1
|
Huang D, Zhang Z, Jian J, Jiang X, Gao J, Yang M, Ding X. Parecoxib sodium attenuates acute lung injury following burns by regulating M1/M2 macrophage polarization through the TLR4/NF-κB pathway. Eur J Pharmacol 2024; 968:176407. [PMID: 38365106 DOI: 10.1016/j.ejphar.2024.176407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
High temperature-induced burn injury often leads to an excessive inflammatory cascade resulting in multiple organ dysfunction syndrome, such as acute lung injury (ALI), in addition to skin tissue damage. As a specific COX2 inhibitor, parecoxib sodium suppresses the inflammatory response during burn injury. The effect of parecoxib sodium on ALI induced by burn injury and the associated molecular mechanism still need to be investigated. The role of parecoxib sodium in burn injury-induced ALI through the TLR4/NF-κB pathway was explored in the present study. A burn-induced ALI mouse model was constructed, and M1/M2 macrophages in lung tissue and markers involved in the TLR4/NF-κB signalling pathway were evaluated in bronchoalveolar lavage fluid (BALF) and MH-S mouse alveolar macrophages in vitro. The results indicated that parecoxib sodium attenuated lung injury after burn injury, decreased iNOS and TNF-α expression, increased IL-10 expression in BALF, and regulated the CD86-and CD206-mediated polarization of M1/M2 macrophages in lung tissue along with MH-S mouse alveolar macrophages. The effect of parecoxib sodium might be reversed by a TLR4 agonist. Overall, the results suggested that parecoxib sodium can regulate the polarization of M1/M2 macrophages through the TLR4/NF-κB pathway to attenuate ALI induced by skin burns.
Collapse
Affiliation(s)
- Dongxiao Huang
- Department of Anaesthesiology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Zhongjun Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Jinjin Jian
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Xuliang Jiang
- Department of Anesthesiology. Fudan University Shanghai Cancer Center, Shanghai, 200030, China
| | - Jie Gao
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China
| | - Minlie Yang
- Burn and Palstic Surgery, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China.
| | - Xian Ding
- Department of Anaesthesiology, The Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214122, China.
| |
Collapse
|
2
|
Wang J, Zhao C, Zhang B, Liu X. Macrophage-specific autophagy-related gene HSPB8 is involved in the macrophage polarization in atherosclerosis. BMC Cardiovasc Disord 2023; 23:141. [PMID: 36934244 PMCID: PMC10024845 DOI: 10.1186/s12872-023-03158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/01/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic inflammatory disease, as a main cause leading to vascular diseases worldwide. Although increasing studies have focused on macrophages in AS, the exact relating mechanism is still largely unclear. Our study aimed to explore the pathogenic role and diagnostic role of macrophage autophagy related genes (MARGs) in AS. METHODS All datasets were downloaded from Gene Expression Omnibus database and Human Autophagy Database. The differential expression analysis and cross analysis were performed to identify candidate MARGs. GO and KEGG enrichment analyses were conducted to obtain the functional information. Moreover, we analyzed the correlation between target gene and macrophage polarization in AS. The correlation between target gene and plaque instability, different stages of AS were also analyzed. RESULTS Compared with normal samples, a total of 575 differentially expressed genes (DEGs) were identified in AS samples. A total of 12 overlapped genes were obtained after cross-analysis of the above 575 DEGs and autophagy related genes (ARGs). Then, 10 MARGs were identified in AS samples, which were significantly enriched in 22 KEGG pathways and 61 GO terms. The expression of HSPB8 was significantly down-regulated in atherosclerotic samples compared with normal samples (with largest fold change). Meanwhile, the proportion of M-CSF in low HSPB8 expression AS group was higher than high expression AS group. Furthermore, the expression of HSPB8 was negatively correlated with most inflammatory factors. CONCLUSION The downregulation of MARG HSPB8 probably involves in the M2 macrophage polarization in AS samples. HSPB8 is a promising diagnostic marker for AS patients.
