1
|
Tran HH, Yamaguchi A, Manning HC. Radiotheranostic landscape: A review of clinical and preclinical development. Eur J Nucl Med Mol Imaging 2025; 52:2685-2709. [PMID: 39891713 DOI: 10.1007/s00259-025-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Radiotheranostics combines diagnostic imaging with targeted radionuclide therapy, representing a transformative approach in precision oncology. Landmark approvals of Lutathera® and Pluvicto® have catalyzed significant advancements in this field, driving research into novel radionuclides, targeting strategies, and clinical applications. This review evaluates the evolving clinical and preclinical landscape of radiotheranostics, highlighting advancements, emerging trends, and persistent challenges in radionuclide therapy. METHODS A comprehensive analysis was performed, encompassing active clinical trials as of December 2024, sourced from ClinicalTrials.gov and TheranosticTrials.org. Preclinical developments were evaluated through a review of recent literature, focusing on innovations in radionuclide production, targeting molecules, and radiochemistry. RESULTS In reviewing the clinical landscape, agents targeting somatostatin receptors (SSTR) and prostate-specific membrane antigen (PSMA) still dominate the field, but new targets such as fibroblast activation protein (FAP), integrins, and gastrin-releasing peptide receptors (GRPR) are gaining traction in both clinical and preclinical development. While small molecules and peptides remain the most common radionuclide carriers, antibody-based carriers including bispecific antibodies, immunoglobin-derived antigen-binding fragments, and antibody-mimetic proteins are on the rise due to their specificity and adaptability. Innovations in radioligand design are driving a shift from agonists to antagonists, accompanied by the development of modified peptides with enhanced pharmacokinetics and tumor-targeting properties. Next-generation therapeutic radionuclides, such as the beta-emitter terbium-161 and alpha-emitters actinium-225 and lead-212, are under investigation to complement or replace lutetium-177, addressing the need for improved efficacy and reduced toxicity. Paired isotopic radionuclides are gaining popularity for their ability to optimize imaging and therapeutic dosimetry as they offer near-identical specificity, biodistribution, and metabolism. Additionally, radiohybrid systems represent an innovative approach to chelating chemically distinct radionuclide pairs within a single molecule, further enhancing flexibility in radiotheranostic design. CONCLUSION Radiotheranostics has transformed cancer care through its precision and adaptability, but challenges in radionuclide production, regulatory frameworks, and workforce training hinder broader adoption. Advances in isotopic pairing, next-generation radionuclides, and radiohybrid systems in preclinical and clinical settings hold promise to overcome these barriers. Collaborative efforts among academia, industry, and regulatory bodies are critical to accelerating innovation and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Ha H Tran
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aiko Yamaguchi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Galldiks N, Lohmann P, Friedrich M, Werner JM, Stetter I, Wollring MM, Ceccon G, Stegmayr C, Krause S, Fink GR, Law I, Langen KJ, Tonn JC. PET imaging of gliomas: Status quo and quo vadis? Neuro Oncol 2024; 26:S185-S198. [PMID: 38970818 PMCID: PMC11631135 DOI: 10.1093/neuonc/noae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Stetter
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael M Wollring
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Sandra Krause
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
3
|
Xi J, Liu K, Peng Z, Dai X, Wang Y, Cai C, Yang D, Yan C, Li X. Toxic warhead-armed antibody for targeted treatment of glioblastoma. Crit Rev Oncol Hematol 2024; 193:104205. [PMID: 38036153 DOI: 10.1016/j.critrevonc.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.
Collapse
Affiliation(s)
- Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Brosch-Lenz JF, Delker A, Schmidt F, Tran-Gia J. On the Use of Artificial Intelligence for Dosimetry of Radiopharmaceutical Therapies. Nuklearmedizin 2023; 62:379-388. [PMID: 37827503 DOI: 10.1055/a-2179-6872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.
