1
|
Harreiter J, Just I, Weber M, Klepochová R, Bastian M, Winhofer Y, Wolf P, Scherer T, Leutner M, Kosi‐Trebotic L, Deischinger C, Chmelík M, Krebs MR, Trattnig S, Krššák M, Kautzky‐Willer A. Sex differences in ectopic lipid deposits and cardiac function across a wide range of glycemic control: a secondary analysis. Obesity (Silver Spring) 2024; 32:2299-2309. [PMID: 39558211 PMCID: PMC11589534 DOI: 10.1002/oby.24153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE The objective of this study was to identify sex differences in ntrahepatocellular (HCL) and intramyocardial lipids (MYCL) and cardiac function in participants with different grades of glucometabolic impairment and different BMI strata. METHODS Data from 503 individuals from 17 clinical experimental studies were analyzed. HCL and MYCL were assessed with 3T and 7T scanners by magnetic resonance spectroscopy. Cardiac function was measured with a 3T scanner using electrocardiogram-gated TrueFISP sequences. Participants were classified as having normoglycemia, prediabetes, or type 2 diabetes. Three-way ANCOVA with post hoc simple effects analyses was used for statistical assessment. RESULTS Consistent increases of HCL with BMI and deterioration of glucose metabolism, especially in female individuals, were detected. MYCL increased with BMI and glucose impairment in female individuals, but not in male individuals. Sex differences were found in cardiac function loss, with significant effects found among male individuals with worsening glucose metabolism. Myocardial mass and volume of the ventricle were higher in male individuals in all groups. This sex difference narrowed with increasing BMI and with progressing dysglycemia. CONCLUSIONS Sex differences in HCL and MYCL may be associated with a higher cardiovascular disease risk observed in female individuals progressing to diabetes. Further studies are needed to elucidate possible sex differences with advancing glucometabolic impairment and obesity and their potential impact on cardiovascular outcomes.
Collapse
Affiliation(s)
- Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- Department of MedicineLandesklinikum ScheibbsScheibbsAustria
| | - Ivica Just
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Michael Weber
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Magdalena Bastian
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Lana Kosi‐Trebotic
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Carola Deischinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Marek Chmelík
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Department of Technical Disciplines in Health Care at Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Michael R. Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Alexandra Kautzky‐Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Oneglia AP, Szczepaniak LS, Zaha VG, Nelson MD. Myocardial steatosis across the spectrum of human health and disease. Exp Physiol 2024; 109:202-213. [PMID: 38063136 PMCID: PMC10841709 DOI: 10.1113/ep091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 02/02/2024]
Abstract
Preclinical data strongly suggest that myocardial steatosis leads to adverse cardiac remodelling and left ventricular dysfunction. Using 1 H cardiac magnetic resonance spectroscopy, similar observations have been made across the spectrum of health and disease. The purpose of this brief review is to summarize these recent observations. We provide a brief overview of the determinants of myocardial triglyceride accumulation, summarize the current evidence that myocardial steatosis contributes to cardiac dysfunction, and identify opportunities for further research.
Collapse
Affiliation(s)
- Andrew P. Oneglia
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, College of Nursing and Health InnovationUniversity of Texas at ArlingtonArlingtonTexasUSA
| | | | - Vlad G. Zaha
- Division of Cardiology, Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterArlingtonTexasUSA
| | - Michael D. Nelson
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, College of Nursing and Health InnovationUniversity of Texas at ArlingtonArlingtonTexasUSA
- Clinical Imaging Research CenterUniversity of Texas at ArlingtonArlingtonTexasUSA
- Center for Healthy Living and LongevityUniversity of Texas at ArlingtonArlingtonTexasUSA
| |
Collapse
|
3
|
Thirumathyam R, Richter EA, van Hall G, Holst JJ, Fenger M, Gøtze JP, Dixen U, Vejlstrup N, Madsbad S, Madsen PL, Jørgensen NB. The role of empagliflozin-induced metabolic changes for cardiac function in patients with type 2 diabetes. A randomized cross-over magnetic resonance imaging study with insulin as comparator. Cardiovasc Diabetol 2024; 23:13. [PMID: 38184612 PMCID: PMC10771642 DOI: 10.1186/s12933-023-02094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence of these metabolic changes on cardiac function in patients with T2D. METHODS In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin (I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treatments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concentrations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data are Mean ± standard error. Between treatment difference (ΔT: E-I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were evaluated using Students' t-test or Wilcoxon signed rank test as appropriate. RESULTS Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced cardiac diastolic (ΔT: -51 ± 22 ml/s (p < 0.05); ΔE: -33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function (ΔT: -3 ± 1% (p < 0.05); ΔE: -3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin compared to insulin treatment. CONCLUSIONS Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes. TRIAL REGISTRATION EudraCT 2017-002101-35, August 2017.