Collapse
Affiliation(s)
- Juping Wang
- Department of Cardiology, Tianjin Beichen Traditional Chinese Medicine Hospital, No.436 Jingjin Road, Beichen District, Tianjin, 300400, P. R. China
| | - Congna Zhao
- Department of Nephrology, Tianjin Beichen Traditional Chinese Medicine Hospital, Beichen District, Tianjin, 300400, P. R. China
| | - Baonan Zhang
- Department of Cardiology, Tianjin Beichen Traditional Chinese Medicine Hospital, No.436 Jingjin Road, Beichen District, Tianjin, 300400, P. R. China.
| | - Xiaoyan Liu
- Department of Respiratory medicine, Tianjin Beichen Traditional Chinese Medicine Hospital, Beichen District, Tianjin, 300400, P. R. China
| |
Collapse
|
3
|
Sowers ML, Tang H, Singh VK, Khan A, Mishra A, Restrepo BI, Jagannath C, Zhang K. Multi-OMICs analysis reveals metabolic and epigenetic changes associated with macrophage polarization. J Biol Chem 2022; 298:102418. [PMID: 36030823 PMCID: PMC9525912 DOI: 10.1016/j.jbc.2022.102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophages (MФ) are an essential immune cell for defense and repair that travel to different tissues and adapt based on local stimuli. A critical factor that may govern their polarization is the crosstalk between metabolism and epigenetics. However, simultaneous measurements of metabolites, epigenetics, and proteins (phenotype) have been a major technical challenge. To address this, we have developed a novel triomics approach using mass spectrometry to comprehensively analyze metabolites, proteins, and histone modifications in a single sample. To demonstrate this technique, we investigated the metabolic-epigenetic-phenotype axis following polarization of human blood–derived monocytes into either ‘proinflammatory M1-’ or ‘anti-inflammatory M2-’ MФs. We report here a complex relationship between arginine, tryptophan, glucose, and the citric acid cycle metabolism, protein and histone post-translational modifications, and human macrophage polarization that was previously not described. Surprisingly, M1-MФs had globally reduced histone acetylation levels but high levels of acetylated amino acids. This suggests acetyl-CoA was diverted, in part, toward acetylated amino acids. Consistent with this, stable isotope tracing of glucose revealed reduced usage of acetyl-CoA for histone acetylation in M1-MФs. Furthermore, isotope tracing also revealed MФs uncoupled glycolysis from the tricarboxylic acid cycle, as evidenced by poor isotope enrichment of succinate. M2-MФs had high levels of kynurenine and serotonin, which are reported to have immune-suppressive effects. Kynurenine is upstream of de novo NAD+ metabolism that is a necessary cofactor for Sirtuin-type histone deacetylases. Taken together, we demonstrate a complex interplay between metabolism and epigenetics that may ultimately influence cell phenotype.
Collapse
Affiliation(s)
- Mark L Sowers
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Hui Tang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Vipul K Singh
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Arshad Khan
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Abhishek Mishra
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | | | - Chinnaswamy Jagannath
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX.
| | - Kangling Zhang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
4
|
G protein–coupled receptor 21 in macrophages: An in vitro study. Eur J Pharmacol 2022; 926:175018. [DOI: 10.1016/j.ejphar.2022.175018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
5
|
Shirato K, Sato S. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2022; 12:826738. [PMID: 35281442 PMCID: PMC8904936 DOI: 10.3389/fcimb.2022.826738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a ‘killer’ mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Mitaka, Japan
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, United States
- *Correspondence: Shogo Sato,
| |
Collapse
|
6
|
Amamou A, O’Mahony C, Leboutte M, Savoye G, Ghosh S, Marion-Letellier R. Gut Microbiota, Macrophages and Diet: An Intriguing New Triangle in Intestinal Fibrosis. Microorganisms 2022; 10:490. [PMID: 35336066 PMCID: PMC8952309 DOI: 10.3390/microorganisms10030490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) without specific treatment. As macrophages are the key actors in inflammatory responses and the wound healing process, they have been extensively studied in chronic diseases these past decades. By their exceptional ability to integrate diverse stimuli in their surrounding environment, macrophages display a multitude of phenotypes to underpin a broad spectrum of functions, from the initiation to the resolution of inflammation following injury. The hypothesis that distinct macrophage subtypes could be involved in fibrogenesis and wound healing is emerging and could open up new therapeutic perspectives in the treatment of intestinal fibrosis. Gut microbiota and diet are two key factors capable of modifying intestinal macrophage profiles, shaping their specific function. Defects in macrophage polarisation, inadequate dietary habits, and alteration of microbiota composition may contribute to the development of intestinal fibrosis. In this review, we describe the intriguing triangle between intestinal macrophages, diet, and gut microbiota in homeostasis and how the perturbation of this discreet balance may lead to a pro-fibrotic environment and influence fibrogenesis in the gut.
