1
|
Rui X, Ding Y, Zhang N, Zhao X, Seki C, Yamasaki T, Fujinaga M, Zhang MR, Qian J, Ji B, Zhou R. Evaluation of in vivo and in vitro binding property of a novel candidate PET tracer for CSF1R imaging and comparison with two currently-used CSF1R-PET tracers. EJNMMI Radiopharm Chem 2025; 10:23. [PMID: 40360942 PMCID: PMC12075084 DOI: 10.1186/s41181-025-00345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R) is a promising imaging biomarker for neuroinflammation and tumor-associated macrophages. However, existing positron emission tomography (PET) tracers for CSF1R imaging often suffer from limited specificity or sensitivity. RESULTS We have performed 11C-labeled radiosynthesis of compound FJRD (3-((2-amino-5-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)ethynyl)-N-(4-methoxyphenyl)-4-methylbenzamide), which exhibits excellent affinity for CSF1R, and evaluated its in vivo and in vitro binding properties. PET images of [11C]FJRD show low brain uptake and specific binding in the living organs, except the kidneys in both normal mice and rats. In vitro autoradiographs demonstrate high levels of specific binding in all investigated organs, including the brain, spleen, liver, kidneys and lungs, when self-blocking was used. The addition of CPPC partially blocked in vitro [11C]FJRD binding in these organs, with blocking effects ranging from 9 to 67%. In contrast, the other two CSF1R inhibitors, GW2580 and BLZ945, showed minimal blocking effects, suggesting unignorable off-target binding in these organs. Furthermore, specific binding of [11C]CPPC and [11C]GW2580 was faint in the mouse organs, with [11C]CPPC demonstrating detectable binding only in the spleen. CONCLUSIONS These results suggest that [11C]FJRD is a potential CSF1R-PET tracer for more sensitive detection of CSF1R, compared to [11C]CPPC and [11C]GW2580. However, the high level off-target binding necessitates further improvements in specificity for CSF1R imaging.
Collapse
Affiliation(s)
- Xiyan Rui
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai, 200090, China
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yuzhou Ding
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Nailian Zhang
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Xinran Zhao
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Chie Seki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Jun Qian
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
- National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, China
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.
- National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, China.
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, China.
- Institute for Small-Molecule Drug Discovery & Development, Quzhou Fudan Institute, Quzhou, China.
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai, 200090, China.
| |
Collapse
|
2
|
Salarian M, Liu S, Tsai HM, Leslie SN, Hayes T, Lo ST, Szardenings AK, Zhang W, Chen G, Sandiego C, Wells L, Nair DG, Kolb HC, Xia CA. Evaluation of [ 18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Mol Imaging Biol 2025; 27:163-172. [PMID: 40009327 DOI: 10.1007/s11307-025-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation. PROCEDURES A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study. RESULTS JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics. CONCLUSION [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mani Salarian
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shuanglong Liu
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hsiu-Ming Tsai
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shannon N Leslie
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Hayes
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Su-Tang Lo
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RayzeBio a Bristol Myers Squibb's Company, San Diego, CA, USA
| | | | - Wei Zhang
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RemeGen Biosciences, Inc, San Francisco, CA, USA
| | - Gang Chen
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- US Rad Bio LLC, San Diego, CA, USA
| | | | | | - Dileep G Nair
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Institute of Molecular Pathobiochemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Hartmuth C Kolb
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Enigma Biomedical Group, Knoxville, TN, USA
| | - Chunfang A Xia
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Rui X, Ding Y, Zhang N, Zhao X, Seki C, Yamasaki T, Fujinaga M, Zhang MR, Qian J, Ji B, Zhou R. Evaluation of in-vivo and in-vitro binding property of a novel PET tracer for CSF1R imaging and comparison with two currently-used CSF1R-PET tracers. RESEARCH SQUARE 2025:rs.3.rs-6194254. [PMID: 40166008 PMCID: PMC11957209 DOI: 10.21203/rs.3.rs-6194254/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Colony-stimulating factor 1 receptor (CSF1R) is a promising imaging biomarker for neuroinflammation or tumor-associated macrophages. However, existing positron emission tomography (PET) tracers for CSF1R imaging commonly are suffering from limited specificity or sensitivity. Results We have performed 11C-labeled radiosynthesis of compound FJRD (3-((2-amino-5-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)ethynyl)-N-(4-methoxyphenyl)-4-methylbenzamide) with excellent affinity for CSF1R and evaluated its in-vivo and in-vitro binding properties. PET images of [11C]FJRD show low brain uptake and specific binding in the living organs except kidneys in the normal mice and rats. In-vitro autoradiographs show high-level specific binding in all investigated organs including brain, spleen, liver, kidneys and lungs when used self-blocking. Addition of cold CPPC partially blocked in-vitro [11C]FJRD binding in the various organs with blocking effects from 9 to 67%, and other two CSF1R inhibitors, GW2580 and BLZ945, showed minimal blocking effect, suggesting unignorable off-target binding in these organs. Meanwhile specific bindings of [11C]CPPC and [11C]GW2580 were faint in the mouse organs except [11C]CPPC specific binding detectable in the spleen. Conclusions These results suggest [11C]FJRD as a potential CSF1R-PET tracer for more sensitively detecting CSF1R compared to [11C]CPPC and [11C]GW2580. However, high-level off-target binding requires further improvement in specificity for CSF1R imaging.