Collapse
Affiliation(s)
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, Munich, Germany
| | - Fabian Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Supuran CT. Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opin Ther Pat 2023; 33:701-720. [PMID: 37545058 DOI: 10.1080/13543776.2023.2245971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Several isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are connected with tumorigenesis. Hypoxic tumors overexpress CA IX and XII as a consequence of HIF activation cascade, being involved in pH regulation, metabolism, and metastases formation. Other isoforms (CA I, II, III, IV) were also reported to be present in some tumors. AREAS COVERED Some CA isoforms are biomarkers for disease progression or response to therapy. Inhibitors, antibodies, and other procedures for targeting these enzymes for the treatment of tumors/metastases are discussed. Sulfonamides and coumarins represent the most investigated classes of inhibitors, but carboxylates, selenium, and tellurium-containing inhibitors were also investigated. Hybrid drugs of CA inhibitors with other antitumor agents for multitargeted therapy were reported. EXPERT OPINION Targeting CAs present in solid or hematological tumors with selective, targeted inhibitors is a validated approach, which has been consolidated in the last years. A host of new preclinical data and several clinical trials of antibodies and small-molecule inhibitors are ongoing, which connected with the large number of new chemotypes/procedures discovered to be effective, may lead to a breakthrough in this therapeutic area. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2018 to 2023.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
6
|
Roll W, Müther M, Böning G, Delker A, Warneke N, Gildehaus FJ, Schäfers M, Stummer W, Zeidler R, Reulen HJ, Stegger L. First clinical experience with fractionated intracavitary radioimmunotherapy using [ 177Lu]Lu-6A10-Fab fragments in patients with glioblastoma: a pilot study. EJNMMI Res 2023; 13:78. [PMID: 37665396 PMCID: PMC10477153 DOI: 10.1186/s13550-023-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Following resection and standard adjuvant radio- and chemotherapy, approved maintenance therapies for glioblastoma are lacking. Intracavitary radioimmunotherapy (iRIT) with 177Lu-labeled 6A10-Fab fragments targeting tumor-associated carbonic anhydrase XII and injected into the resection cavity offers a novel and promising strategy for improved tumor control. METHODS Three glioblastoma patients underwent tumor resection followed by standard radio- and chemotherapy. These patients with stable disease following completion of standard therapy underwent iRIT on compassionate grounds. After surgical implantation of a subcutaneous injection reservoir with a catheter into the resection cavity, a leakage test with [99mTc]Tc-DTPA was performed to rule out leakage into other cerebral compartments. IRIT comprised three consecutive applications over three months for each patient, with 25%, 50%, 25% of the total activity injected. A dosimetry protocol was included with blood sampling and SPECT/CT of the abdomen to calculate doses for the bone marrow and kidneys as potential organs at risk. RESULTS All three patients presented without relevant leakage after application of [99mTc]Tc-DTPA. Two patients underwent three full cycles of iRIT (592 MBq and 1228 MBq total activity). One patient showed histologically proven tumor progression after the second cycle (526 MBq total activity). No relevant therapy-associated toxicities or adverse events were observed. Dosimetry did not reveal absorbed doses above upper dose limits for organs at risk. CONCLUSIONS In first individual cases, iRIT with [177Lu]Lu-6A10-Fab appears to be feasible and safe, without therapy-related side effects. A confirmatory multicenter phase-I-trial was recently opened and is currently recruiting.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- West German Cancer Centre, Münster, Germany.
