1
|
Malta D, Esfandiari S, Goldraich LA, Allard JP, Newton GE. Postprandial Vascular Effects of a High Potassium Meal in Patients with Treated Hypertension. Nutrients 2024; 17:45. [PMID: 39796479 PMCID: PMC11723007 DOI: 10.3390/nu17010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function. There is no assessment of the acute vascular effects of potassium supplementation achieved by the ingestion of potassium-rich food in a hypertensive population. OBJECTIVE The purpose of this study was to investigate the effect of a high potassium meal on postprandial endothelial function as measured by flow-mediated dilatation (FMD). METHODS We performed an investigator-blinded randomized crossover trial in 33 treated hypertensive individuals. Participants consumed both a high (~2400 mg) and low (~543 mg) K+ meal, separated by a one-week washout period. The primary endpoint was endothelial function as assessed by FMD pre-meal and postprandially at 60 and 120 min. Meals were compared at each time point using the Hills-Armitage approach. RESULTS 33 individuals were included in the study (48% male, mean age 68). In the fasting state (Baseline), and at 60 min postprandial, radial artery FMD was not significantly different between the participants after consumption of either meal (baseline: high K+ 4.2 ± 2% versus Low K+ 2.6 ± 3%, p = 0.93; 60 min: high K+ 3.8 ± 4% versus Low K+ 4.1 ± 3%, p = 0.69). However, at 120 min, FMD tended to be higher in participants after the high K+ meal (5.2 ± 4.1%) than after the low K+ meal (3.9 ± 4.1%) (p = 0.07). There were no differences in participants' radial artery diameter and blood flow between meals. CONCLUSIONS This study does not support our hypothesis that a single high K+ meal improves vascular function in individuals with treated hypertension. This does not contradict the clinical evidence relating greater K+ intake with lower BP, but suggests that mechanistic investigations of increased K+ intake through diet alone and its impact on endothelial function as a mediator to reducing BP are complex and not simply due to single nutrient-mediated improvement in vascular function.
Collapse
Affiliation(s)
- Daniela Malta
- School of Nutrition, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Sam Esfandiari
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (S.E.); (G.E.N.)
- Division of Cardiology, Department of Medicine, Sinai Health System, 600 University Avenue, Suite 427, Toronto, ON M5G 1X5, Canada
| | - Livia A. Goldraich
- Division of Cardiology, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Brazil;
| | - Johane P. Allard
- Department of Nutritional Sciences, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada;
- Division of Gastroenterology, Department of Medicine, Toronto General Hospital, 9N-973, 585 University Avenue, Toronto, ON M5G 2N2, Canada
| | - Gary E. Newton
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (S.E.); (G.E.N.)
- Division of Cardiology, Department of Medicine, Sinai Health System, 600 University Avenue, Suite 427, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
2
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
3
|
Yang Q, Jiang W, He Y, Yang L, Zhao C, Li L, Yang P, Yin L, Li X, Huang X, Li Y. The association of arterial stiffness with estimated excretion levels of urinary sodium and potassium and their ratio in Chinese adults. J Hum Hypertens 2023; 37:292-299. [PMID: 35338245 DOI: 10.1038/s41371-022-00671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Arterial stiffness is an independent cardiovascular risk factor. However, the association between sodium/potassium intake and arterial stiffness in the Chinese population is unclear. Therefore, we performed a large, community-based cross-sectional study to reach a more definitive conclusion. The study was conducted at the Third Xiangya Hospital in Changsha between August 2017 and September 2019. Urinary sodium, potassium, and creatinine levels were tested from spot urine samples during physical examinations of each recruited participant. The 24-hour estimated urinary sodium excretion (eUNaE) and estimated urinary potassium excretion (eUKE) levels were calculated using the Kawasaki formula (used as a surrogate for intake). The brachial-ankle pulse wave velocity (baPWV) and ankle brachial index (ABI) were measured using an automatic waveform analyzer. In 22,557 subjects with an average age of 49.3 ± 10.3 years, the relationships of the ABI and baPWV with the levels of eUNaE, eUKE and the ratio of sodium to potassium (Na/K ratio) were analyzed. A significant negative relationship was found between the eUKE and baPWV levels (β = 2.41, p < 0.01), whereas the Na/K ratio was positively associated with baPWV (β = 2.46, p < 0.01), especially in the overweight and hypertensive populations (both pinteraction = 0.04). The association of eUNaE quartiles with baPWV presented a J-shaped curve after adjusting for confounders. In addition, a positive association was observed between the Na/K ratio and the ABI (β = 0.002, p < 0.01). In this study, high potassium and/or low sodium intake was further confirmed to be related to vascular stiffness in Chinese individuals.