Collapse
Affiliation(s)
- Xiyan Rui
- Tongji University Affilliated Yangpu Hospital: Shanghai Yangpu District Central Hospital; Fudan university
| | - Yuzhou Ding
- Tongji University Affilliated Yangpu Hospital: Shanghai Yangpu District Central Hospital; Fudan university
| | - Nailian Zhang
- Tongji University Affilliated Yangpu Hospital: Shanghai Yangpu District Central Hospital; Fudan university
| | - Xinran Zhao
- Tongji University Affilliated Yangpu Hospital: Shanghai Yangpu District Central Hospital; Fudan university
| | - Chie Seki
- Advanced Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences,Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences,Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences,Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology
| | - Jun Qian
- Fudan University School of Pharmacy
| | - Bin Ji
- Fudan University School of Pharmacy
| | - Rong Zhou
- Tongji University Affilliated Yangpu Hospital: Shanghai Yangpu District Central Hospital
| |
Collapse
|
4
|
Ogata A, Ikenuma H, Yasuno F, Nihashi T, Hattori S, Sato Y, Ichise M, Ito K, Kato T, Kimura Y. First-in-Human Study of [ 11C]NCGG401 for Imaging Colony-Stimulating Factor 1 Receptors in the Brain. J Nucl Med 2025; 66:302-308. [PMID: 39746757 DOI: 10.2967/jnumed.124.268699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025] Open
Abstract
Microglia, the immune cells in the brain, play a significant role in the pathophysiology of neurodegenerative diseases. To visualize these cells in the living brain, we developed a PET ligand, [11C]NCGG401 (4-{2-[((1R,2R)-2-hydroxycyclohexyl)(methyl)amino]benzothiazol-6-yloxy}-N-methylpicolinamide, NCGG401), that targets colony-stimulating factor 1 receptor (CSF1R). In this study, we present the first-in-human evaluation of [11C]NCGG401 to assess its safety profile and then to evaluate its kinetics to quantify CSF1R in the human brain. Methods: Head to upper thigh PET scans were conducted in 3 healthy men to estimate the effective dose of [11C]NCGG401. Brain PET scans were performed on 6 healthy men, combined with arterial blood sampling and metabolite analyses. Compartmental and graphical models were used to quantify CSF1R in the human brain. [11C]NCGG401 PET data were indirectly compared with regional CSF1R protein levels after death that were reported in a proteomics study. In addition, the results of this study were directly compared with the PET imaging of 18-kDa translocator protein using [11C]DPA-713 (N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl]acetamide, DPA-713). Results: The administration of [11C]NCGG401 did not result in severe adverse events. The effective doses per injected activity were 5.1 ± 0.2 µSv/MBq for men and 6.1 ± 0.3 µSv/MBq for women. [11C]NCGG401 demonstrated good brain permeability, with peak uptake reaching an SUV of 3. Regional total distribution volumes were reliably quantified using the 2-tissue compartment model and a Logan plot with 60 min of scan data. The resulting parametric images reflected the known distribution of CSF1R in the brain. Furthermore, regional total distribution volume values of [11C]NCGG401 showed good correlation with regional CSF1R protein levels. The [11C]NCGG401 images showed regional distributions different from those of [11C]DPA-713. Conclusion: [11C]NCGG401 images appear to reflect regional microglia-specific distributions of CSF1R in the brain, consistent with the findings of a CSF1R proteomics study by others. However, ultimate confirmation of specific CSF1R binding should be validated by evaluating, in suitable preclinical or human experiments, pharmacologic blockade of its binding in the brain in vivo.