Collapse
Affiliation(s)
- Asma Amamou
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Mathilde Leboutte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| | - Guillaume Savoye
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France;
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Rachel Marion-Letellier
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| |
Collapse
|
7
|
Bozkurt MF, Bhaya MN, Dibekoğlu C, Akat A, Ateş U, Erbaş O. Mesenchymal stem cells have ameliorative effect on the colitis model via Nrf2/HO-1 pathway. Acta Cir Bras 2022; 37:e370704. [PMID: 36228298 PMCID: PMC9553072 DOI: 10.1590/acb370704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the ameliorative effect of mesenchymal stem cells (MSCs) on acetic acid colitis model via Nrf2/HO-1 pathway in rats. Methods: In this study, 30 rats were divided into three groups. Acute colitis was induced by rectal administration of 4% solution of acetic acid. MSCs were injected intraperitoneally in the treatment group. Results: Increased levels of tumor necrosis factor-α (TNF-α), pentraxin-3, and malondialdehyde (MDA) in colitis group were revealed biochemically. Increased level of TNF-α and decreased levels of Nrf2 and interleukin-10 (IL-10) were observed in rectum tissues. Increased fibrous tissue proliferation, vascularization and inflammatory cell infiltration were described in the colitis group. Significant improvement was observed in MSCs treated group histopathologically. Increased immunopositivity of TNF-α, vascular endothelial growth factor (VEGF) and CD68 markers was observed in the colitis group cells, and decreased level of this positivity was observed in MSCs treated group. Conclusions: Biochemical, histopathological and immunohistochemical results strongly support the ameliorative effect of MSCs against acetic induced colitis model via Nrf2/HO-1 pathway in rats.
Collapse
Affiliation(s)
| | | | | | - Ayberk Akat
- Stembio Cell and Tissue Technologies Inc, Turkey
| | - Utku Ateş
- Stembio Cell and Tissue Technologies Inc, Turkey
| | | |
Collapse
|
8
|
Wolfram T, Weidenbach LM, Adolf J, Schwarz M, Schädel P, Gollowitzer A, Werz O, Koeberle A, Kipp AP, Koeberle SC. The Trace Element Selenium Is Important for Redox Signaling in Phorbol Ester-Differentiated THP-1 Macrophages. Int J Mol Sci 2021; 22:11060. [PMID: 34681720 PMCID: PMC8539332 DOI: 10.3390/ijms222011060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Physiological selenium (Se) levels counteract excessive inflammation, with selenoproteins shaping the immunoregulatory cytokine and lipid mediator profile. How exactly differentiation of monocytes into macrophages influences the expression of the selenoproteome in concert with the Se supply remains obscure. THP-1 monocytes were differentiated with phorbol 12-myristate 13-acetate (PMA) into macrophages and (i) the expression of selenoproteins, (ii) differentiation markers, (iii) the activity of NF-κB and NRF2, as well as (iv) lipid mediator profiles were analyzed. Se and differentiation affected the expression of selenoproteins in a heterogeneous manner. GPX4 expression was substantially decreased during differentiation, whereas GPX1 was not affected. Moreover, Se increased the expression of selenoproteins H and F, which was further enhanced by differentiation for selenoprotein F and diminished for selenoprotein H. Notably, LPS-induced expression of NF-κB target genes was facilitated by Se, as was the release of COX- and LOX-derived lipid mediators and substrates required for lipid mediator biosynthesis. This included TXB2, TXB3, 15-HETE, and 12-HEPE, as well as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Our results indicate that Se enables macrophages to accurately adjust redox-dependent signaling and thereby modulate downstream lipid mediator profiles.