Collapse
Affiliation(s)
- Roopameera Thirumathyam
- Department of Endocrinology and Pulmonary Medicine, Amager and Hvidovre Hospital, Kettegårds Alle 30, 2650, Hvidovre, Denmark
| | - Erik Arne Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Fenger
- Department of Clinical Biomedical Sciences, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens P Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Dixen
- Department of Cardiology, Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology and Pulmonary Medicine, Amager and Hvidovre Hospital, Kettegårds Alle 30, 2650, Hvidovre, Denmark
| | - Per Lav Madsen
- Department of Cardiology, Herlev Hospital, Herlev, Denmark
- Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Nils Bruun Jørgensen
- Department of Endocrinology and Pulmonary Medicine, Amager and Hvidovre Hospital, Kettegårds Alle 30, 2650, Hvidovre, Denmark.
- Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
4
|
Hao M, Huang X, Liu X, Fang X, Li H, Lv L, Zhou L, Guo T, Yan D. Novel model predicts diastolic cardiac dysfunction in type 2 diabetes. Ann Med 2023; 55:766-777. [PMID: 36908240 PMCID: PMC10798288 DOI: 10.1080/07853890.2023.2180154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVE Diabetes mellitus complicated with heart failure has high mortality and morbidity, but no reliable diagnoses and treatments are available. This study aimed to develop and verify a new model nomogram based on clinical parameters to predict diastolic cardiac dysfunction in patients with Type 2 diabetes mellitus (T2DM). METHODS 3030 patients with T2DM underwent Doppler echocardiography at the First Affiliated Hospital of Shenzhen University between January 2014 and December 2021. The patients were divided into the training dataset (n = 1701) and the verification dataset (n = 1329). In this study, a predictive diastolic cardiac dysfunction nomogram is developed using multivariable logical regression analysis, which contains the candidates selected in a minor absolute shrinkage and selection operator regression model. Discrimination in the prediction model was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The calibration curve was applied to evaluate the calibration of the alignment nomogram, and the clinical decision curve was used to determine the clinical practicability of the alignment map. The verification dataset was used to evaluate the prediction model's performance. RESULTS A multivariable model that included age, body mass index (BMI), triglyceride (TG), creatine phosphokinase isoenzyme (CK-MB), serum sodium (Na), and urinary albumin/creatinine ratio (UACR) was presented as the nomogram. We obtained the model for estimating diastolic cardiac dysfunction in patients with T2DM. The AUC-ROC of the training dataset in our model was 0.8307, with 95% CI of 0.8109-0.8505. Similar to the results obtained with the training dataset, the AUC-ROC of the verification dataset in our model was 0.8083, with 95% CI of 0.7843-0.8324, thus demonstrating robust. The function of the predictive model was as follows: Diastolic Dysfunction = -4.41303 + 0.14100*Age(year)+0.10491*BMI (kg/m2) +0.12902*TG (mmol/L) +0.03970*CK-MB (ng/mL) -0.03988*Na(mmol/L) +0.65395 * (UACR > 30 mg/g) + 1.10837 * (UACR > 300 mg/g). The calibration plot diagram of predicted probabilities against observed DCM rates indicated excellent concordance. Decision curve analysis demonstrated that the novel nomogram was clinically useful. CONCLUSION Diastolic cardiac dysfunction in patients with T2DM can be predicted by clinical parameters. Our prediction model may represent an effective tool for large-scale epidemiological study of diastolic cardiac dysfunction in T2DM patients and provide a reliable method for early screening of T2DM patients with cardiac complications.KEY MESSAGESThis study used clinical parameters to predict diastolic cardiac dysfunction in patients with T2DM. This study established a nomogram for predicting diastolic cardiac dysfunction by multivariate logical regression analysis. Our predictive model can be used as an effective tool for large-scale epidemiological study of diastolic cardiac dysfunction in patients with T2DM and provides a reliable method for early screening of cardiac complications in patients with T2DM.
