1
|
Zhou M, Liu D, Tan S, Mu Y, Zhou Z, Gu S, Zuo H. Sex differences in the association between plasma branched-chain amino acids and risk of ischemic stroke: A nested case-control study from China. J Stroke Cerebrovasc Dis 2024; 33:107870. [PMID: 39004238 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prospective associations between plasma branched-chain amino acids (BCAAs) and the risk of ischemic stroke in men and women. METHODS We conducted a nested case-control study within a community-based cohort in China. The cohort consisted of 15,926 participants in 2013-2018. A total of 321 ischemic stroke cases were identified during the follow up and individually matched with 321 controls by date of birth (±1 year) and sex. Females accounted for 55.8% (n = 358, 179 cases vs 179 controls) of the study population. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between plasma BCAAs and ischemic stroke risk by conditional logistic regression. RESULTS Elevated plasma isoleucine was associated with a higher risk of ischemic stroke in women. The OR for the highest compared to the lowest quartile was 2.22 (95% CI: 1.11-4.44, P trend = 0.005) after adjustment for body mass index, education attainment, smoking, hypertension, renal function, menopause and physical activity. A similar association was found for total BCAAs (adjusted OR = 2.03, 95% CI: 1.05-3.95, P trend = 0.04). In contrast, no significant association of plasma BCAAs with ischemic stroke risk was observed in men. CONCLUSIONS Plasma isoleucine and total BCAAs were significantly associated with ischemic stroke risk in women, but not in men, highlighting sex differences in BCAAs metabolism and stroke pathogenesis.
Collapse
Affiliation(s)
- Meng Zhou
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; School of Public Health, Nantong University, Nantong, China
| | - Siyue Tan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yingjun Mu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyuan Zhou
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Shuju Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Suzhou Medical College of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Abar L, Zuber V, Otto GW, Tzoulaki I, Dehghan A. Unravelling genetic architecture of circulatory amino acid levels, and their effect on risk of complex disorders. NAR Genom Bioinform 2024; 6:lqae046. [PMID: 38711861 PMCID: PMC11071119 DOI: 10.1093/nargab/lqae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Variations in serum amino acid levels are linked to a multitude of complex disorders. We report the largest genome-wide association study (GWAS) on nine serum amino acids in the UK Biobank participants (117 944, European descent). We identified 34 genomic loci for circulatory levels of alanine, 48 loci for glutamine, 44 loci for glycine, 16 loci for histidine, 11 loci for isoleucine, 19 loci for leucine, 9 loci for phenylalanine, 32 loci for tyrosine and 20 loci for valine. Our gene-based analysis mapped 46-293 genes associated with serum amino acids, including MIP, GLS2, SLC gene family, GCKR, LMO1, CPS1 and COBLL1.The gene-property analysis across 30 tissues highlighted enriched expression of the identified genes in liver tissues for all studied amino acids, except for isoleucine and valine, in muscle tissues for serum alanine and glycine, in adrenal gland tissues for serum isoleucine and leucine, and in pancreatic tissues for serum phenylalanine. Mendelian randomization (MR) phenome-wide association study analysis and subsequent two-sample MR analysis provided evidence that every standard deviation increase in valine is associated with 35% higher risk of type 2 diabetes and elevated levels of serum alanine and branched-chain amino acids with higher levels of total cholesterol, triglyceride and low-density lipoprotein, and lower levels of high-density lipoprotein. In contrast to reports by observational studies, MR analysis did not support a causal association between studied amino acids and coronary artery disease, Alzheimer's disease, breast cancer or prostate cancer. In conclusion, we explored the genetic architecture of serum amino acids and provided evidence supporting a causal role of amino acids in cardiometabolic health.
Collapse
Affiliation(s)
- Leila Abar
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Verena Zuber
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Georg W Otto
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- Centre for Systems Biology, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| | - Abbas Dehghan
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
3
|
Li Z, Wang Y, Sun H. The Role of Branched-chain Amino Acids and Their Metabolism in Cardiovascular Diseases. J Cardiovasc Transl Res 2024; 17:85-90. [PMID: 38216830 DOI: 10.1007/s12265-024-10479-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential amino acids for protein synthesis. Recent studies have yielded new insights into their diverse physiological and pathological roles in health and disease. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. An increasing number of clinical studies have demonstrated that high levels of circulating BCAAs are associated with an increased risk of CVDs. Animal studies have provided preliminary evidence linking BCAA intake and metabolism with cardiovascular diseases. Despite these insights, the causal relationship between BCAA metabolism and CVD remains poorly established, and the underlying mechanisms remain incompletely understood. Here, we aim to provide an update on the current understanding of the roles of BCAAs and their metabolism in the development and progression of various CVDs. We also discuss the potential strategies targeting BCAA nutrition and metabolism for the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Zhiyu Li
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yibin Wang
- The Signature Research Program in Cardiovascular and Metabolic Disorders, DukeNUS Medical School, Singapore, 169857, Singapore
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
4
|
Zhao JV, Fan B, Burgess S. Using genetics to examine the overall and sex-specific associations of branch-chain amino acids and the valine metabolite, 3-hydroxyisobutyrate, with ischemic heart disease and diabetes: A two-sample Mendelian randomization study. Atherosclerosis 2023; 381:117246. [PMID: 37660674 PMCID: PMC7615055 DOI: 10.1016/j.atherosclerosis.2023.117246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND AIMS Branch-chain amino acids (BCAAs) are linked to higher risk of diabetes, whilst the evidence on ischemic heart disease (IHD) is limited. Valine metabolite, 3-hydroxyisobutyrate (3-HIB), also plays an important role in metabolism, whilst its effect has been rarely examined. At the situation of no evidence from large trials, we assessed the role of BCAAs and 3-HIB in IHD and diabetes using Mendelian randomization to minimize confounding. Given their potential role in sex hormones, we also examined sex-specific associations. METHODS We used genetic variants to predict BCAAs and 3-HIB, and obtained their associations with IHD and diabetes in large consortia and cohorts, as well as sex-specific association in the UK Biobank and DIAGRAM. We obtained and combined the Wald estimates using inverse variance weighting, and different analytic methods robust to pleiotropy. RESULTS Genetically predicted BCAAs were associated with higher risk of IHD (odds ratio (OR) 1.19 per standard deviation (SD) increase in BCAAs, 95% confidence interval (CI) 1.05 to 1.35) and diabetes (OR 1.20, 95% CI 1.08 to 1.34). The associations with IHD were stronger in women (OR 1.23, 95% CI 1.03 to 1.48) than men (OR 0.96, 95% CI 0.83 to 1.10). 3-HIB was associated with higher risk of IHD (OR 1.43, 95% CI 1.17 to 1.73) but not diabetes, with no sex disparity. CONCLUSION BCAAs and 3-HIB are potential targets for prevention in IHD and/or diabetes. BCAAs may exert a sex-specific role in IHD. Consideration of the sex disparity and exploration of the underlying pathways would be worthwhile.
Collapse
Affiliation(s)
- Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Bohan Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, UK; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK
| |
Collapse
|
5
|
Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W, Zhu BD, Wei ZH, Li R, Li CY, Zhou GY, Tan ZJ, Zhou HP, Li CX, Gao HK, Qin XJ, Lian K. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages. Redox Biol 2023; 62:102696. [PMID: 37058999 PMCID: PMC10130699 DOI: 10.1016/j.redox.2023.102696] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.