| | - Michael Müther
- West German Cancer Centre, Münster, Germany
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nils Warneke
- West German Cancer Centre, Münster, Germany
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Walter Stummer
- West German Cancer Centre, Münster, Germany
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Munich, Germany
| | - Hans-Jürgen Reulen
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
7
|
Brosch-Lenz J, Ke S, Wang H, Frey E, Dewaraja YK, Sunderland J, Uribe C. An International Study of Factors Affecting Variability of Dosimetry Calculations, Part 2: Overall Variabilities in Absorbed Dose. J Nucl Med 2023; 64:1109-1116. [PMID: 37024302 PMCID: PMC10315703 DOI: 10.2967/jnumed.122.265094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Dosimetry for personalized radiopharmaceutical therapy has gained considerable attention. Many methods, tools, and workflows have been developed to estimate absorbed dose (AD). However, standardization is still required to reduce variability of AD estimates across centers. One effort for standardization is the Society of Nuclear Medicine and Molecular Imaging 177Lu Dosimetry Challenge, which comprised 5 tasks (T1-T5) designed to assess dose estimate variability associated with the imaging protocol (T1 vs. T2 vs. T3), segmentation (T1 vs. T4), time integration (T4 vs. T5), and dose calculation (T5) steps of the dosimetry workflow. The aim of this work was to assess the overall variability in AD calculations for the different tasks. Methods: Anonymized datasets consisting of serial planar and quantitative SPECT/CT scans, organ and lesion contours, and time-integrated activity maps of 2 patients treated with 177Lu-DOTATATE were made available globally for participants to perform dosimetry calculations and submit their results in standardized submission spreadsheets. The data were carefully curated for formal mistakes and methodologic errors. General descriptive statistics for ADs were calculated, and statistical analysis was performed to compare the results of different tasks. Variability in ADs was measured using the quartile coefficient of dispersion. Results: ADs to organs estimated from planar imaging protocols (T2) were lower by about 60% than those from pure SPECT/CT (T1), and the differences were statistically significant. Importantly, the average differences in dose estimates when at least 1 SPECT/CT acquisition was available (T1, T3, T4, T5) were within ±10%, and the differences with respect to T1 were not statistically significant for most organs and lesions. When serial SPECT/CT images were used, the quartile coefficients of dispersion of ADs for organs and lesions were on average less than 20% and 26%, respectively, for T1; 20% and 18%, respectively, for T4 (segmentations provided); and 10% and 5%, respectively, for T5 (segmentation and time-integrated activity images provided). Conclusion: Variability in ADs was reduced as segmentation and time-integration data were provided to participants. Our results suggest that SPECT/CT-based imaging protocols generate more consistent and less variable results than planar imaging methods. Effort at standardizing segmentation and fitting should be made, as this may substantially reduce variability in ADs.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Suqi Ke
- Division of Quantitative Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Division of Quantitative Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric Frey
- Rapid, LLC, Baltimore, Maryland
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - John Sunderland
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada;
- Department of Functional Imaging, BC Cancer, Vancouver, British Columbia, Canada; and
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
10
|
Li Y, Marcu LG, Hull A, Bezak E. Radioimmunotherapy of glioblastoma multiforme - Current status and future prospects. Crit Rev Oncol Hematol 2021; 163:103395. [PMID: 34119657 DOI: 10.1016/j.critrevonc.2021.103395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most diagnosed form of primary brain tumours in adults. Radioimmunotherapy (RIT), mostly in combination with conventional therapies, is presented in the current review as a therapeutic strategy of high potential in the management of GBM. A systematic literature search was performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) to identify clinical studies that employed a form of radioimmunotherapy using alpha- or beta-emitting radioisotopes. The available literature on RIT in GBM and high-grade gliomas is presented and discussed. The results suggest that this promising treatment approach merits further investigation in future clinical studies.
Collapse
Affiliation(s)
- Yanrui Li
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia
| | - Loredana G Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia; Faculty of Informatics and Science, University of Oradea, Oradea, 410087, Romania
| | - Ashleigh Hull
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia; Department of Physics, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
11
|
Phipps MD, Sanders VA, Deri MA. Current State of Targeted Radiometal-Based Constructs for the Detection and Treatment of Disease in the Brain. Bioconjug Chem 2021; 32:1331-1347. [PMID: 34015928 DOI: 10.1021/acs.bioconjchem.1c00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continual development of radiopharmaceutical agents for the field of nuclear medicine is integral to promoting the necessity of personalized medicine. One way to greatly expand the selection of radiopharmaceuticals available is to broaden the range of radionuclides employed in such agents. Widening the scope of development to include radiometals with their variety of physical decay characteristics and chemical properties opens up a myriad of possibilities for new actively targeted molecules and bioconjugates. This is especially true to further advance the imaging and treatment of disease in the brain. Over the past few decades, imaging of disease in the brain has heavily relied on agents which exploit metabolic uptake. However, through utilizing the broad range of physical characteristics that radiometals offer, the ability to target other processes has become more available. The varied chemistries of radiometals also allows for them to incorporated into specifically designed diverse constructs. A major limitation to efficient treatment of disease in the brain is the ability for relevant agents to penetrate the blood-brain barrier. Thus, along with efficient disease targeting, there must be intentional thought put into overcoming this challenge. Here, we review the current field of radiometal-based agents aimed at either imaging or therapy of brain disease that have been evaluated through at least in vivo studies.