Collapse
Affiliation(s)
- Theresa Wolfram
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Leonie M. Weidenbach
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Johanna Adolf
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Solveigh C. Koeberle
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Zhang L, Qu S, Wang L, Wang C, Yu Q, Zhang Z, Diao Y, Zhang B, Li Y, Shi Y, Wang P. Tianlongkechuanling Inhibits Pulmonary Fibrosis Through Down-Regulation of Arginase-Ornithine Pathway. Front Pharmacol 2021; 12:661129. [PMID: 33995084 PMCID: PMC8114272 DOI: 10.3389/fphar.2021.661129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary Fibrosis (PF) is an interstitial lung disease characterized by excessive accumulation of extracellular matrix in the lungs, which disrupts the structure and gas exchange of the alveoli. There are only two approved therapies for PF, nintedanib (Nib) and pirfenidone. Therefore, the use of Chinese medicine for PF is attracting attention. Tianlongkechuanling (TL) is an effective Chinese formula that has been applied clinically to alleviate PF, which can enhance lung function and quality of life. Purpose: The potential effects and specific mechanisms of TL have not been fully explored, yet. In the present study, proteomics was performed to explore the therapeutic protein targets of TL on Bleomycin (BLM)-induced Pulmonary Fibrosis. Method: BLM-induced PF mice models were established. Hematoxylineosin staining and Masson staining were used to analyze histopathological changes and collagen deposition. To screen the differential proteins expression between the Control, BLM, BLM + TL and BLM + Nib (BLM + nintedanib) groups, quantitative proteomics was performed using tandem mass tag (TMT) labeling with nanoLC-MS/MS [nano liquid chromatographymass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein–protein interactions (PPI) were established by STRING. Expressions of α-smooth muscle actin (α-SMA), Collagen I (Col1a1), Fibronectin (Fn1) and enzymes in arginase-ornithine pathway were detected by Western blot or RT-PCR. Result: TL treatments significantly ameliorated BLM-induced collagen deposition in lung tissues. Moreover, TL can inhibit the protein expressions of α-SMA and the mRNA expressions of Col1a1 and Fn1. Using TMT technology, we observed 253 differentially expressed proteins related to PPI networks and involved different KEGG pathways. Arginase-ornithine pathway is highly significant. The expression of arginase1 (Arg1), carbamoyltransferase (OTC), carbamoy-phosphate synthase (CPS1), argininosuccinate synthase (ASS1), ornithine aminotransferase (OAT) argininosuccinate lyase (ASL) and inducible nitric oxide synthase (iNOS) was significantly decreased after TL treatments. Conclusion: Administration of TL in BLM-induced mice resulted in decreasing pulmonary fibrosis. Our findings propose that the down regulation of arginase-ornithine pathway expression with the reduction of arginase biosynthesis is a central mechanism and potential treatment for pulmonary fibrosis with the prevention of TL.
Collapse
Affiliation(s)
- Lili Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghe Yu
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zhang
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yirui Diao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yadong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Peng Wang
- Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhao D, Cui W, Liu M, Li J, Sun Y, Shi S, Lin S, Lin Y. Tetrahedral Framework Nucleic Acid Promotes the Treatment of Bisphosphonate-Related Osteonecrosis of the Jaws by Promoting Angiogenesis and M2 Polarization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44508-44522. [PMID: 32924430 DOI: 10.1021/acsami.0c13839] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphosphonates are often used to treat osteoporosis, malignant bone metastases, and hypercalcemia. However, it can cause serious adverse reactions, bisphosphonate-related osteonecrosis of the jaw (BRONJ), which seriously affects the quality of life of patients. At present, the treatment of BRONJ is still difficult to reach an agreement, and there is no effective treatment. Therefore, it is very important to find effective treatments. Many studies have shown that the occurrence of BRONJ may be due to unbalanced bone turnover, anti-angiogenesis, bacterial infection, direct tissue toxicity, and abnormal immune function. The previous research results show that tetrahedral framework nucleic acids (tFNAs), a new type of nanomaterial, can promote various biological activities of cells, such as cell proliferation, migration, anti-inflammation and anti-oxidation, and angiogenesis. Therefore, we intend to explore the potential of tFNAs in the treatment of BRONJ through this study. The results show that tFNAs can promote the treatment of BRONJ by promoting angiogenesis and promoting M2 polarization in macrophages and inhibiting M1 polarization both in vitro and in vivo. These results provide a theoretical basis for the application of tFNAs in the treatment of BRONJ and also provide new ideas and methods for the treatment of other diseases based on ischemia and immune disorders.