Collapse
|
6
|
Wu R, Zhong J, Song L, Zhang M, Chen L, Zhang L, Qiu Z. Untargeted metabolomic analysis of ischemic injury in human umbilical vein endothelial cells reveals the involvement of arginine metabolism. Nutr Metab (Lond) 2023; 20:17. [PMID: 36998018 DOI: 10.1186/s12986-023-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE In this study, differentially expressed metabolites of vascular endothelial cells were examined to further understand the metabolic regulation of ischemic injury by untargeted metabolomics. METHOD Human umbilical vein endothelial cells (HUVECs) were selected to construct an ischemia model using oxygen-glucose deprivation (OGD) and 0, 3, 6, and 9 h of treatment. After that, cell survival levels were determined by CCK8 detection. Flow cytometry, ROS detection, JC-1 detection, and western blotting were used to measure apoptosis and oxidative stress in cells. Then, combined with UPLC Orbitrap/MS, we verified the impacted metabolism pathways by western blotting and RT‒PCR. RESULTS CCK8 assays showed that the survival of HUVECs was decreased with OGD treatment. Flow cytometry and the expression of cleaved caspase 3 showed that the apoptosis levels of HUVECs increased following OGD treatment. The ROS and JC-1 results further suggested that oxidative stress injury was aggravated. Then, combined with the heatmap, KEGG and IPA, we found that arginine metabolism was differentially altered during different periods of OGD treatment. Furthermore, the expression of four arginine metabolism-related proteins, ASS1, ARG2, ODC1 and SAT1, was found to change during treatment. CONCLUSION Arginine metabolism pathway-related proteins were significantly altered by OGD treatment, which suggests that they may have a potential role in ischemic injury.
Collapse
Affiliation(s)
- Ruihao Wu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jiayin Zhong
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Lei Song
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Min Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lulu Chen
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Li Zhang
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zhaohui Qiu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
| |
Collapse
|
7
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|
8
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
10
|
Xiong Y, Jiang L, Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases. Front Cardiovasc Med 2022; 9:965899. [PMID: 35911554 PMCID: PMC9334649 DOI: 10.3389/fcvm.2022.965899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Globally, cardiovascular diseases are the leading cause of death. Research has focused on the metabolism of carbohydrates, fatty acids, and amino acids to improve the prognosis of cardiovascular diseases. There are three types of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) required for protein homeostasis, energy balance, and signaling pathways. Increasing evidence has implicated BCAAs in the pathogenesis of multiple cardiovascular diseases. This review summarizes the biological origin, signal transduction pathways and function of BCAAs as well as their significance in cardiovascular diseases, including myocardial hypertrophy, heart failure, coronary artery disease, diabetic cardiomyopathy, dilated cardiomyopathy, arrhythmia and hypertension.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Jiang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
11
|
Liu Y, Zhang C, Zhang Y, Jiang X, Liang Y, Wang H, Li Y, Sun G. Association between Excessive Dietary Branched-Chain Amino Acids Intake and Hypertension Risk in Chinese Population. Nutrients 2022; 14:nu14132582. [PMID: 35807761 PMCID: PMC9268479 DOI: 10.3390/nu14132582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The dietary intake of branched-chain amino acids (BCAAs) has been reported to be associated with both elevated blood pressure (BP) and hypertension risk, while published findings were inconsistent, and the causality has never been well disclosed. We performed this prospective study aiming to find out the relationship between dietary BCAAs intake and hypertension risk in the Chinese population. A total of 8491 participants (40,285 person-years) were selected. The levels of dietary BCAAs intake were estimated using the 24-h Food Frequency Questionnaire. Associations of both BP values and hypertension risk with per standard deviation increase of BCAAs were estimated using linear and COX regression analysis, respectively. The hazard ratios and 95% confidence interval were given. Restricted cubic spline analysis (RCS) was used to estimate the nonlinearity. Both systolic and diastolic BP values at the end points of follow-up were positively associated with dietary BCAAs intake. Positive associations between BCAAs intake and hypertension risk were shown in both men and women. By performing a RCS analysis, the nonlinear relationship between BCAAs intake and hypertension was shown. As the intake levels of Ile, Leu, and Val, respectively, exceeded 2.49 g/day, 4.91 g/day, and 2.88 g/day in men (2.16 g/day, 3.84 g/day, and 2.56 g/day in women), the hypertension risk increased. Our findings could provide some concrete evidence in the primary prevention of hypertension based on dietary interventions.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China;
| | - Chengwen Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuan Zhang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Xuheng Jiang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yuanhong Liang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Huan Wang
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| | - Yongfang Li
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
- Correspondence:
| | - Guifan Sun
- Research Center of Environmental and Non-Communicable Disease, School of Public Health, China Medical University, Shenyang 110000, China; (C.Z.); (Y.Z.); (X.J.); (Y.L.); (H.W.); (G.S.)
| |
Collapse
|
12
|
Tian R, Liu HH, Feng SQ, Wang YF, Wang YY, Chen YX, Wang H, Zhang SY. Gut microbiota metabolic characteristics in coronary artery disease patients with hyperhomocysteine. J Microbiol 2022; 60:419-428. [DOI: 10.1007/s12275-022-1451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
|
13
|
Wang Y, Huang K, Liu F, Lu X, Huang J, Gu D. Association of circulating branched-chain amino acids with risk of cardiovascular disease: A systematic review and meta-analysis. Atherosclerosis 2022; 350:90-96. [DOI: 10.1016/j.atherosclerosis.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
|
14
|
Piri-Moghadam H, Miller A, Pronger D, Vicente F, Charrow J, Haymond S, Lin DC. A rapid LC-MS/MS assay for detection and monitoring of underivatized branched-chain amino acids in maple syrup urine disease. J Mass Spectrom Adv Clin Lab 2022; 24:107-117. [PMID: 35602306 PMCID: PMC9120951 DOI: 10.1016/j.jmsacl.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/14/2022] Open
Abstract
Branched chain amino acid (BCAA) testing is crucial in the diagnosis and monitoring of maple syrup urine disease (MSUD). Mixed mode chromatography can be applied to separate BCAAs without requiring sample derivatization. A rapid, clinically validated LC-MS/MS-based assay for analysis of underivatized BCAA in human plasma was developed. The assay involves minimal sample preparation without derivatization, rapid chromatographic separation, and requires only 20 µL of sample.
Introduction Quantitation of the isomeric branched-chain amino acids (BCAA; valine, alloisoleucine, isoleucine, leucine) is a challenging task that typically requires derivatization steps or long runtimes if a traditional chromatographic method involving a ninhydrin ion pairing reagent is used. Objectives To develop and perform clinical validation of a rapid, LC-MS/MS-based targeted metabolomics assay for detection and monitoring of underivatized BCAA in human plasma. Methods: Various columns and modes of chromatography were tested. The final optimized method utilized mixed mode chromatography with an Intrada column under isocratic condition. Sample preparation utilized the 96-well format. Briefly, extraction solvent containing the internal standard is added to 20 uL of sample, followed by shaking and positive pressure filtering, and the resulting extracted sample is analyzed. The assay was validated based on accepted quality standards (e.g., CLIA and CLSI) for clinical assays. Results The method is linear over a wide range of concentrations, 2.0–1500 µM, with LOD of 0.60 µM and LOQ of 2.0 µM. The precision of the assay was 4–10% across analytes. The method was also validated against reference laboratories via blinded split-sample analysis and demonstrated good agreement with accuracy: 89–95% relative to the external group mean. Conclusion We have developed a method that is accurate, rapid, and reliable for routine clinical testing of patient sample BCAA, which is used in the diagnosis and management of maple syrup urine disease (MSUD). The assay also has desirable characteristics, such as short run time, small sample volume requirement, simple sample preparation without the need for derivatization, and high throughput.