Collapse
Affiliation(s)
- Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Kani, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Fumihiko Yasuno
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- National Center for Geriatrics and Gerontology, National Hospital for Geriatric Medicine, Obu, Japan; and
| | - Takashi Nihashi
- National Center for Geriatrics and Gerontology, National Hospital for Geriatric Medicine, Obu, Japan; and
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yayoi Sato
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan;
| |
Collapse
|
5
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
7
|
Roy P, Guo Y, Muzik O, Woodcock EA, Jiang H. Fully automated radiosynthesis of [ 18F]FCPPC for imaging microglia with PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:351-356. [PMID: 39840376 PMCID: PMC11744358 DOI: 10.62347/qfgp5253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is almost exclusively expressed on microglia in the human brain and thus, has promise as a biomarker for imaging microglia density as a proxy for neuroinflammation. [11C]CPPC is a radiotracer with selective affinity to CSF1R, and has been evaluated for in-human microglia PET imaging. The flourine-18 labeled CPPC derivative, 5-cyano-N-(4-(4-(2-[18F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]FCPPC), was previously synthesized, however, with a low radiochemical yield using manual radiosynthesis. In this work, we report a fully automated radiosynthesis of [18F]FCPPC on a Synthra RNplus research module. In a total synthesis time of 50 min, [18F]FCPPC was obtained in decay corrected radiochemical yields of 26.8 ± 0.1% (n = 3) with >99% radiochemical purities. Quality control testing showed that [18F]FCPPC met all release criteria. In sum, we report the first fully automated radiosynthesis of [18F]FCPPC, a promising radiopharmaceutical for imaging microglia in humans.
Collapse
Affiliation(s)
- Pritam Roy
- Cyclotron and Radiochemistry Core, Karmanos Cancer InstituteDetroit, MI, USA
- PET Center, Karmanos Cancer InstituteDetroit, MI, USA
- Department of Oncology, Wayne State UniversityDetroit, MI, USA
| | - Yan Guo
- Cyclotron and Radiochemistry Core, Karmanos Cancer InstituteDetroit, MI, USA
- PET Center, Karmanos Cancer InstituteDetroit, MI, USA
- Department of Oncology, Wayne State UniversityDetroit, MI, USA
| | - Otto Muzik
- PET Center, Karmanos Cancer InstituteDetroit, MI, USA
- Department of Pediatrics and Neurology, Wayne State UniversityDetroit, MI, USA
| | - Eric A Woodcock
- Department of Psychiatry and Behavioral Neurosciences and Pharmacology, Wayne State University School of MedicineDetroit, MI, USA
| | - Huailei Jiang
- Cyclotron and Radiochemistry Core, Karmanos Cancer InstituteDetroit, MI, USA
- PET Center, Karmanos Cancer InstituteDetroit, MI, USA
- Department of Oncology, Wayne State UniversityDetroit, MI, USA
| |
Collapse
|
8
|
Ishizaka Y, Watanabe H, Ono M. Structure-Affinity-Pharmacokinetics Relationships of Novel 18F-Labeled 1,4-Diazepane Derivatives for Orexin 1 Receptor Imaging. J Med Chem 2024; 67:18781-18793. [PMID: 39431857 DOI: 10.1021/acs.jmedchem.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The orexin 1 receptor (OX1R) has been suggested to be involved in the reward and autonomic nervous systems. Positron emission tomography (PET) of OX1R contributes to elucidating its role and developing new drugs. However, there are no useful PET probes for in vivo imaging of OX1R. Here, we newly designed and synthesized 18F-labeled 1,4-diazepane derivatives and evaluated their utilities as OX1R PET probes. In particular, BTF showed high and selective binding affinity for OX1R. In a biodistribution study using normal mice, [18F]BTF exhibited brain uptake, and radioactivity in the brain was significantly decreased by preinjection of unlabeled BTF. In a PET/CT study, it was suggested that [18F]BTF has the potential to visualize high-expression regions of OX1R in the normal mouse brain. Collectively, [18F]BTF has the fundamental features of an OX1R PET probe, and further studies may lead to the development of more useful probes.