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
11
|
Adakudugu EA, Ameyaw EO, Obese E, Biney RP, Henneh IT, Aidoo DB, Oge EN, Attah IY, Obiri DD. Protective effect of bergapten in acetic acid-induced colitis in rats. Heliyon 2020; 6:e04710. [PMID: 32885074 PMCID: PMC7452552 DOI: 10.1016/j.heliyon.2020.e04710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Bergapten (5-methoxysporalen) is a furanocoumarin extracted from several species of citrus and bergamot oil. Bergamot essential oil is used traditionally in the management of inflammatory conditions. Previous studies on bergapten have explored mainly its in vitro anti-inflammatory activities which include suppression of the expression and release of pro-inflammatory cytokines such as TNF-α and interleukins as well as prostaglandins. Bergapten enhances the clearance of neutrophils and macrophages from the site of inflammation and reduces oxidative stress by inhibition of reactive oxygen species (ROS). Bergapten was assessed for its anti-inflammatory properties in acetic acid-induced colitis. Animals were obtained and randomly placed in six (6) groups (n = 5) after acclimatization. Colitis was induced by rectal administration using 4% v/v acetic acid in Sprague Dawley rats after pre-treatment for 5 days. Bergapten was administered at doses of 3, 10, and 30 mg kg-1 p.o. while the control group received saline 5 mL kg-1 p.o. and the standard drug employed was sulphasalazine at a dose of 500 mg kg-1. Assessments made for colon-weight-to-length ratio, colonic injury, and mucosal mast cell degranulation. There were reduced colon-weight-to-length ratios in animals treated with bergapten which was significant (p < 0.5) for doses 10 and 30 mg kg-1 compared to the disease control group Both macroscopic and microscopic damage were reduced as well, with a lesser percentage of degranulated mast cells. Macroscopic damage was reduced for bergapten at doses 10 and 30 mg kg-1 significantly at p < 0.5 and p < 0.001, respectively. Similarly, microscopic damage was reduced at p < 0.01 and p < 0.001 respectively for bergapten 10 and 30 mg kg-1. The reduction of degranulation by bergapten was significant at p < 0.001. There was generally reduced damage at inflammatory sites as well as decreased infiltration of inflammatory cells. Overall, bergapten reduces inflammation in acetic acid-induced colitis.
Collapse
Affiliation(s)
- Emmanuel A. Adakudugu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis O. Ameyaw
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Obese
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert P. Biney
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac T. Henneh
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Douglas B. Aidoo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Elizabeth N. Oge
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Y. Attah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David D. Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Macrophage-Based Therapies for Atherosclerosis Management. J Immunol Res 2020; 2020:8131754. [PMID: 32411803 PMCID: PMC7204102 DOI: 10.1155/2020/8131754] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis (AS), a typical chronic inflammatory vascular disease, is the main pathological basis of ischemic cardio/cerebrovascular disease (CVD). Long-term administration was characterized with low efficacy and serious side effects, while the macrophages with attractive intrinsic homing target have great potential in the efficient and safe management of AS. In this review, we focused on the systematical summary of the macrophage-based therapies in AS management, including macrophage autophagy, polarization, targeted delivery, microenvironment-triggered drug release, and macrophage- or macrophage membrane-based drug carrier. In conclusion, macrophage-based therapies have great promise to effectively manage AS in future research and clinic translation.