Collapse
|
15
|
Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites 2022; 12:metabo12020123. [PMID: 35208197 PMCID: PMC8876355 DOI: 10.3390/metabo12020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Traditional cardiovascular (CV) risk factors (RFs) and coronary artery disease (CAD) do not always show a direct correlation. We investigated the metabolic differences in a cohort of patients with a high CV risk profile who developed, or did not develop, among those enrolled in the Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation (CAPIRE) study. We studied 112 subjects with a high CV risk profile, subdividing them according to the presence (CAD/High-RFs) or absence of CAD (No-CAD/High-RFs), assessed by computed tomography angiography. The metabolic differences between the two groups were identified by gas chromatography-mass spectrometry. Characteristic patterns and specific metabolites emerged for each of the two phenotypic groups: high concentrations of pyruvic acid, pipecolic acid, p-cresol, 3-aminoisobutyric acid, isoleucine, glyceric acid, lactic acid, sucrose, phosphoric acid, trimethylamine-N-oxide, 3-hydroxy-3-methylglutaric acid, erythritol, 3-hydroxybutyric acid, glucose, leucine, and glutamic acid; and low concentrations of cholesterol, hypoxanthine, glycerol-3-P, and cysteine in the CAD/High-RFs group vs the No-CAD/High-RFs group. Our results show the existence of different metabolic profiles between patients who develop CAD and those who do not, despite comparable high CV risk profiles. A specific cluster of metabolites, rather than a single marker, appears to be able to identify novel predisposing or protective mechanisms towards CAD beyond classic CVRFs.
Collapse
|
16
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [PMID: 36280321 DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Gander J, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Infanger D, Colledge F, Streese L, Wagner J, Klenk C, Nève G, Knaier R, Hanssen H, Schmidt-Trucksäss A, Ivanisevic J. Metabolic Impairment in Coronary Artery Disease: Elevated Serum Acylcarnitines Under the Spotlights. Front Cardiovasc Med 2021; 8:792350. [PMID: 34977199 PMCID: PMC8716394 DOI: 10.3389/fcvm.2021.792350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Coronary artery disease (CAD) remains the leading cause of death worldwide. Expanding patients' metabolic phenotyping beyond clinical chemistry investigations could lead to earlier recognition of disease onset and better prevention strategies. Additionally, metabolic phenotyping, at the molecular species level, contributes to unravel the roles of metabolites in disease development. In this cross-sectional study, we investigated clinically healthy individuals (n = 116, 65% male, 70.8 ± 8.7 years) and patients with CAD (n = 54, 91% male, 67.0 ± 11.5 years) of the COmPLETE study. We applied a high-coverage quantitative liquid chromatography-mass spectrometry approach to acquire a comprehensive profile of serum acylcarnitines, free carnitine and branched-chain amino acids (BCAAs), as markers of mitochondrial health and energy homeostasis. Multivariable linear regression analyses, adjusted for confounders, were conducted to assess associations between metabolites and CAD phenotype. In total, 20 short-, medium- and long-chain acylcarnitine species, along with L-carnitine, valine and isoleucine were found to be significantly (adjusted p ≤ 0.05) and positively associated with CAD. For 17 acylcarnitine species, associations became stronger as the number of affected coronary arteries increased. This implies that circulating acylcarnitine levels reflect CAD severity and might play a role in future patients' stratification strategies. Altogether, CAD is characterized by elevated serum acylcarnitine and BCAA levels, which indicates mitochondrial imbalance between fatty acid and glucose oxidation.
Collapse
Affiliation(s)
- Joséphine Gander
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rébecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christopher Klenk
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Gilles Nève
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Arno Schmidt-Trucksäss
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Julijana Ivanisevic
| |
Collapse
|
18
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Phytochemicals and Amino Acids Profiles of Selected sub-Saharan African Medicinal Plants' Parts Used for Cardiovascular Diseases' Treatment. Pharmaceutics 2021; 13:1367. [PMID: 34575444 PMCID: PMC8472700 DOI: 10.3390/pharmaceutics13091367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
For years, the focus on the lipid-atherosclerosis relationship has limited the consideration of the possible contribution of other key dietary components, such as amino acids (AAs), to cardiovascular disease (CVD) development. Notwithstanding, the potential of plant-based diets, some AAs and phytochemicals to reduce CVDs' risk has been reported. Therefore, in this study, the phytochemical and AA profiles of different medicinal plants' (MPs) parts used for CVDs' treatment in sub-Saharan Africa were investigated. Fourier-transform infrared analysis confirmed the presence of hydroxyl, amino and other bioactive compounds' functional groups in the samples. In most of them, glutamic and aspartic acids were the most abundant AAs, while lysine was the most limiting. P. biglobosa leaf, had the richest total branched-chain AAs (BCAAs) level, followed by A. cepa bulb. However, A. cepa bulb had the highest total AAs content and an encouraging nutraceutical use for adults based on its amino acid score. Principal component analysis revealed no sharp distinction between the AAs composition of MPs that have found food applications and those only used medicinally. Overall, the presence of medicinally important phytochemicals and AAs levels in the selected MPs' parts support their use for CVDs treatment as they might not add to the AAs (e.g., the BCAAs) burden in the human body.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpoh Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
19
|
Müller J, Bertsch T, Volke J, Schmid A, Klingbeil R, Metodiev Y, Karaca B, Kim SH, Lindner S, Schupp T, Kittel M, Poschet G, Akin I, Behnes M. Narrative review of metabolomics in cardiovascular disease. J Thorac Dis 2021; 13:2532-2550. [PMID: 34012599 PMCID: PMC8107570 DOI: 10.21037/jtd-21-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are accompanied by disorders in the cardiac metabolism. Furthermore, comorbidities often associated with cardiovascular disease can alter systemic and myocardial metabolism contributing to worsening of cardiac performance and health status. Biomarkers such as natriuretic peptides or troponins already support diagnosis, prognosis and treatment of patients with cardiovascular diseases and are represented in international guidelines. However, as cardiovascular diseases affect various pathophysiological pathways, a single biomarker approach cannot be regarded as ideal to reveal optimal clinical application. Emerging metabolomics technology allows the measurement of hundreds of metabolites in biological fluids or biopsies and thus to characterize each patient by its own metabolic fingerprint, improving our understanding of complex diseases, significantly altering the management of cardiovascular diseases and possibly personalizing medicine. This review outlines current knowledge, perspectives as well as limitations of metabolomics for diagnosis, prognosis and treatment of cardiovascular diseases such as heart failure, atherosclerosis, ischemic and non-ischemic cardiomyopathy. Furthermore, an ongoing research project tackling current inconsistencies as well as clinical applications of metabolomics will be discussed. Taken together, the application of metabolomics will enable us to gain more insights into pathophysiological interactions of metabolites and disease states as well as improving therapies of patients with cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Julian Müller
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremburg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Justus Volke
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Schmid
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebecca Klingbeil
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yulian Metodiev
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bican Karaca
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seung-Hyun Kim
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Lindner
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Schupp
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Kittel