Collapse
Affiliation(s)
- Michael D Phipps
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States.,Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Melissa A Deri
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States
| |
Collapse
|
12
|
Li G, Chen TW, Nickel AC, Muhammad S, Steiger HJ, Tzaridis T, Hänggi D, Zeidler R, Zhang W, Kahlert UD. Carbonic Anhydrase XII is a Clinically Significant, Molecular Tumor-Subtype Specific Therapeutic Target in Glioma with the Potential to Combat Invasion of Brain Tumor Cells. Onco Targets Ther 2021; 14:1707-1718. [PMID: 33692626 PMCID: PMC7939492 DOI: 10.2147/ott.s300623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background The metabolic enzyme carbonic anhydrase 12 (CA12/CAXII) emerges as a promising cancer therapeutic target with drug development projects underway. Previous reports proposed the relevance of CA12 in the context of glioma but are limited in patient data quantity, ignore ethnic diversity of patients or rely on semi-quantitative, thereby out of date, methodology. Moreover, little is known on the association of CA12 to brain tumor stemness or on the effect of anti-CAXII-directed monotherapies on glioma stem cells (GSCs), in particular their response regarding mesenchymal differentiation status. Methods We performed in silico analysis on three independent, large-scale patient datasets interrogating state of the art molecular diagnostics alongside clinical outcomes. We analyzed CAXII abundance on a collection of GSCs and functionally tested their response to exposure to CAXII blocking antibody 6A10. Results CA12 is highly expressed in glial tumors compared with normal tissue and predicts for poor clinical course of tumor patients. CA12 expression in glioblastoma significantly correlates with clinically established, molecular markers of IDH1WT DNA, WHO grade IV or absence of 1p/19q chromosome arm co-deletion. Furthermore, tumors with elevated CA12 cluster into the mesenchymal transcription subclass of the disease. CAXII abundance in different GSCs ranges from almost absent to high levels and does not correlate to stem cell marker CD133/AC133 cell surface expression. Moreover, aiming to pharmacologically block CAXII in our cells with antibody 6A10 caused significant functional response only in one of the tested GSCs models, featuring suppression of cell invasion accompanied by reduction of ZEB1 protein and other stem cell markers. Conclusion CA12 represents a clinically relevant and molecular brain tumor-subtype specific therapeutic target. Our correlative data from experimental and clinical samples does not support CA12/CAXII to be GSC specific. 6A10 possesses promising potential to impede the invasive capacity of glioma cells and supports the emerging concept that CAXII interacts with cancer EMT programs. However, further mechanistic studies are required to comprehensively assess the therapeutic potential of 6A10 and to identify different resistance mechanisms of GSCs.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Ting-Wei Chen
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology and Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, 53127, Germany.,Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Reinhard Zeidler
- Department for Otorhinolaryngology, Klinikum der Universität München (LMU), Munich, Germany
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, People's Republic of China
| | - Ulf Dietrich Kahlert
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Stravinskiene D, Sliziene A, Baranauskiene L, Petrikaite V, Zvirbliene A. Inhibitory Monoclonal Antibodies and Their Recombinant Derivatives Targeting Surface-Exposed Carbonic Anhydrase XII on Cancer Cells. Int J Mol Sci 2020; 21:ijms21249411. [PMID: 33321910 PMCID: PMC7763246 DOI: 10.3390/ijms21249411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023] Open
Abstract
Monoclonal and recombinant antibodies are widely used for the diagnostics and therapy of cancer. They are generated to interact with cell surface proteins which are usually involved in the development and progression of cancer. Carbonic anhydrase XII (CA XII) contributes to the survival of tumors under hypoxic conditions thus is considered a candidate target for antibody-based therapy. In this study, we have generated a novel collection of monoclonal antibodies (MAbs) against the recombinant extracellular domain of CA XII produced in HEK-293 cells. Eighteen out of 24 MAbs were reactive with cellular CA XII on the surface of live kidney and lung cancer cells as determined by flow cytometry. One MAb 14D6 also inhibited the enzymatic activity of recombinant CA XII as measured by the stopped-flow assay. MAb 14D6 showed the migrastatic effect on human lung carcinoma A549 and renal carcinoma A498 cell lines in a ‘wound healing’ assay. It did not reduce the growth of multicellular lung and renal cancer spheroids but reduced the cell viability by the ATP Bioluminescence assay. Epitope mapping revealed the surface-exposed amino acid sequence (35-FGPDGENS-42) close to the catalytic center of CA XII recognized by the MAb 14D6. The variable regions of the heavy and light chains of MAb 14D6 were sequenced and their complementarity-determining regions were defined. The obtained variable sequences were used to generate recombinant antibodies in two formats: single-chain fragment variable (scFv) expressed in E. coli and scFv fused to human IgG1 Fc fragment (scFv-Fc) expressed in Chinese Hamster Ovary (CHO) cells. Both recombinant antibodies maintained the same specificity for CA XII as the parental MAb 14D6. The novel antibodies may represent promising tools for CA XII-related cancer research and immunotherapy.