Collapse
|
13
|
Wan S, Sun H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med 2019; 17:3573-3579. [PMID: 30988739 PMCID: PMC6447820 DOI: 10.3892/etm.2019.7347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance and metabolic disorders are closely associated with low-grade chronic inflammation. Aberrant macrophage activation to M1 or M2 is characterized by a deleterious state of chronic inflammation and loss of positive trophic signals. Glucagon-like peptide-1 (GLP-1) is used to treat diabetes due to its beneficial role against insulin resistance. The present study examined the effect of GLP-1 on macrophage activation, which contributed to M2 polarization and secretion of anti-inflammatory factors. In addition, the present study demonstrated that GLP-1 was able to reduce M1 polarization and inflammatory response by using the murine monocyte/macrophage cell line RAW264.7 and detecting M1/M2-specific genes. RAW264.7 cells were incubated with GLP-1 in the presence or absence of lipopolysaccharide or interleukin-4, the c-Jun N-terminal kinase (JNK) and signal transduction and transcriptional activation factor 3 (STAT3) activity was assessed by quantification of phosphorylation expression and macrophage polarization was determined by detecting M1/M2-specific genes expression. The results demonstrated that GLP-1/GLP-1 receptor attenuated the phosphorylation of JNK and its signal transduction through the cyclic adenosine monophosphate/protein kinase A signaling pathway, while the phosphorylation of STAT3 increased through following treatment with GLP-1. The present study observed that GLP-1 exerts its beneficial effects on macrophage polarization by modulating the JNK/STAT3 signaling pathway. The present results also suggested that the effects of GLP-1 on endocrine and metabolic diseases are possibly mediated by modulation of signaling pathways, and provide a basis for pharmacologic targeting of macrophage activation and an insight into the molecular mechanisms involved in the progression of metabolic diseases.
Collapse
Affiliation(s)
- Shan Wan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr 2018; 12:455-462. [PMID: 29307576 DOI: 10.1016/j.dsx.2017.12.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/07/2023]
Abstract
AIMS Type-2 Diabetes Mellitus (T2DM) is one of the most prevalent and progressive metabolic conditions affecting approximately 8.5% of the global population. Individuals with T2DM have a significantly increased risk of developing chronic conditions such as cardiovascular disease (CVD) and its associated complications, therefore, it is of great importance to establish strategies for combatting T2DM and its associated chronic conditions. Current literature has identified several biomarkers that are known to play a key role in the pathogenesis of CVD. Many of these biomarkers affecting CVD are influenced by an increase in oxidative stress as seen in T2DM. The purpose of this review is to analyse and correlate the oxidative stress-related biomarkers that have been identified in the literature to provide an updated summary of their significance in CVD risk factors. DATA SYNTHESIS This review has analysed current research on T2DM, CVD, and oxidative stress. Four key cardiovascular risk factors: thrombosis, inflammation, vascular homeostasis and cellular proliferation were searched to identify potential biomarkers for this review. These biomarkers stem from seven major cellular pathways; NF-κB, Keap1-Nrf2, protein kinase-C, macrophage activation, arachidonic acid mobilisation, endothelial dysfunction and advanced glycation end products. CONCLUSIONS The pathways and biomarkers were analysed to show their role as contributing factors to CVD development and a summary is made regarding the assessment of cardiovascular risk in T2DM individuals.
Collapse
Affiliation(s)
- Roy Robson
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Avinash R Kundur
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Indu Singh
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia.
| |
Collapse
|
15
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233:6425-6440. [PMID: 29319160 DOI: 10.1002/jcp.26429] [Citation(s) in RCA: 3121] [Impact Index Per Article: 445.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
Collapse
Affiliation(s)
- Abbas Shapouri-Moghaddam
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Mohammadian
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed-Alireza Esmaeili
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mardani
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Seifi
- Department of Anatomy, Islamic Azad University, Mashhad Branch, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil T Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Zhang X, Liu M, Qiao L, Zhang X, Liu X, Dong M, Dai H, Ni M, Luan X, Guan J, Lu H. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018; 22:409-416. [PMID: 28944992 PMCID: PMC5742675 DOI: 10.1111/jcmm.13329] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE-/- mice. In vitro, Rb1 treatment promoted the expression of arginase-I (Arg-I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin-4 (IL-4) and interleukin-13 (IL-13) secretion in supernatant and promoted STAT6 phosphorylation. IL-4 and/or IL-13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up-regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP-9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti-inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL-4 and/or IL-13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