- Institute for Clinical Chemistry, Faculty of Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Xuan C, Li H, Tian QW, Guo JJ, He GW, Lun LM, Wang Q. Quantitative Assessment of Serum Amino Acids and Association with Early-Onset Coronary Artery Disease. Clin Interv Aging 2021; 16:465-474. [PMID: 33758500 PMCID: PMC7979345 DOI: 10.2147/cia.s298743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amino acids play essential roles in protein construction and metabolism. Our study aims to provide a profile of amino acid changes in the serum of patients with early-onset coronary artery disease (EOCAD) and identify potential disease biomarkers. METHODS Ultra-performance liquid chromatography-multiple reaction monitoring-multistage/mass spectrometry (UPLC-MRM-MS/MS) was used to determine the amino acid profile of patients with EOCAD in sample pools. In the validation stage, the serum levels of candidate amino acids of interest are determined for each sample. RESULTS A total of 128 EOCAD patients and 64 healthy controls were included in the study. Eight serum amino acids associated with disease state were identified. Compared with the control group, serum levels of seven amino acids (L-Arginine, L-Methionine, L-Tyrosine, L-Serine, L-Aspartic acid, L-Phenylalanine, and L-Glutamic acid) increased and one (4-Hydroxyproline) decreased in the patient group. Results from the validation stage demonstrate that serum levels of 4-Hydroxyproline were significantly lower in myocardial infarction (MI) patients (9.889 ± 3.635 μg/mL) than those in the controls (16.433 ± 4.562 μmol/L, p < 0.001). Elevated serum 4-Hydroxyproline levels were shown to be an independent protective factor for MI (OR = 0.863, 95% CI: 0.822-0.901). The significant negative correlation was seen between serum 4-Hydroxyproline levels and cardiac troponin I (r = -0.667) in MI patients. CONCLUSION We have provided a serum amino acid profile for EOCAD patients and screened eight disease state-related amino acids, and we have also shown that 4-Hydroxyproline is a promising target for further biomarker studies in early-onset MI.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qing-Wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Li-Min Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
21
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
22
|
Wu G, Zhong J, Chen L, Gu Y, Hong Y, Ma J, Zheng N, Liu AJ, Sheng L, Zhang W, Li H. Effects of the Suxiao Jiuxin pill on acute myocardial infarction assessed by comprehensive metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153291. [PMID: 32739572 DOI: 10.1016/j.phymed.2020.153291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND SJP is the commercial Chinese medicine included in the Chinese Pharmacopoeia, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been clearly elucidated. AIMS To investigate the underlying protective mechanisms of SJP in an acute myocardial infarction (AMI) rat model using comprehensive metabolomics. MATERIALS AND METHODS The rat model of AMI was generated by ligating the left anterior descending coronary artery. After 2 weeks treatment with SJP, the entire metabolic changes in the serum, heart, urine and feces of the rat were profiled by HPLC-QTOF-MS/MS. RESULTS The metabolic profiles in different biological samples (heart, serum, urine and feces) were significantly different among groups, in which a total of 112 metabolites were identified. AMI caused comprehensive metabolic changes in amino acid metabolism, galactose metabolism and fatty acid metabolism, while SJP reversed more than half of the differential metabolic changes, mainly affecting amino acid metabolism and fatty acid metabolism. Correlation analysis found that SJP could significantly alter the metabolic activity of 12 key metabolites, regarded as potential biomarkers of SJP treatment. According to the results of network analysis, 6 biomarkers were considered to be hub metabolites, which means that these metabolites may have a major relationship with the SJP therapeutic effects on AMI. CONCLUSION The combined comprehensive metabolomics and network analysis, indicated that the protective effect of SJP on cardiovascular disease was associated with systemic metabolic modulation, in particular regulation of amino acid and fatty acid metabolism.
Collapse
Affiliation(s)
- Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Linlin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ai-Jun Liu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Zhang Y, Zhou Q, Yang R, Hu C, Huang Z, Zheng C, Liang Q, Gong R, Zhu X, Gong H, Yuan H, Chen C, Li X, Zhang N, Yang Z, Sun L. Serum branched-chain amino acids are associated with leukocyte telomere length and frailty based on residents from Guangxi longevity county. Sci Rep 2020; 10:10252. [PMID: 32581228 PMCID: PMC7314839 DOI: 10.1038/s41598-020-67010-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
Branched-chain amino acids (BCAAs) and telomere length are biologically associated with healthy aging. However, the association between them and their interaction on frailty remain unclear in humans. Here, a cross-sectional study based on residents from Guangxi longevity county was conducted to investigate the association of serum BCAAs, peripheral leukocyte telomere length (LTL) and frailty. A total of 1,034 subjects aged 20 to 110 years were recruited in the study. The real-time qPCR method and a targeted metabolomics approach based on isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) method were used for measurement of LTL and BCAAs, respectively. A frailty score defined as the proportion of accumulated deficits based on 24 aging-related items was used assess the health status of elderly subjects. First, we found that a higher concentration of BCAAs was significantly associated with longer LTL only in middle-aged subjects, independent of age and BMI (P < 0.05). In the oldest-old subjects, we identified a significantly inverse association between BCAAs and frailty score (P < 0.001), even after adjustment for age and BMI (P < 0.05). Additionally, we recognized a statistically significant synergetic interaction between BCAAs and LTL on frailty score in the oldest-old subjects by the general linear model (P = 0.042), although we did not find any significant association between LTL and frailty score. In summary, our findings suggest a potentially protective effect of circulating BCAAs on LTL and frailty based on the subjects from longevity county in East Asia and indicate a potential synergetic interaction between BCAAs and LTL in healthy aging.
Collapse
Affiliation(s)
- Ying Zhang
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Qi Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Ruiyue Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Caiyou Hu
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, 530021, China
| | - Zezhi Huang
- Office of Longevity Cultural, People's Government of Yongfu County, Guilin, Guangxi, 541899, China
| | - Chenguang Zheng
- Department of Cardiothoracic Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, 530005, China
| | - Qinghua Liang
- Department of Neurology, JiangBin Hospital, Nanning, Guangxi, 530021, China
| | - Ranhui Gong
- Office of Longevity Cultural, People's Government of Yongfu County, Guilin, Guangxi, 541899, China
| | - Xiaoquan Zhu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Huan Gong
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Huiping Yuan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Chen Chen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Xianghui Li
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Nan Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Liang Sun
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
| |
Collapse
|
24
|
Telle-Hansen VH, Christensen JJ, Formo GA, Holven KB, Ulven SM. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype. Lipids Health Dis 2020; 19:90. [PMID: 32386512 PMCID: PMC7211343 DOI: 10.1186/s12944-020-01273-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ever-increasing prevalence of obesity constitutes a major health problem worldwide. A subgroup of obese individuals has been described as "metabolically healthy obese" (MHO). In contrast to metabolically unhealthy obese (MUO), the MHO phenotype has a favorable risk profile. Despite this, the MHO phenotype is still sub-optimally characterized with respect to a comprehensive risk assessment. Our aim was to increase the understanding of metabolic alterations associated with healthy and unhealthy obesity. METHODS In this cross-sectional study, men and women (18-70 years) with obesity (body mass index (BMI) ≥ 30 kg/m2) or normal weight (NW) (BMI ≤ 25 kg/m2) were classified with MHO (n = 9), MUO (n = 10) or NW (n = 11) according to weight, lipid profile and glycemic regulation. We characterized individuals by comprehensive metabolic profiling using a commercial available high-throughput proton NMR metabolomics platform. Plasma fatty acid profile, including short chain fatty acids, was measured using gas chromatography. RESULTS The concentrations of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL) subclasses were overall significantly higher, and high density lipoprotein (HDL) subclasses lower in MUO compared with MHO. VLDL and IDL subclasses were significantly lower and HDL subclasses were higher in NW compared with MHO. The concentration of isoleucine, leucine and valine was significantly higher in MUO compared with MHO, and the concentration phenylalanine was lower in NW subjects compared with MHO. The fatty acid profile in MHO was overall more favorable compared with MUO. CONCLUSIONS Comprehensive metabolic profiling supports that MHO subjects have intermediate-stage cardiovascular disease risk marker profile compared with NW and MUO subjects. CLINICAL TRIAL REGISTRATION NUMBER NCT01034436, Fatty acid quality and overweight (FO-study).