Collapse
Affiliation(s)
- Yui Ishizaka
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Hui W, Pu S, Gao X, Wang Y, Zha X, Ding K, Zhang X, Cheng D, Shi H, Luo Z. Evaluation of a Positron Emission Tomography Tracer Targeting Colony-Stimulating Factor 1 Receptor for Detecting Pulmonary Inflammation. Mol Pharm 2024; 21:3979-3991. [PMID: 38935927 DOI: 10.1021/acs.molpharmaceut.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Wenxue Hui
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suyun Pu
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyan Gao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaochuan Zha
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kezhi Ding
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zonghua Luo
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
11
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
14
|
An X, Wang J, Tong L, Zhang X, Fu H, Zhang J, Xie H, Huang Y, Jia H. 18F-Labeled o‑aminopyridyl alkynyl radioligands targeting colony-stimulating factor 1 receptor for neuroinflammation imaging. Bioorg Med Chem 2023; 83:117233. [PMID: 36933438 DOI: 10.1016/j.bmc.2023.117233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
We report the design, synthesis and evaluation of five o‑aminopyridyl alkynyl derivatives as colony-stimulating factor 1 receptor (CSF-1R) ligands. Compounds 4 and 5 with the fluoroethoxy group at the meta- or para-position of the phenyl ring possessed nanomolar inhibitory potency against CSF-1R with IC50 values of 7.6 nM and 2.3 nM, respectively. Radioligands [18F]4 and [18F]5 were obtained in radiochemical yields of 17.2 ± 5.3% (n = 5, decay-corrected) and 14.0 ± 4.3% (n = 4, decay-corrected), with radiochemical purity of > 99% and molar activity of 9-12 GBq/μmol (n = 5) and 6-8 GBq/μmol (n = 4), respectively. In biodistribution studies, radioligands [18F]4 and [18F]5 showed moderate brain uptake in male ICR mice with 1.52 ± 0.15 and 0.91 ± 0.07% ID/g, respectively, at 15 min. Metabolic stability studies in mouse brain revealed that [18F]4 exhibited high stability while [18F]5 suffered from low stability. Higher accumulation of [18F]4 in the brain of lipopolysaccharide (LPS)-treated mice was observed, and further pretreatment of BLZ945 or CPPC led to remarkable reduction, indicating specific binding of [18F]4 to CSF-1R.
Collapse
Affiliation(s)
- Xiaodan An
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jingqi Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Linjiang Tong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaojun Zhang
- Nuclear Medicine Department, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinming Zhang
- Nuclear Medicine Department, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520-8048, USA.
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
van der Wildt B, Klockow JL, Miao Z, Reyes ST, Park JH, Shen B, Chin FT. Discovery of a CSF-1R inhibitor and PET tracer for imaging of microglia and macrophages in the brain. Nucl Med Biol 2022; 114-115:99-107. [PMID: 36371938 DOI: 10.1016/j.nucmedbio.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Colony stimulating factor 1 receptor (CSF-1R) is a kinase expressed on macrophages and microglia in the brain. It has been recognized as a potential drug and imaging target in treatment of neuroinflammatory diseases and glioblastoma. Despite several attempts, no validated CSF-1R PET tracer is currently available. The aim of this work was to develop a brain permeable CSF-1R PET tracer for non-invasive imaging of CSF-1R in vivo. Based on fragments of two potent and selective CSF-1R inhibitors, novel hybrid molecules were designed and synthesized. Affinity for human recombinant CSF-1R and selectivity over c-KIT and PDGFR-β was determined using a FRET based in vitro assay. Radiosynthesis was performed by fully automated [11C]CH3I methylation of the corresponding des-methyl precursor. PET imaging was performed at baseline, efflux transporter blocking and CSF-1R blocking conditions. Moreover, tracer distribution and blood and plasma radiometabolites were determined following injection in healthy mice. The most promising CSF-1R inhibitor, compound 4, showed high selectivity and high affinity for CSF-1R (IC50: 12 ± 3 nM) and no affinity for kinase family members c-KIT and PDGFR-beta. [11C]4 was obtained in good yield (15 ± 0.2 % decay corrected yield, (2.0 ± 0.26 GBq at end of synthesis) and excellent purity. The compound demonstrated high brain penetration and good metabolic stability (>2 %ID/g at 60 min post injection and 79 ± 8 % intact [11C]4 in brain at 60 min post injection) and no strong efflux transporter substrate behavior. Blocking CSF-1R prior to imaging with [11C]4 resulted in significant decrease in brain uptake. In conclusion, [11C]4 shows good potential as a novel PET tracer for imaging of CSF-1R in the CNS and future experiments in relevant animal models are warranted.