Collapse
Affiliation(s)
- Qinyu Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongmei He
- Department of Health Management, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB, Canada
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Congke Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Lijun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China
| | - Xin Huang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China.
| |
Collapse
|
4
|
Dreier R, Abdolalizadeh B, Asferg CL, Hölmich LR, Buus NH, Forman JL, Andersen UB, Egfjord M, Sheykhzade M, Jeppesen JL. Effect of increased potassium intake on the renin-angiotensin-aldosterone system and subcutaneous resistance arteries: a randomized crossover study. Nephrol Dial Transplant 2020; 36:gfaa114. [PMID: 32596729 DOI: 10.1093/ndt/gfaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increased potassium intake lowers blood pressure (BP) in hypertensive patients. The underlying mechanism is not fully understood but must be complex because increased potassium intake elevates circulating concentrations of the BP-raising hormone aldosterone. METHODS In a randomized placebo-controlled crossover study in 25 normotensive men, we investigated the effect of 4 weeks of potassium supplement (90 mmol/day) compared with 4 weeks of placebo on the renin-angiotensin-aldosterone system (RAAS), urine composition and 24-h ambulatory BP. Vascular function was also assessed through wire myograph experiments on subcutaneous resistance arteries from gluteal fat biopsies. RESULTS Higher potassium intake increased urinary potassium excretion (144.7 ± 28.7 versus 67.5 ± 25.5 mmol/24-h; P < 0.0001) and plasma concentrations of potassium (4.3 ± 0.2 versus 4.0 ± 0.2 mmol/L; P = 0.0002), renin {mean 16 [95% confidence interval (CI) 12-23] versus 11 [5-16] mIU/L; P = 0.0047}, angiotensin II [mean 10.0 (95% CI 6.2-13.0) versus 6.1 (4.0-10.0) pmol/L; P = 0.0025] and aldosterone [mean 440 (95% CI 336-521) versus 237 (173-386) pmol/L; P < 0.0001]. Despite RAAS activation, systolic BP (117.6 ± 5.8 versus 118.2 ± 5.2 mmHg; P = 0.48) and diastolic BP (70.8 ± 6.2 versus 70.8 ± 6.3 mmHg; P = 0.97) were unchanged. In the wire myograph experiments, higher potassium intake did not affect endothelial function as assessed by acetylcholine [logarithmically transformed half maximal effective concentration (pEC50): 7.66 ± 0.95 versus 7.59 ± 0.85; P = 0.86] and substance P (pEC50: 8.42 ± 0.77 versus 8.41 ± 0.89; P = 0.97) or vascular smooth muscle cell reactivity as assessed by angiotensin II (pEC50: 9.01 ± 0.86 versus 9.02 ± 0.59; P = 0.93) and sodium nitroprusside (pEC50: 7.85 ± 1.07 versus 8.25 ± 1.32; P = 0.25) but attenuated the vasodilatory response of retigabine (pEC50: 7.47 ± 1.16 versus 8.14 ± 0.90; P = 0.0084), an activator of Kv7 channels. CONCLUSIONS Four weeks of increased potassium intake activates the RAAS in normotensive men without changing BP and this is not explained by improved vasodilatory responses ex vivo.
Collapse
Affiliation(s)
- Rasmus Dreier
- Department of Medicine, Amager Hvidovre Hospital in Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Bahareh Abdolalizadeh
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla L Asferg
- Department of Medicine, Amager Hvidovre Hospital in Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Lisbet R Hölmich
- Department of Plastic Surgery, Herlev Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels H Buus
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Julie L Forman
- Department of Public Health, Section of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik B Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Martin Egfjord
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet Blegdamsvej, University of Copenhagen, Copenhagen, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen L Jeppesen
- Department of Medicine, Amager Hvidovre Hospital in Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Smiljanec K, Mbakwe A, Ramos Gonzalez M, Farquhar WB, Lennon SL. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients 2020; 12:nu12051206. [PMID: 32344796 PMCID: PMC7281996 DOI: 10.3390/nu12051206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
The influence of dietary sodium and potassium on blood pressure (BP) has been extensively studied, however their impact on endothelial function, particularly any interactive effects, has received less attention. The purpose of this study was to determine if dietary potassium can offset the deleterious effect of high dietary sodium on endothelial function independent of BP. Thirty-three adults with salt-resistant BP (16 M and 17 F; 27 ± 1 year) completed seven days each of the following diets in a random order: a moderate potassium/low sodium diet (65 mmol potassium/50 mmol sodium; MK/LS), a moderate potassium/high sodium diet (65mmol potassium/300 mmol sodium; MK/HS) and a high potassium/high sodium (120 mmol potassium/300 mmol sodium; HK/HS). On day seven of each diet, 24-h ambulatory BP and a urine collection were performed. Brachial artery flow-mediated dilation (FMD) was measured in response to reactive hyperemia. Between diets, 24-h BP was unchanged confirming salt resistance (p > 0.05). Sodium excretion increased on both HS diets compared to MK/LS (p < 0.05) and potassium excretion was increased on the HK diet compared to MK/LS and MK/HS (p < 0.05) confirming diet compliance. FMD was lower in MK/HS (5.4 ± 0.5%) compared to MK/LS (6.7 ± 0.5%; p < 0.05) and HK/HS (6.4 ± 0.5%), while there was no difference between the MK/LS and HK/HS diets (p > 0.05). These data suggest that dietary potassium provides vascular protection against the deleterious effects of high dietary sodium by restoring conduit artery function.