Collapse
Affiliation(s)
- Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4, St. Olavsplass, 0130, Oslo, Norway.
| | - Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Departmentof Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Gulla Aase Formo
- Departmentof Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Departmentof Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Stine M Ulven
- Departmentof Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| |
Collapse
|
25
|
Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Microorganisms 2020; 8:microorganisms8040486. [PMID: 32235412 PMCID: PMC7232217 DOI: 10.3390/microorganisms8040486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
During the last few decades there has been a staggering rise in human consumption of soybean-oil (SO). The microbiome and specific taxa composing it are dramatically affected by diet; specifically, by high-fat diets. Increasing evidence indicates the association between dysbiosis and health or disease state, including cardiovascular diseases (CVD) and atherosclerosis pathogenesis in human and animal models. To investigate the effects of high SO intake, C57BL/6 mice were orally supplemented with SO-based emulsion (SOE) for one month, followed by analyses of atherosclerosis-related biomarkers and microbiota profiling by 16S rRNA gene sequencing of fecal DNA. SOE-supplementation caused compositional changes to 64 taxa, including enrichment in Bacteroidetes, Mucispirillum, Prevotella and Ruminococcus, and decreased Firmicutes. These changes were previously associated with atherosclerosis in numerous studies. Among the shifted taxa, 40 significantly correlated with at least one atherosclerosis-related biomarker (FDR < 0.05), while 13 taxa positively correlated with the average of all biomarkers. These microbial alterations also caused a microbial-derived metabolic-pathways shift, including enrichment in different amino-acid metabolic-pathways known to be implicated in CVD. In conclusion, our results demonstrate dysbiosis following SOE supplementation associated with atherosclerosis-related biomarkers. These findings point to the microbiome as a possible mediator to CVD, and it may be implemented into non-invasive diagnostic tools or as potential therapeutic strategies.
Collapse
|
26
|
Lim LL, Lau ESH, Fung E, Lee HM, Ma RCW, Tam CHT, Wong WKK, Ng ACW, Chow E, Luk AOY, Jenkins A, Chan JCN, Kong APS. Circulating branched-chain amino acids and incident heart failure in type 2 diabetes: The Hong Kong Diabetes Register. Diabetes Metab Res Rev 2020; 36:e3253. [PMID: 31957226 DOI: 10.1002/dmrr.3253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
AIM Levels of branched-chain amino acids (BCAAs, namely, isoleucine, leucine, and valine) are modulated by dietary intake and metabolic/genetic factors. BCAAs are associated with insulin resistance and increased risk of type 2 diabetes (T2D). Although insulin resistance predicts heart failure (HF), the relationship between BCAAs and HF in T2D remains unknown. METHODS In this prospective observational study, we measured BCAAs in fasting serum samples collected at inception from 2139 T2D patients free of cardiovascular-renal diseases. The study outcome was the first hospitalization for HF. RESULTS During 29 103 person-years of follow-up, 115 primary events occurred (age: 54.8 ± 11.2 years, 48.2% men, median [interquartile range] diabetes duration: 5 years [1-10]). Patients with incident HF had 5.6% higher serum BCAAs than those without HF (median 639.3 [561.3-756.3] vs 605.2 [524.8-708.7] μmol/L; P = .01). Serum BCAAs had a positive linear association with incident HF (per-SD increase in logarithmically transformed BCAAs: hazard ratio [HR] 1.22 [95% CI 1.07-1.39]), adjusting for age, sex, and diabetes duration. The HR remained significant after sequential adjustment of risk factors including incident coronary heart disease (1.24, 1.09-1.41); blood pressure, low-density lipoprotein cholesterol, and baseline use of related medications (1.31, 1.14-1.50); HbA1c , waist circumference, triglyceride, and baseline use of related medications (1.28, 1.11-1.48); albuminuria and estimated glomerular filtration rate (1.28, 1.11-1.48). The competing risk of death analyses showed similar results. CONCLUSIONS Circulating levels of BCAAs are independently associated with incident HF in patients with T2D. Prospective cohort analysis and randomized trials are needed to evaluate the long-term safety and efficacy of using different interventions to optimize BCAAs levels in these patients.
Collapse
Affiliation(s)
- Lee-Ling Lim
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eric S H Lau
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
| | - Erik Fung
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Gerald Choa Cardiac Research Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
- Faculty of Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heung-Man Lee
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C W Ma
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Claudia H T Tam
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Willy K K Wong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex C W Ng
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Elaine Chow
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrea O Y Luk
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alicia Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Juliana C N Chan
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Asia Diabetes Foundation, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alice P S Kong
- Faculty of Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
27
|
Biswas D, Tozer K, Dao KT, Perez LJ, Mercer A, Brown A, Hossain I, Yip AM, Aguiar C, Motawea H, Brunt KR, Shea J, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T. Adverse Outcomes in Obese Cardiac Surgery Patients Correlates With Altered Branched-Chain Amino Acid Catabolism in Adipose Tissue and Heart. Front Endocrinol (Lausanne) 2020; 11:534. [PMID: 32903728 PMCID: PMC7438793 DOI: 10.3389/fendo.2020.00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Predicting relapses of post-operative complications in obese patients who undergo cardiac surgery is significantly complicated by persistent metabolic maladaptation associated with obesity. Despite studies supporting the linkages of increased systemic branched-chain amino acids (BCAAs) driving the pathogenesis of obesity, metabolome wide studies have either supported or challenged association of circulating BCAAs with cardiovascular diseases (CVDs). Objective: We interrogated whether BCAA catabolic changes precipitated by obesity in the heart and adipose tissue can be reliable prognosticators of adverse outcomes following cardiac surgery. Our study specifically clarified the correlation between BCAA catabolizing enzymes, cellular BCAAs and branched-chain keto acids (BCKAs) with the severity of cardiometabolic outcomes in obese patients pre and post cardiac surgery. Methods: Male and female patients of ages between 44 and 75 were stratified across different body mass index (BMI) (non-obese = 17, pre-obese = 19, obese class I = 14, class II = 17, class III = 12) and blood, atrial appendage (AA), and subcutaneous adipose tissue (SAT) collected during cardiac surgery. Plasma and intracellular BCAAs and BC ketoacids (BCKAs), tissue mRNA and protein expression and activity of BCAA catabolizing enzymes were assessed and correlated with clinical parameters. Results: Intramyocellular, but not systemic, BCAAs increased with BMI in cardiac surgery patients. In SAT, from class III obese patients, mRNA and protein expression of BCAA catabolic enzymes and BCKA dehydrogenase (BCKDH) enzyme activity was decreased. Within AA, a concomitant increase in mRNA levels of BCAA metabolizing enzymes was observed, independent of changes in BCKDH protein expression or activity. BMI, indices of tissue dysfunction and duration of hospital stay following surgery correlated with BCAA metabolizing enzyme expression and metabolite levels in AA and SAT. Conclusion: This study proposes that in a setting of obesity, dysregulated BCAA catabolism could be an effective surrogate to determine cardiac surgery outcomes and plausibly predict premature re-hospitalization.