- Department of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Ming‐hao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Xin‐yu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiao‐ling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Hong‐yan Dai
- Department of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiao‐rong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Jun Guan
- Department of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Hui‐xia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
17
|
Xie C, Liu C, Wu B, Lin Y, Ma T, Xiong H, Wang Q, Li Z, Ma C, Tu Z. Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med 2016; 38:148-60. [PMID: 27176664 PMCID: PMC4899022 DOI: 10.3892/ijmm.2016.2583] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Macrophages that differentiate from precursor monocytes can be polarized into a classically activated (M1) or alternatively activated (M2) status depending on different stimuli. Generally, interferon (IFN)-γ and lipopolysaccharide (LPS) are considered the classical stimuli with which to establish M1 polarization. IFN regulatory factor (IRF)1 and IFN-β are two crucial molecules involved in IFN-γ- and LPS-initialed signaling. However, the association between IRF1 and IFN-β in the context of the M1 polarization of macrophages is not yet fully understood. In this study, we demonstrate that U937-derived macrophages, in response to IFN-γ and LPS stimulation, readily acquire an M1 status, indicated by the increased expression of interleukin (IL)-12, IL-6, IL-23, tumor necrosis factor (TNF)-α and the M1-specific cell surface antigen, CD86, and the decreased expression of the M2-specific mannose receptor, CD206. However, the knockdown of IRF1 in U937-derived macrophages led to an impaired M1 status, as indicated by the decreased expression of the above-mentioned M1 markers, and the increased expression of the M2 markers, CD206 and IL-10. A similar phenomenon was observed in the M1 macrophages in which IFN-β was inhibited. Furthermore, we demonstrated that IRF1 and IFN-β may interact with each other in the IFN-γ- and LPS-initiated signaling pathway, and contribute to the IRF5 regulation of M1 macrophages. In addition, the conditioned medium collected from the M1 macrophages in which IRF1 or IFN-β were inhibited, exerted pro-tumor effects on the HepG2 and SMMC-7721 cells, as indicated by an increase in proliferation, the inhibition of apoptosis and an enhanced invasion capability. The findings of our study suggest that the interactions of IRF1, IFN-β and IRF5 are involved in the M1 polarization of macro phages and have antitumor functions. These data may provide a novel antitumor strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Changli Xie
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Cuiying Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bitao Wu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Lin
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingting Ma
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiyu Xiong
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ziwei Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chenyu Ma
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhiguang Tu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Al-Sharea A, Lee MKS, Moore XL, Fang L, Sviridov D, Chin-Dusting J, Andrews KL, Murphy AJ. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thromb Haemost 2015; 115:762-72. [PMID: 26676845 DOI: 10.1160/th15-07-0571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 11/05/2022]
Abstract
Recruitment of monocytes in atherosclerosis is dependent upon increased levels of plasma lipoproteins which accumulate in the blood vessel wall. The extracellular milieu can influence the phenotype of monocyte subsets (classical: CD14++CD16-, intermediate: CD14+CD16+ and non-classical: CD14dimCD16++) and macrophages (M1 or M2) and consequently the initiation, progression and/or regression of atherosclerosis. However, it is not known what effect lipoproteins, in particular native low-density lipoproteins (nLDL), have on the polarisation of monocyte-derived macrophages. Monocytes were differentiated into macrophages in the presence of nLDL. nLDL increased gene expression of the inflammatory cytokines TNFα and IL-6 in macrophages polarised towards the M1 phenotype while decreasing the M2 surface markers, CD206 and CD200R and the anti-inflammatory cytokines TGFβ and IL-10. Compared to the classical and intermediate subsets, the non-classical subset-derived macrophages had a reduced ability to respond to M1 stimuli (LPS and IFNγ). nLDL enhanced the TNFα and IL-6 gene expression in macrophages from all monocyte subsets, indicating an inflammatory effect of nLDL. Further, the classical and intermediate subsets both responded to M2 stimuli (IL-4) with upregulation of TGFβ and SR-B1 mRNA; an effect, which was reduced by nLDL. In contrast, the non-classical subset failed to respond to IL-4 or nLDL, suggesting it may be unable to polarise into M2 macrophages. Our data suggests that monocyte interaction with nLDL significantly affects macrophage polarisation and that this interaction appears to be subset dependent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Murphy
- Dr. Andrew J. Murphy, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road central, Melbourne, VIC 8008, Australia, Tel.: +61 3 8532 1292, Fax: +61 3 8532 1100, E-mail:
| |
Collapse
|
19
|
