclinical studies. Here, we evaluated a pathological condition caused by obesity related to I2R function by quantitative PET study using [11C]BU99008. PROCEDURES PET scans were acquired in the Zucker (ZUC) lean and fatty rats, radioactivity and metabolites of plasma were measured, and the kinetic parameters were estimated. RESULTS Radioactivity levels after the injection of [11C]BU99008 in the hypothalamus of both ZUC lean and fatty rats were highly accumulated, and then gradually decreased until 60 min after the injection. The accumulated radioactivity from 30 to 60 min after the injection in the hypothalamus of the ZUC fatty rats was 1.3 times greater than that of lean rats. The volume of distribution (VT) estimated by Logan graphical analysis in the hypothalamus of the ZUC fatty rats was 1.8 times greater than that in the ZUC lean rats. In metabolite analysis, the percentages of the unchanged form in the plasma of the ZUC fatty rats at 60 min after the injection (5.0 %) was significantly lower than that of lean rats (9.1 %). CONCLUSIONS By PET imaging using [11C]BU99008, we demonstrated that the accumulated radioactivity and estimated VT value in the feeding center of ZUC lean rats was lower than that in fatty rats. PET studies using [11C]BU99008 may contribute to elucidate a pathological condition caused by obesity related to I2R function.
Collapse
|
13
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|