Collapse
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Kathleen Tozer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Khoi T. Dao
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Lester J. Perez
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Angella Mercer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Amy Brown
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Intekhab Hossain
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Alexandra M. Yip
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB, Canada
| | - Christie Aguiar
- IMPART Investigator Team Canada, Saint John, NB, Canada
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB, Canada
| | - Hany Motawea
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Keith R. Brunt
- IMPART Investigator Team Canada, Saint John, NB, Canada
- Department of Pharmacology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jennifer Shea
- Department of Pathology, Dalhousie University, Saint John, NB, Canada
- Department of Laboratory Medicine, Saint John Regional Hospital, Saint John, NB, Canada
| | - Jean F. Legare
- IMPART Investigator Team Canada, Saint John, NB, Canada
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB, Canada
| | - Ansar Hassan
- IMPART Investigator Team Canada, Saint John, NB, Canada
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB, Canada
| | - Petra C. Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, NB, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
- IMPART Investigator Team Canada, Saint John, NB, Canada
- *Correspondence: Thomas Pulinilkunnil
| |
Collapse
|
28
|
Zhang J, Zhou Y, Sun Y, Yan H, Han W, Wang X, Wang K, Wei B, Xu X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur J Pharmacol 2019; 861:172587. [PMID: 31377155 DOI: 10.1016/j.ejphar.2019.172587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Oridonin is a diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, a well-known herbal tea in China with many health benefits. To provide a better understanding of the potential cardioprotective effect of Oridonin, we investigated the metabolic alterations in heart tissue and serum of rat subjected to myocardial ischemia/reperfusion (MI/R) injury with or without pretreatment of Oridonin by UPLC-MS/MS metabolomics approach. Rats were randomly divided into groups as follows: Control, Sham, MI/R and pretreated with Oridonin (10 mg/kg)+MI/R. After 24 h of reperfusion, heart tissue and serum were collected for biochemical and metabolomic analysis. Pretreatment with Oridonin significantly decreased infarct size and reversed the abnormal elevated myocardial zymogram in serum. Moreover, Oridonin regulated several metabolic pathways, including glycolysis, branched chain amino acid, kynurenine, arginine, glutamine and bile acid metabolism. Our results suggest that Oridonin indeed displays outstanding cardioprotective effect mainly by regulating energy and amino acid metabolism.
Collapse
Affiliation(s)
- Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, o-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
29
|
Ye G, Gao H, Lin Y, Ding D, Liao X, Zhang H, Chi Y, Dong S. Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics 2019; 15:36. [PMID: 30830452 DOI: 10.1007/s11306-019-1485-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Macrophage metabolism contributes to the progression of metabolic diseases, and peroxisome proliferator-activated receptors (PPARs) play vital roles in macrophage metabolism and the treatment of metabolic diseases. However, the role of PPARs in metabolic reprogramming related to lipid accumulation in macrophages, a key pathological event in metabolic diseases, remains unclear. OBJECTIVES We aimed to identify PPAR-mediated metabolic reprogramming and potential therapeutic targets associated with lipid accumulation in macrophages. METHODS Following treatment with oleate, oleate + WY-14643 and oleate + pioglitazone to induce alterations in PPAR signaling, lipids and relevant metabolism, macrophage samples were analyzed employing an untargeted metabolomics based on gas chromatography-mass spectrometry. RESULTS The metabolomics approach revealed that multiple metabolic pathways were altered during lipid accumulation in oleate-treated macrophages and responsive to WY-14643 and pioglitazone treatment. Notably, levels of most metabolites involved in amino acid metabolism and nucleotide metabolism were accumulated in oleate-treated macrophages, and these effects were alleviated or abolished by PPARA/G activation. Additionally, during oleate-induced lipid accumulation and lipid lowering with WY-14643 and pioglitazone in macrophages, levels of most amino acids were positively associated with neutral lipid, total cholesterol, cholesterol ester, total free fatty acid and triglyceride levels but negatively associated with expression of genes related to PPARA/G signaling. Furthermore, glycine was found to be a potential biomarker for assessing lipid accumulation and the lipid-lowering effects of PPARA/G in oleate-treated macrophages. CONCLUSION The results of this study revealed a high correlation of amino acid metabolism with lipid accumulation and the lipid-lowering effects of PPARA/G in macrophages.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dongxiao Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
30
|
Vignoli A, Tenori L, Giusti B, Takis PG, Valente S, Carrabba N, Balzi D, Barchielli A, Marchionni N, Gensini GF, Marcucci R, Luchinat C, Gori AM. NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II cohort. BMC Med 2019; 17:3. [PMID: 30616610 PMCID: PMC6323789 DOI: 10.1186/s12916-018-1240-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Risk stratification and management of acute myocardial infarction patients continue to be challenging despite considerable efforts made in the last decades by many clinicians and researchers. The aim of this study was to investigate the metabolomic fingerprint of acute myocardial infarction using nuclear magnetic resonance spectroscopy on patient serum samples and to evaluate the possible role of metabolomics in the prognostic stratification of acute myocardial infarction patients. METHODS In total, 978 acute myocardial infarction patients were enrolled in this study; of these, 146 died and 832 survived during 2 years of follow-up after the acute myocardial infarction. Serum samples were analyzed via high-resolution 1H-nuclear magnetic resonance spectroscopy and the spectra were used to characterize the metabolic fingerprint of patients. Multivariate statistics were used to create a prognostic model for the prediction of death within 2 years after the cardiovascular event. RESULTS In the training set, metabolomics showed significant differential clustering of the two outcomes cohorts. A prognostic risk model predicted death with 76.9% sensitivity, 79.5% specificity, and 78.2% accuracy, and an area under the receiver operating characteristics curve of 0.859. These results were reproduced in the validation set, obtaining 72.6% sensitivity, 72.6% specificity, and 72.6% accuracy. Cox models were used to compare the known prognostic factors (for example, Global Registry of Acute Coronary Events score, age, sex, Killip class) with the metabolomic random forest risk score. In the univariate analysis, many prognostic factors were statistically associated with the outcomes; among them, the random forest score calculated from the nuclear magnetic resonance data showed a statistically relevant hazard ratio of 6.45 (p = 2.16×10-16). Moreover, in the multivariate regression only age, dyslipidemia, previous cerebrovascular disease, Killip class, and random forest score remained statistically significant, demonstrating their independence from the other variables. CONCLUSIONS For the first time, metabolomic profiling technologies were used to discriminate between patients with different outcomes after an acute myocardial infarction. These technologies seem to be a valid and accurate addition to standard stratification based on clinical and biohumoral parameters.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy. .,Careggi Hospital, Florence, Italy.
| | | | | | | | | | | | - Niccolò Marchionni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Careggi Hospital, Florence, Italy
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Careggi Hospital, Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - C.I.R.M.M.P, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Careggi Hospital, Florence, Italy
| |
Collapse
|
31
|
Du X, You H, Li Y, Wang Y, Hui P, Qiao B, Lu J, Zhang W, Zhou S, Zheng Y, Du J. Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI. Sci Rep 2018; 8:15809. [PMID: 30361499 PMCID: PMC6202350 DOI: 10.1038/s41598-018-34245-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
The incidence of in-hospital cardiovascular adverse events (AEs) in patients with ST-segment elevation myocardial infarction (STEMI) following primary percutaneous coronary intervention (PCI) is relatively high. Identification of metabolic markers could improve our understanding of the underlying pathological changes in these patients. We aimed to identify associations between concentrations of plasma metabolites on admission and development of in-hospital AEs in post-PCI patients with STEMI. We used targeted mass spectrometry to measure plasma concentrations of 26 amino acid metabolites on admission in 96 patients with STEMI who subsequently developed post-PCI AEs and in 96 age- and sex-matched patients without post-PCI cardiovascular AEs. Principal component analysis (PCA) revealed that PCA-derived factors, including branched chain amino acids (BCAAs), were associated with increased risks of all three pre-specified outcomes: cardiovascular mortality/acute heart failure (AHF), cardiovascular mortality, and AHF. Addition of BCAA to the Global Registry of Acute Coronary Events risk score increased the concordance C statistic from 0.702 to 0.814 (p < 0.001), and had a net reclassification index of 0.729 (95% confidence interval, 0.466–0.992, p < 0.001). These findings demonstrate that high circulating BCAA concentrations on admission are associated with subsequent in-hospital AEs after revascularization in patients with STEMI.