Collapse
Affiliation(s)
- Berend van der Wildt
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Klockow
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Zheng Miao
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Samantha T Reyes
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jun H Park
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Bin Shen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Ogata A, Ji B, Yamada T, Hattori S, Abe J, Ikenuma H, Ichise M, Koyama H, Suzuki M, Kato T, Ito K, Kimura Y. [ 11C]NCGG401, a novel PET ligand for imaging of colony stimulating factor 1 receptors. Bioorg Med Chem Lett 2022; 65:128704. [PMID: 35351586 DOI: 10.1016/j.bmcl.2022.128704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 1 receptors (CSF1R) are expressed exclusively on microglia in the central nervous system. The receptors regulate immune responses by controlling the survival and activity of microglia and are intricately involved in the pathophysiology of Alzheimer's disease. In this study, we developed [11C]NCGG401, a positron emission tomography (PET) ligand, targeting for CSF1R as an imaging biomarker for microglial pathophysiology in Alzheimer's disease. NCGG401 showed a high potency to inhibit human CSF1R kinase activity and a high binding affinity to human CSF1R. PET imaging with [11C]NCGG401 in healthy rats showed a good brain permeability. Furthermore, the specific binding component was determined by postmortem autoradiography in rat brain and human hippocampal sections. The knowledge of the characteristics of [11C]NCCC401, our initial CSF1R compound, we have obtained may be useful for further development and optimization of CSF1R radioligands for PET imaging of microglia.
Collapse
Affiliation(s)
- Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan; Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan.
| | - Bin Ji
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan; Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan; Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan; Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
18
|
Lee H, Park JH, Kim H, Woo SK, Choi JY, Lee KH, Choe YS. Synthesis and Evaluation of a 18F-Labeled Ligand for PET Imaging of Colony-Stimulating Factor 1 Receptor. Pharmaceuticals (Basel) 2022; 15:ph15030276. [PMID: 35337075 PMCID: PMC8954204 DOI: 10.3390/ph15030276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation involves activation of glial cells in the brain, and activated microglia play a particularly important role in neurodegenerative diseases such as Alzheimer’s disease (AD). In this study, we developed 5-cyano-N-(4-(4-(2-[18F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]1) for PET imaging of colony-stimulating factor 1 receptor (CSF1R), an emerging target for neuroinflammation imaging. Non-radioactive ligand 1 exhibited binding affinity comparable to that of a known CSF1R inhibitor, 5-cyano-N-(4-(4-methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (CPPC). Therefore, we synthesized radioligand [18F]1 by radiofluorination of chlorine-substituted precursor 7 in 13–15% decay-corrected radiochemical yield. Dynamic PET/CT images showed higher uptake in the lipopolysaccharide (LPS)-treated mouse brain than in control mouse brain. Ex vivo biodistribution study conducted at 45 min after radioligand injection showed that the brain uptake in LPS mice increased by 78% compared to that of control mice and was inhibited by 22% in LPS mice pretreated with CPPC, indicating specificity of [18F]1 for CSF1R. A metabolism study demonstrated that the radioligand underwent little metabolism in the mouse brain. Taken together, these results suggest that [18F]1 may hold promise as a radioligand for CSF1R imaging.
Collapse
Affiliation(s)
- Hyeokjin Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Ji-Hun Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Hyunjung Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Sang-keun Woo
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Correspondence:
| |
Collapse
|
19
|
Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021; 206:282-300. [PMID: 34331705 PMCID: PMC8561701 DOI: 10.1111/cei.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing the heterogeneity of microglia activation in neuroinflammatory and neurodegenerative diseases. It has been hypothesized that pro‐inflammatory microglia are detrimental and contribute to disease progression, while anti‐inflammatory microglia play a role in damage repair and remission. The development of therapeutics targeting the deleterious glial activity and modulating it into a regenerative phenotype relies heavily upon a clearer understanding of the microglia dynamics during disease progression and the ability to monitor therapeutic outcome in vivo. To that end, molecular imaging techniques are required to assess microglia dynamics and study their role in disease progression as well as to evaluate the outcome of therapeutic interventions. Positron emission tomography (PET) is such a molecular imaging technique, and provides unique capabilities for non‐invasive quantification of neuroinflammation and has the potential to discriminate between microglia phenotypes and define their role in the disease process. However, several obstacles limit the possibility for selective in vivo imaging of microglia phenotypes mainly related to the poor characterization of specific targets that distinguish the two ends of the microglia activation spectrum and lack of suitable tracers. PET tracers targeting translocator protein 18 kDa (TSPO) have been extensively explored, but despite the success in evaluating neuroinflammation they failed to discriminate between microglia activation statuses. In this review, we highlight the current knowledge on the microglia phenotypes in the major neuroinflammatory and neurodegenerative diseases. We also discuss the current and emerging PET imaging targets, the tracers and their potential in discriminating between the pro‐ and anti‐inflammatory microglia activation states.
Collapse
Affiliation(s)
- Wissam Beaino
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Bieneke Janssen
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Tracer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|