Collapse
|
6
|
Effect of Intermittent Energy Restriction on Flow Mediated Dilatation, a Measure of Endothelial Function: A Short Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061166. [PMID: 29867034 PMCID: PMC6025364 DOI: 10.3390/ijerph15061166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 01/27/2023]
Abstract
Intermittent energy restriction is a popular alternative to daily energy restriction for weight loss; however, it is unknown if endothelial function, a risk factor for cardiovascular disease, is altered by periods of severe energy restriction. The objective of the study was to determine the impact of two consecutive very low energy intake days, which is the core component of the 5:2 intermittent energy restriction diet strategy, on endothelial function compared to consecutive ad libitum eating days. The secondary objective was to explore the effects of these dietary conditions on fasting glucose concentrations. This was a 4-week randomized, single-blinded, crossover study of 35 participants. Participants consumed a very low energy diet (500 calories for women, 600 calories for men) on two consecutive days per week and 5 days of habitual eating. In weeks 3 and 4 of the trial, participants had measurements of flow mediated dilatation (FMD) and blood samples taken following either 2 habitual eating days or 2 energy restricted days in a randomized order. FMD values were not different after the two eating states (8.6% vs. 8.3%, p = 0.7). All other outcome variables were unchanged. Endothelial function, as measured by flow mediated dilatation, was not altered by two consecutive very low energy intake days. Further investigations assessing the impact in specific population groups as well as different testing conditions would be beneficial.
Collapse
|
7
|
Eating occasions and the contribution of foods to sodium and potassium intakes in adults. Public Health Nutr 2017; 21:317-324. [PMID: 29108531 DOI: 10.1017/s1368980017002968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine dietary Na and K intake at eating occasions in Australian adults and identify the contribution of major food sources to Na and K at different eating occasions. DESIGN Secondary analysis of 24 h recall diet data from the Australian Health Survey (2011-2013). SETTING Nationally representative survey in Australia. SUBJECTS Male and female Australians aged 18-84 years (n 7818). RESULTS Dinner contributed the greatest proportion to total daily Na intake (33 %) and K intake (35 %). Na density was highest at lunch (380 mg/MJ) and K density highest at between-meal time eating occasions (401 mg/MJ). Between-meal time eating occasions provided 20 % of daily Na intake and 26 % of daily K intake. The major food group sources of Na were different at meal times (breads and mixed dishes) compared with between-meal times (cakes, muffins, scones, cake-type desserts). The top food group sources of K at meal times were potatoes and unprocessed meat products and dishes. CONCLUSIONS Foods which contributed to Na and K intake differed according to eating occasion. Major food sources of Na were bread and processed foods. Major food sources of K were potatoes and meat products and dishes. Public health messages that emphasise meal-based advice and diet patterns high in vegetables, fruits and unprocessed foods may also aid reduction in dietary Na intake and increase in dietary K intake.