Collapse
Affiliation(s)
- Xiaoyu Du
- First Hospital of Jilin University, Changchun, Jilin, 130021, China.,Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Hongzhao You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Peng Hui
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Lu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Weihua Zhang
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Shanshan Zhou
- First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Zheng
- First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
32
|
Zhenyukh O, González-Amor M, Rodrigues-Diez RR, Esteban V, Ruiz-Ortega M, Salaices M, Mas S, Briones AM, Egido J. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med 2018; 22:4948-4962. [PMID: 30063118 PMCID: PMC6156282 DOI: 10.1111/jcmm.13759] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Branched‐chain amino acids (BCAA: leucine, isoleucine and valine) are essential amino acids implicated in glucose metabolism and maintenance of correct brain function. Elevated BCAA levels can promote an inflammatory response in peripheral blood mononuclear cells. However, there are no studies analysing the direct effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular function. In vitro and ex vivo studies were performed in human ECs and aorta from male C57BL/6J mice, respectively. In ECs, BCAA (6 mmol/L) increased eNOS expression, reactive oxygen species production by mitochondria and NADPH oxidases, peroxynitrite formation and nitrotyrosine expression. Moreover, BCAA induced pro‐inflammatory responses through the transcription factor NF‐κB that resulted in the release of intracellular adhesion molecule‐1 and E‐selectin conferring endothelial activation and adhesion capacity to inflammatory cells. Pharmacological inhibition of mTORC1 intracellular signalling pathway decreased BCAA‐induced pro‐oxidant and pro‐inflammatory effects in ECs. In isolated murine aorta, BCAA elicited vasoconstrictor responses, particularly in pre‐contracted vessels and after NO synthase blockade, and triggered endothelial dysfunction, effects that were inhibited by different antioxidants, further demonstrating the potential of BCAA to induce oxidative stress with functional impact. In summary, we demonstrate that elevated BCAA levels generate inflammation and oxidative stress in ECs, thereby facilitating inflammatory cells adhesion and endothelial dysfunction. This might contribute to the increased cardiovascular risk observed in patients with elevated BCAA blood levels.
Collapse
Affiliation(s)
- Olha Zhenyukh
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria González-Amor
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Raul R Rodrigues-Diez
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanesa Esteban
- Laboratory of Immunoallergy, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Ruiz-Ortega
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana M Briones
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, IdiPaz, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
33
|
Grajeda-Iglesias C, Aviram M. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article. Rambam Maimonides Med J 2018; 9:RMMJ.10337. [PMID: 29944113 PMCID: PMC6115485 DOI: 10.5041/rmmj.10337] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.
Collapse
|
34
|
Lin W, Liu Z, Zheng X, Chen M, Gao D, Tian Z. High-salt diet affects amino acid metabolism in plasma and muscle of Dahl salt-sensitive rats. Amino Acids 2018; 50:1407-1414. [DOI: 10.1007/s00726-018-2615-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
35
|
Yang SJ, Kwak SY, Jo G, Song TJ, Shin MJ. Serum metabolite profile associated with incident type 2 diabetes in Koreans: findings from the Korean Genome and Epidemiology Study. Sci Rep 2018; 8:8207. [PMID: 29844477 PMCID: PMC5974077 DOI: 10.1038/s41598-018-26320-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of metabolic alterations in type 2 diabetes (T2D) is useful for elucidating the pathophysiology of the disease and in classifying high-risk individuals. In this study, we prospectively examined the associations between serum metabolites and T2D risk in a Korean community-based cohort (the Ansan-Ansung cohort). Data were obtained from 1,939 participants with available metabolic profiles and without diabetes, cardiovascular disease, or cancer at baseline. The acylcarnitine, amino acid, amine, and phospholipid levels in fasting serum samples were analyzed by targeted metabolomics. During the 8-year follow-up period, we identified 282 cases of incident T2D. Of all metabolites measured, 22 were significantly associated with T2D risk. Specifically, serum levels of alanine, arginine, isoleucine, proline, tyrosine, valine, hexose and five phosphatidylcholine diacyls were positively associated with T2D risk, whereas lyso-phosphatidylcholine acyl C17:0 and C18:2 and other glycerophospholipids were negatively associated with T2D risk. The associated metabolites were further correlated with T2D-relevant risk factors such as insulin resistance and triglyceride indices. In addition, a healthier diet (as measured by the modified recommended food score) was independently associated with T2D risk. Alterations of metabolites such as amino acids and choline-containing phospholipids appear to be associated with T2D risk in Korean adults.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - So-Young Kwak
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Garam Jo
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, 07985, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
36
|
Affiliation(s)
- Claudia Grajeda-Iglesias
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Michael Aviram
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel, Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Wang SM, Yang RY, Wang M, Ji FS, Li HX, Tang YM, Chen WX, Dong J. Identification of serum metabolites associated with obesity and traditional risk factors for metabolic disease in Chinese adults. Nutr Metab Cardiovasc Dis 2018; 28:112-118. [PMID: 29122443 DOI: 10.1016/j.numecd.2017.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Obesity is a major worldwide health problem and is often associated with many metabolic diseases. Levels of several serum-specific metabolites may be altered in patients with these metabolic diseases. We aimed to investigate the associations of serum metabolite levels with obesity and traditional risk factors for metabolic disease in Chinese individuals. METHODS AND RESULTS Six-hundred Chinese individuals undergoing annual physical exams were recruited and categorized into overweight/obese and control groups (1:1 ratio). We simultaneously quantified the serum lysophosphatidylcholine (LPC), branched-chain amino acids (BCAA), aromatic amino acids (AAA), 25-hydroxyvitamin D, glutamine (Gln), glutamic acid (Glu), and Gln/Glu ratio levels using our previously established targeted serum metabolomic method. The overweight/obesity group had significantly higher levels of BCAA, AAA, and Glu, as well as lower levels of unsaturated LPC, Gln, and Gln/Glu, than the control group. Correlation analyses revealed significant and positive relationships of saturated LPC, BCAA, AAA, and Glu with blood pressure, glucose, triglycerides, apolipoprotein B, and high-sensitivity C-reactive protein, while unsaturated LPC, Gln, Gln/Glu, and 25-hydroxyvitamin D exhibited an opposite trend. In the multifactor logistic regression model, low unsaturated LPC and Gln/Glu, as well as high BCAA and AAA levels, were found to be independent risk factors for obesity; the odds ratios (95% confidence interval) of the highest quartile compared to the lowest quartile were 0.241 (0.139-0.417), 0.436 (0.252-0.755), 3.944 (2.094-7.430), and 2.357 (1.274-4.361) (P < 0.01), respectively. CONCLUSION LPC, BCAA, AAA, and Gln/Glu are significantly related to obesity development and risk factors of some metabolic diseases.