Collapse
Affiliation(s)
- Dovile Stravinskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
- Correspondence:
| | - Aiste Sliziene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| |
Collapse
|
14
|
Lenting K, van den Heuvel CNAM, van Ewijk A, ElMelik D, de Boer R, Tindall E, Wei G, Kusters B, te Dorsthorst M, ter Laan M, Huynen MA, Leenders WP. Mapping actionable pathways and mutations in brain tumours using targeted RNA next generation sequencing. Acta Neuropathol Commun 2019; 7:185. [PMID: 31747973 PMCID: PMC6865071 DOI: 10.1186/s40478-019-0826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/28/2023] Open
Abstract
Many biology-based precision drugs are available that neutralize aberrant molecular pathways in cancer. Molecular heterogeneity and the lack of reliable companion diagnostic biomarkers for many drugs makes targeted treatment of cancer inaccurate for many individuals. Identifying actionable hyperactive biological pathways in individual cancers may improve this situation. To achieve this we applied a novel targeted RNA next generation sequencing (t/RNA-NGS) technique to surgically obtained glioma tissues. The test combines mutation detection with analysis of biological pathway activities that are involved in tumour behavior in many cancer types (e.g. tyrosine kinase signaling, angiogenesis signaling, immune response, metabolism), via quantitative measurement of transcript levels and splice variants of hundreds of genes. We here present proof of concept that the technique, which uses molecular inversion probes, generates a histology-independent molecular diagnosis and identifies classifiers that are strongly associated with conventional histopathology diagnoses and even with patient prognosis. The test not only confirmed known glioma-associated molecular aberrations but also identified aberrant expression levels of actionable genes and mutations that have so far been considered not to be associated with glioma, opening up the possibility of drug repurposing for individual patients. Its cost-effectiveness makes t/RNA-NGS to an attractive instrument to aid oncologists in therapy decision making.
Collapse
|
15
|
Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodéré F, Chérel M, Pallardy A, Rousseau C, Garcion E, Lacoeuille F, Hindré F, Valable S, Bernaudin M, Bodet-Milin C, Bourgeois M. Potential for Nuclear Medicine Therapy for Glioblastoma Treatment. Front Pharmacol 2019; 10:772. [PMID: 31354487 PMCID: PMC6637301 DOI: 10.3389/fphar.2019.00772] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the most common malignant adult brain tumor and has a very poor patient prognosis. The mean survival for highly proliferative glioblastoma is only 10 to 14 months despite an aggressive current therapeutic approach known as Stupp's protocol, which consists of debulking surgery followed by radiotherapy and chemotherapy. Despite several clinical trials using anti-angiogenic targeted therapies, glioblastoma medical care remains without major progress in the last decade. Recent progress in nuclear medicine, has been mainly driven by advances in biotechnologies such as radioimmunotherapy, radiopeptide therapy, and radionanoparticles, and these bring a new promising arsenal for glioblastoma therapy. For therapeutic purposes, nuclear medicine practitioners classically use β- particle emitters like 131I, 90Y, 186/188Re, or 177Lu. In the glioblastoma field, these radioisotopes are coupled with nanoparticles, monoclonal antibodies, or peptides. These radiopharmaceutical compounds have resulted in a stabilization and/or improvement of the neurological status with only transient side effects. In nuclear medicine, the glioblastoma-localized and targeted internal radiotherapy proof-of-concept stage has been successfully demonstrated using β- emitting isotopes. Similarly, α particle emitters like 213Bi, 211At, or 225Ac appear to be an innovative and interesting alternative. Indeed, α particles deliver a high proportion of their energy inside or at close proximity to the targeted cells (within a few micrometers from the emission point versus several millimeters for β- particles). This physical property is based on particle-matter interaction differences and results in α particles being highly efficient in killing tumor cells with minimal irradiation of healthy tissues and permits targeting of isolated tumor cells. The first clinical trials confirmed this idea and showed good therapeutic efficacy and less side effects, thus opening a new and promising era for glioblastoma medical care using α therapy. The objective of this literature review is focused on the developing field of nuclear medicine and aims to describe the various parameters such as targets, vectors, isotopes, or injection route (systemic and local) in relation to the clinical and preclinical results in glioblastoma pathology.