Collapse
|
8
|
Effect of potassium supplementation on vascular function: A meta-analysis of randomized controlled trials. Int J Cardiol 2016; 228:225-232. [PMID: 27865190 DOI: 10.1016/j.ijcard.2016.10.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Effects of potassium supplementation on vascular function remain conflicting. This meta-analysis aimed to summarized current literature to fill the gaps in knowledge. METHODS A literature search was performed on PubMed database through April, 2016. The measurements of vascular function included pulse wave velocity (PWV), augmentation index (AI), pulse pressure (PP), flow mediated dilatation (FMD), glycerol trinitrate responses (GTN), and intercellular cell adhesion molecule-1 (ICAM-1). Data were pooled as standardized mean difference (SMD) with 95% confidence intervals. RESULTS Seven randomized controlled trials examining 409 participants were included, with dosage of potassium ranging from 40 to 150mmol/day, and duration of intervention from 6days to 12months. Pooling results revealed a significant improvement in PP (SMD -0.280, 95% CI -0.493 to -0.067, p=0.010), but no improvement in PWV (SMD -0.342, 95% CI -1.123 to 0·440, p=0.391), AI (SMD -0.114, 95% CI -0.282 to 0.054, p=0.184), FMD (SMD 0·278, 95% CI -0.321 to 0.877, p=0.363), GTN (SMD -0.009, 95% CI -0.949 to 0.930, p=0.984), and ICAM-1 (SMD -0.238, 95% CI -0.720 to 0.244, p=0.333). CONCLUSIONS Potassium supplementation was associated with significant improvement of PP, rather than other measurements of vascular function. However, the small number of researches and wide variation of evidences make it difficult to make a definitive conclusion.
Collapse
|
9
|
Clifton P. From sodium intake restriction to nitrate supplementation: Different measures with converging mechanistic pathways? Nutr Metab Cardiovasc Dis 2015; 25:1079-1086. [PMID: 26614018 DOI: 10.1016/j.numecd.2015.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023]
Abstract
Endothelial nitric oxide synthase is at the centre of endothelial physiology producing nitric oxide which dilates blood vessels, inhibits platelet aggregation and smooth muscle cell proliferation and reduces adhesion molecule production. The laminar shear stress is a common test used usually as the flow mediated dilatation test (FMD) which is sensitive to saturated fat, sodium and potassium although with the latter ion it is possible potassium has direct effects on ion channels in the smooth muscle cell as well as the endothelial cell. High blood pressure and blood cholesterol both reduce nitric oxide production, the latter probably by increasing caveolin-1 which binds nitric oxide synthase. Saturated fat reduces nitric oxide by elevating LDL cholesterol and caveolin-1 while insulin stimulates nitric oxide synthase activity by serine phosphorylation. Polyphenols from tea, coffee and cocoa and virgin olive oil enhance FMD and eNOS activity is essential for this activity. Wine polyphenols produce mixed results and it is not clear at present that they are beneficial. Blackberries and other polyphenol-rich fruit also enhance FMD. Dietary nitrate from beetroot and green leafy vegetables is converted to nitrite by salivary microbes and then to nitric oxide and this acts directly on the smooth muscle to lower blood pressure particularly in a low oxygen environment. Dietary nitrate also improves work efficiency and improves flow mediated dilatation.
Collapse
Affiliation(s)
- P Clifton
- University of South Australia, P5-16, GPO Box 2471, Adelaide SA 5000, Australia.
| |
Collapse
|
10
|
Ballard KD, Bruno RS. Protective role of dairy and its constituents on vascular function independent of blood pressure-lowering activities. Nutr Rev 2015; 73:36-50. [PMID: 26024056 DOI: 10.1093/nutrit/nuu013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Greater intakes of dairy are frequently associated with reduced risk of cardiovascular disease. These observational studies have served as the basis for controlled interventions aimed at defining the cardioprotective mechanisms of dairy. Understanding these relationships is of public health importance because most of the US population fails to meet dietary recommendations for dairy, suggesting that many individuals could lower their cardiovascular disease risk by relatively simple dietary modification. Clinical studies investigating the acute ingestion of dairy or its constituents, including short-term (≤2 week) supplementation studies or those assessing postprandial responses, have largely shown benefits on vascular function without concomitant improvements in blood pressure. Chronic interventions have been less conclusive, with some showing benefits and others indicating a lack of improvement in vascular function regardless of blood pressure changes. Vasoprotective activities of dairy are likely mediated through improvements in nitric oxide bioavailability, oxidative stress, inflammation, and insulin resistance. Future controlled studies are needed to determine if these health benefits are mediated directly by dairy or indirectly by displacing other dietary components that otherwise impair vascular health.