Collapse
Affiliation(s)
- S M Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - R Y Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - M Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - F S Ji
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - H X Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Y M Tang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - W X Chen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - J Dong
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.
| |
Collapse
|
38
|
Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget 2017; 8:88882-88893. [PMID: 29179484 PMCID: PMC5687654 DOI: 10.18632/oncotarget.21489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are promising for their potential anti-aging effects. However, findings in adults suggest that circulating BCAAs are associated with cardiometabolic risk. Moreover, little information is available about how BCAAs influence clustered cardiometabolic traits in the oldest-old (>85 years), which are the fastest-growing segment of the population in developed countries. Here, we applied a targeted metabolomics approach to measure serum BCAAs in Chinese participants (aged 21-110 years) based on a longevity cohort. The differences of quantitative and dichotomous cardiometabolic traits were compared across BCAAs tertiles. A generalized additive model (GAM) was used to explore the dose-response relationship between BCAAs and the risk of metabolic syndrome (MetS). Overall, BCAAs were correlated with most of the examined cardiometabolic traits. The odds ratios for MetS across the increasing BCAA tertiles were 3.22 (1.70 - 6.12) and 5.27 (2.88 - 9.94, referenced to tertile 1) after adjusting for age and gender (Ptrend < 0.001). The association still existed after further controlling for lifestyle factors and inflammation factors. However, the correlations between circulating BCAAs and quantitative traits were weakened in the oldest-old, except for lipids, the levels of which were distinctly different from those in adults. The stratified analysis also suggested that the risky BCAAs-MetS association was more pronounced in adults than in the oldest-old. Moreover, generalized additive model (GAM)-based curve-fitting suggested that only when BCAAs exceeded a threshold (approximately 450 μmol/L) was the BCAAs-MetS association significant. The relationship might be aging-dependent and was more pronounced in adults than in the oldest-old.
Collapse
|
39
|
DeRatt BN, Ralat MA, Lysne V, Tayyari F, Dhar I, Edison AS, Garrett TJ, Midttun Ø, Ueland PM, Nygård OK, Gregory JF. Metabolomic Evaluation of the Consequences of Plasma Cystathionine Elevation in Adults with Stable Angina Pectoris. J Nutr 2017; 147:1658-1668. [PMID: 28794210 PMCID: PMC5572496 DOI: 10.3945/jn.117.254029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/30/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
Background: An elevated circulating cystathionine concentration, which arises in part from insufficiencies of vitamin B-6, B-12, or folate, has been shown to be associated with cardiovascular disease (CVD) risk. Hydrogen sulfide (H2S) is a gasotransmitter involved in vasodilation, neuromodulation, and inflammation. Most endogenously produced H2S is formed by pyridoxal phosphate (PLP)-dependent enzymes by noncanonical reactions of the transsulfuration pathway that yield H2S concurrently form lanthionine and homolanthionine. Thus, plasma lanthionine and homolanthionine concentrations can provide relative information about H2S production in vivo.Objective: To determine the metabolic consequences of an elevated plasma cystathionine concentration in adults with stable angina pectoris (SAP), we conducted both targeted and untargeted metabolomic analyses.Methods: We conducted NMR and LC-mass spectrometry (MS) metabolomic analyses on a subset of 80 plasma samples from the Western Norway Coronary Angiography Cohort and selected, based on plasma cystathionine concentrations, a group with high cystathionine concentrations [1.32 ± 0.60 μmol/L (mean ± SD); n = 40] and a group with low cystathionine concentrations [0.137 ± 0.011 μmol/L (mean ± SD); n = 40]. Targeted and untargeted metabolomic analyses were performed and assessed with the use of Student's t tests corrected for multiple testing. Overall differences between the cystathionine groups were assessed by untargeted NMR and LC-MS metabolomic methods and evaluated by partial least squares discriminant analysis (PLS-DA) with significant discriminating metabolites identified with 99% confidence.Results: Subjects with high cystathionine concentrations had 75% higher plasma lanthionine concentrations (0.12 ± 0.044 μmol/L) than subjects with low cystathionine concentrations [0.032 ± 0.013 μmol/L (P < 0.001)]. Although plasma homolanthionine concentrations were notably higher than lanthionine concentrations, they were not different between the groups (P = 0.47). PLS-DA results showed that a high plasma cystathionine concentration in SAP was associated with higher glucose, branched-chain amino acids, and phenylalanine concentrations, lower kidney function, and lower glutathione and plasma PLP concentrations due to greater catabolism. The high-cystathionine group had a greater proportion of subjects in the postprandial state.Conclusion: These data suggest that metabolic perturbations consistent with higher CVD risk exist in SAP patients with elevated plasma cystathionine concentrations.
Collapse
Affiliation(s)
| | | | - Vegard Lysne
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fariba Tayyari
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arthur S Edison
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Timothy J Garrett
- Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Laboratory of Clinical Biochemistry and
| | - Ottar Kjell Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
40
|
Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem 2017; 45:24-38. [DOI: 10.1016/j.jnutbio.2017.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/27/2017] [Accepted: 02/25/2017] [Indexed: 12/27/2022]
|
41
|
The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J Am Coll Cardiol 2017; 68:2850-2870. [PMID: 28007146 DOI: 10.1016/j.jacc.2016.09.972] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Perturbations in cardiac energy metabolism are major contributors to a number of cardiovascular pathologies. In addition, comorbidities associated with cardiovascular disease (CVD) can alter systemic and myocardial metabolism, often contributing to the worsening of cardiac function and health outcomes. State-of-the-art metabolomic technologies give us the ability to measure thousands of metabolites in biological fluids or biopsies, providing us with a metabolic fingerprint of individual patients. These metabolic profiles may serve as diagnostic and/or prognostic tools that have the potential to significantly alter the management of CVD. Herein, the authors review how metabolomics can assist in the interpretation of perturbed metabolic processes, and how this has improved our ability to understand the pathology of ischemic heart disease, atherosclerosis, and heart failure. Taken together, the integration of metabolomics with other "omics" platforms will allow us to gain insight into pathophysiological interactions of metabolites, proteins, genes, and disease states, while advancing personalized medicine.
Collapse
|
42
|
Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr Opin Lipidol 2017; 28:85-87. [PMID: 28030455 DOI: 10.1097/mol.0000000000000377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Oren Rom
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The concentrations of plasma-free amino acids, such as branched-chain amino acids and aromatic amino acids, are associated with visceral obesity, insulin resistance, and the future development of diabetes and cardiovascular diseases. This review discusses recent progress in the early assessment of the risk of developing diabetes and the reversal of altered plasma-free amino acids through interventions. Additionally, recent developments that have increased the utility of amino acid profiling technology are also described. RECENT FINDINGS Plasma-free amino acid alterations in the early stage of lifestyle-related diseases are because of obesity and insulin resistance-related inflammation, and these alterations are reversed by appropriate (nutritional, drug, or surgical) interventions that improve insulin sensitivity. For clinical applications, procedures for measuring amino acids are being standardized and automated. SUMMARY Plasma-free amino acid profiles have potential as biomarkers for both assessing diabetes risk and monitoring the effects of strategies designed to lower that risk. In addition, the methodology for measuring amino acids has been refined, with the goal of routine clinical application.
Collapse
Affiliation(s)
- Kenji Nagao
- aInstitute for Innovation, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki, Japan bStanford Prevention Research Center, Stanford University School of Medicine, Stanford, California, USA cCenter for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, Izumicho, Chiyoda-ku, Tokyo dDepartment of Nursing, Ashikaga Institute of Technology, Ashikaga, Tochigi, Japan
| | | |
Collapse
|
44
|
González Paredes RM, García Pinto C, Pérez Pavón JL, Moreno Cordero B. Derivatization coupled to headspace programmed-temperature vaporizer gas chromatography with mass spectrometry for the determination of amino acids: Application to urine samples. J Sep Sci 2016; 39:3375-83. [DOI: 10.1002/jssc.201600186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Rosa María González Paredes
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - Carmelo García Pinto
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - José Luis Pérez Pavón
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| | - Bernardo Moreno Cordero
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas; Universidad de Salamanca; Salamanca Spain
| |
Collapse
|