Collapse
Affiliation(s)
- Clément Bailly
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | | | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medecine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Amandine Pallardy
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | | | - Emmanuel Garcion
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Franck Lacoeuille
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France.,Nuclear Medicine, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - François Hindré
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | | | | | - Caroline Bodet-Milin
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Arronax, Saint-Herblain, France
| |
Collapse
|
16
|
Reulen HJ, Suero Molina E, Zeidler R, Gildehaus FJ, Böning G, Gosewisch A, Stummer W. Intracavitary radioimmunotherapy of high-grade gliomas: present status and future developments. Acta Neurochir (Wien) 2019; 161:1109-1124. [PMID: 30980242 DOI: 10.1007/s00701-019-03882-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
There is a distinct need for new and second-line therapies to delay or prevent local tumor regrowth after current standard of care therapy. Intracavitary radioimmunotherapy, in combination with radiotherapy, is discussed in the present review as a therapeutic strategy of high potential. We performed a systematic literature search following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The available body of literature on intracavitary radioimmunotherapy (iRIT) in glioblastoma and anaplastic astrocytomas is presented. Several past and current phase I and II clinical trials, using mostly an anti-tenascin monoclonal antibody labeled with I-131, have shown median overall survival of 19-25 months in glioblastoma, while adverse events remain low. Tenascin, followed by EGFR and variants, or smaller peptides have been used as targets, and most clinical studies were performed with I-131 or Y-90 as radionuclides while only recently Re-188, I-125, and Bi-213 were applied. The pharmacokinetics of iRIT, as well as the challenges encountered with this therapy, is comprehensively discussed. This promising approach deserves further exploration in future studies by incorporating several innovative modifications.
Collapse
Affiliation(s)
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.
| | - Reinhard Zeidler
- Helmholtz-Zentrum Munich, German Research Center for Environmental Health, Research Group Gene Vectors, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
17
|
Preparation of 177Lu-Trastuzumab injection for treatment of breast cancer. Appl Radiat Isot 2019; 148:184-190. [PMID: 30974402 DOI: 10.1016/j.apradiso.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/21/2022]
Abstract
The objective of this study was the facile preparation of 177Lu-CHX-A''-DTPA-Trastuzumab injection for breast cancer therapy. Trastuzumab conjugated with CHX-A''-DTPA-NCS was radiolabeled with 177Lu in >95% radiochemical purity. In vitro studies in SKBR3 and MDA-MB-453 cells confirmed specificity of 177Lu-CHX-A''-DTPA-Trastuzumab to HER2 positive cells. The radioimmunoconjugate showed good immunoreactivity, in vitro stability in saline and Kd of 1.01 ± 0.13 nM in SKBR3 cells. Clearance of 177Lu-CHX-A''-DTPA-Trastuzumab in Swiss mice was predominantly through the hepatobiliary route with minimal bone uptake.
Collapse
|
18
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Kameswaran M, Pandey U, Gamre N, Shinto A, Subramanian S, Sarma HD, Kamleshwaran KK, Dash A. Ready-to-use 177Lu-Rituximab injection for Non-Hodgkin’s Lymphoma: Formulation and preliminary clinical study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|