Le Moli R, Muscia V, Tumminia A, Frittitta L, Buscema M, Palermo F, Sciacca L, Squatrito S, Vigneri R. Type 2 diabetic patients with Graves' disease have more frequent and severe Graves' orbitopathy. Nutr Metab Cardiovasc Dis 2015; 25:452-457. [PMID: 25746910 DOI: 10.1016/j.numecd.2015.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/09/2015] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Due to the worldwide increasing prevalence of diabetes (DM), patients with both diabetes and Graves' disease (GD) have become more frequent. Sporadic reports indicate that Graves' orbitopathy (GO), a GD complication that affects orbital soft tissues, can be severe in DM patients. The relationship between these diseases is not well understood. This study aims at evaluating the association of GD and GO with autoimmune and non-autoimmune diabetes (DM) and to assess diabetic features that influence GD and GO prevalence and severity. METHODS AND RESULTS This retrospective study evaluated GD, GO and DM association in 1211 consecutive GD patients (447 with GO and 77 with DM). A case-control study was carried out to evaluate DM relationship with GO severity by comparing at 1:2 ratio GO patients with or without DM. A strong association was found between GD and T1DM (p = 0.01) but not T2DM. Instead, the presence of GO was strongly associated with T2DM (p = 0.01). Moreover, GO was more frequently severe in GD patients with T2DM (11/30 or 36.6%) than in those without T2DM (1/60 or 1.7%, p = 0.05). T2DM was the strongest risk factor for severe GO (OR = 34.1 vs. 4.4 p < 0.049 in cigarette smokers). DM duration, obesity and vascular complications, but not metabolic control were significant determinants of GO severity. CONCLUSIONS GD is associated with T1DM but not with T2DM, probably because of the common autoimmune background. GO, in contrast, is more frequent and severe in T2DM, significantly associated with obesity, diabetes duration and diabetic vasculopathy but not metabolic control.
Collapse
Affiliation(s)
- R Le Moli
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy.
| | - V Muscia
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - A Tumminia
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - L Frittitta
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - M Buscema
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - F Palermo
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - L Sciacca
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - S Squatrito
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy
| | - R Vigneri
- Department of Clinical and Molecular Biomedicine, Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, Via Palermo 636, 95100 Catania, Italy; National Research Council (CNR), Department of Biostructures and Bioimmaging, Catania, Italy
| |
Collapse
|
20
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
21
|
Zhao H, Zhang X, Chen X, Li Y, Ke Z, Tang T, Chai H, Guo AM, Chen H, Yang J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol 2014; 279:311-321. [PMID: 25026504 DOI: 10.1016/j.taap.2014.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022]
Abstract
M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE2 and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE2/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE2 or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE2 and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Haixia Zhao
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Liver, Biliary And Pancreatic Tumors, Hubei Cancer Hospital, Wuhan 430079, China
| | - Xuewei Chen
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Ying Li
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zunqiong Ke
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyan Chai
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Austin M Guo
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Honglei Chen
- Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071, China.
| | - Jing Yang
- Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Chanput W, Mes JJ, Savelkoul HFJ, Wichers HJ. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct 2013; 4:266-76. [PMID: 23135314 DOI: 10.1039/c2fo30156c] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.
Collapse
Affiliation(s)
- Wasaporn Chanput
- Cell Biology and Immunology Group, Food & Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Dall’Asta M, Derlindati E, Curella V, Mena P, Calani L, Ray S, Zavaroni I, Brighenti F, Del Rio D. Effects of naringenin and its phase II metabolites onin vitrohuman macrophage gene expression. Int J Food Sci Nutr 2013; 64:843-9. [DOI: 10.3109/09637486.2013.804039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Benson KF, Beaman JL, Ou B, Okubena A, Okubena O, Jensen GS. West African Sorghum bicolor leaf sheaths have anti-inflammatory and immune-modulating properties in vitro. J Med Food 2013; 16:230-8. [PMID: 23289787 DOI: 10.1089/jmf.2012.0214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3- CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support.
Collapse
|
25
|
Indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions. Toxicol Appl Pharmacol 2012; 266:157-66. [PMID: 23107598 DOI: 10.1016/j.taap.2012.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
Abstract
Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties, on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages.
Collapse
|
26
|
Derlindati E, Dall'Asta M, Ardigò D, Brighenti F, Zavaroni I, Crozier A, Del Rio D. Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects. Food Funct 2012; 3:1144-52. [DOI: 10.1039/c2fo30127j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|