Collapse
Affiliation(s)
- Kevin D Ballard
- K.D. Ballard is with the Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, Connecticut, USA. R.S. Bruno is with the Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard S Bruno
- K.D. Ballard is with the Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, Connecticut, USA. R.S. Bruno is with the Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res 2015; 46:408-26. [DOI: 10.1016/j.arcmed.2015.05.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
|
12
|
Blanch N, Clifton PM, Petersen KS, Keogh JB. Effect of sodium and potassium supplementation on vascular and endothelial function: a randomized controlled trial. Am J Clin Nutr 2015; 101:939-46. [PMID: 25787997 DOI: 10.3945/ajcn.114.105197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/26/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It is known that increased potassium and reduced sodium intakes can improve postprandial endothelial function. However, the effect of increasing potassium in the presence of high sodium in the postprandial state is not known. OBJECTIVE We aimed to determine the effect of high potassium and high sodium on postprandial endothelial function as assessed by using flow-mediated dilatation (FMD) and arterial compliance as assessed by using pulse wave velocity (PWV) and central augmentation index (AIx). DESIGN Thirty-nine healthy, normotensive volunteers [21 women and 18 men; mean ± SD age: 37 ± 15 y; BMI (in kg/m(2)): 23.0 ± 2.8] received a meal with 3 mmol K and 65 mmol Na (low-potassium, high-sodium meal (LKHN)], a meal with 38 mmol K and 65 mmol Na [high-potassium, high-sodium meal (HKHN)], and a control meal with 3 mmol K and 6 mmol Na (low-potassium, low-sodium meal) on 3 separate occasions in a randomized crossover trial. Brachial artery FMD, carotid-femoral PWV, central AIx, and blood pressure (BP) were measured while participants were fasting and at 30, 60, 90, and 120 min after meals. RESULTS Compared with the LKHN, the addition of potassium (HKHN) significantly attenuated the postmeal decrease in FMD (P-meal by time interaction < 0.05). FMD was significantly lower after the LKHN than after the HKHN at 30 min (P < 0.01). AIx decreased after all meals (P < 0.05). There were no significant differences in AIx, PWV, or BP between treatments over time. CONCLUSION The addition of potassium to a high-sodium meal attenuates the sodium-induced postmeal reduction in endothelial function as assessed by FMD. This trial was registered at http://www.anzctr.org.au/ as ACTRN12613000772741.
Collapse
Affiliation(s)
- Natalie Blanch
- From the School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Peter M Clifton
- From the School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Kristina S Petersen
- From the School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Jennifer B Keogh
- From the School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| |
Collapse
|
13
|
Blanch N, Clifton PM, Keogh JB. A systematic review of vascular and endothelial function: effects of fruit, vegetable and potassium intake. Nutr Metab Cardiovasc Dis 2015; 25:253-266. [PMID: 25456155 DOI: 10.1016/j.numecd.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 01/16/2023]
Abstract
AIM To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. DATA SYNTHESIS An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. CONCLUSION Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear.
Collapse
Affiliation(s)
- N Blanch
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - P M Clifton
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - J B Keogh
- School of Pharmacy and Medical Science, University of South Australia, Australia.
| |
Collapse
|
14
|
Blanch N, Clifton PM, Petersen KS, Willoughby SR, Keogh JB. Effect of high potassium diet on endothelial function. Nutr Metab Cardiovasc Dis 2014; 24:983-989. [PMID: 24875671 DOI: 10.1016/j.numecd.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/09/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Increased potassium intake is related to reduced blood pressure (BP) and reduced stroke rate. The effect of increased dietary potassium on endothelial function remains unknown. The aim was to determine the effect of increased dietary potassium from fruit and vegetables on endothelial function. METHODS AND RESULTS Thirty five healthy men and women (age 32 ± 12 y) successfully completed a randomised cross-over study of 2 × 6 day diets either high or low in potassium. Flow mediated dilatation (FMD), BP, pulse wave velocity (PWV), augmentation index (AI) and a fasting blood sample for analysis of Intercellular Adhesion Molecule-1 (ICAM-1), E-selectin, asymmetric dimethylarginine (ADMA) and endothelin-1 were taken on completion of each intervention. Dietary change was achieved by including bananas and potatoes in the high potassium and apples and rice/pasta in the low potassium diet. Dietary adherence was assessed using 6 day weighed food diaries and a 24 h urine sample. The difference in potassium excretion between the two diets was 48 ± 32 mmol/d (P = 0.000). Fasting FMD was significantly improved by 0.6% ± 1.5% following the high compared to the low potassium diet (P = 0.03). There were no significant differences in BP, PWV, AI, ICAM-1, ADMA or endothelin-1 between the interventions. There was a significant reduction in E-selectin following the high (Median = 5.96 ng/ml) vs the low potassium diet (Median = 6.24 ng/ml), z = -2.49, P = 0.013. CONCLUSION Increased dietary potassium from fruit and vegetables improves FMD within 1 week in healthy men and women but the mechanisms for this effect remain unclear. CLINICAL TRIAL REGISTRY ACTRN12612000822886.
Collapse
Affiliation(s)
- N Blanch
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - P M Clifton
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - K S Petersen
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - S R Willoughby
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - J B Keogh
- School of Pharmacy and Medical Science, University of South Australia, Australia.
| |
Collapse
|