Collapse
Affiliation(s)
- Mingyu Hao
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaohong Huang
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
- Guangzhou Medical University, Guangzhou, China
| | - Xueting Liu
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Xiaokang Fang
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Haiyan Li
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Lingbo Lv
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Liming Zhou
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| | - Tiecheng Guo
- Chiwan Community Health Service Centre, Shenzhen, China
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Fu L, Wang L, Liu L, Zhang L, Zhou Z, Zhou Y, Wang G, Loor JJ, Zhou P, Dong X. Effects of inoculation with active microorganisms derived from adult goats on growth performance, gut microbiota and serum metabolome in newborn lambs. Front Microbiol 2023; 14:1128271. [PMID: 36860489 PMCID: PMC9969556 DOI: 10.3389/fmicb.2023.1128271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of inoculation with adult goat ruminal fluid on growth, health, gut microbiota and serum metabolism in lambs during the first 15 days of life. Twenty four Youzhou dark newborn lambs were selected and randomly distributed across 3 treatments (n = 8/group): autoclaved goat milk inoculated with 20 mL sterilized normal saline (CON), autoclaved goat milk inoculated with 20 mL fresh ruminal fluid (RF) and autoclaved goat milk inoculated with 20 mL autoclaved ruminal fluid (ARF). Results showed that RF inoculation was more effective at promoting recovery of body weight. Compared with CON, greater serum concentrations of ALP, CHOL, HDL and LAC in the RF group suggested a better health status in lambs. The relative abundance of Akkermansia and Escherichia-Shigella in gut was lower in the RF group, whereas the relative abundance of Rikenellaceae_RC9_gut_group tended to increase. Metabolomics analysis shown that RF stimulated the metabolism of bile acids, small peptides, fatty acids and Trimethylamine-N-Oxide, which were found the correlation relationship with gut microorganisms. Overall, our study demonstrated that ruminal fluid inoculation with active microorganisms had a beneficial impact on growth, health and overall metabolism partly through modulating the gut microbial community.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liaochuan Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China,*Correspondence: Peng Zhou, ; Xianwen Dong,
| |
Collapse
|
6
|
Wolf P, Scherer T, Krebs M. Regulation of fat stores—endocrinological pathways. VISCERAL AND ECTOPIC FAT 2023:193-204. [DOI: 10.1016/b978-0-12-822186-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Thirumathyam R, Richter EA, Goetze JP, Fenger M, Van Hall G, Dixen U, Holst JJ, Madsbad S, Vejlstrup N, Madsen PL, Jørgensen NB. Investigating the roles of hyperglycaemia, hyperinsulinaemia and elevated free fatty acids in cardiac function in patients with type 2 diabetes via treatment with insulin compared with empagliflozin: protocol for the HyperCarD2 randomised, crossover trial. BMJ Open 2022; 12:e054100. [PMID: 35953245 PMCID: PMC9379482 DOI: 10.1136/bmjopen-2021-054100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is characterised by elevated plasma glucose, free fatty acid (FFA) and insulin concentrations, and this metabolic profile is linked to diabetic cardiomyopathy, a diastolic dysfunction at first and increased cardiovascular disease (CVD) risk. Shifting cardiac metabolism towards glucose utilisation has been suggested to improve cardiovascular function and CVD risk, but insulin treatment increases overall glucose oxidation and lowers lipid oxidation, without reducing CVD risk, whereas SGLT2 inhibitors (SGLT2i) increase FFA, ketone body concentrations and lipid oxidation, while decreasing insulin concentrations and CVD risk. The aim of the present study is to elucidate the importance of different metabolic profiles obtained during treatment with a SGLT2i versus insulin for myocardial function in patients with T2D. METHODS AND ANALYSES Randomised, crossover study, where 20 patients with T2D and body mass index>28 kg/m2 receive 25 mg empagliflozin daily or NPH insulin two times per day first for 5 weeks followed by a 3-week washout before crossing over to the remaining treatment. Insulin treatment is titrated to achieve similar glycaemic control as with empagliflozin. In those randomised to insulin first, glycaemia during an initial empagliflozin run-in period prior to randomisation serves as target glucose. Metabolic and cardiac evaluation is performed before and at the end of each treatment period.The primary endpoint is change (treatment-washout) in left ventricular peak filling rate, as assessed by cardiac MRI with and without acute lowering of plasma FFAs with acipimox. Secondary and explorative endpoints are changes in left atrial passive emptying fraction, left ventricular ejection fraction, central blood volume and metabolic parameters. ETHICS AND DISSEMINATION This study is approved by the Danish Medicines Agency (ref. nr.: 2017061587), the Danish Data Protection Agency (ref. nr.: AHH-2017-093) and the Capital Region Ethics Committee (ref. nr.: H-17018846). The trial will be conducted in accordance with ICH-GCP guidelines and the Declaration of Helsinki and all participants will provide oral and written informed consent. Our results, regardless of outcome, will be published in relevant scientific journals and we also will seek to disseminate results through presentations at scientific meetings. TRIAL REGISTRATION NUMBER EudraCT: 2017-002101.
Collapse
Affiliation(s)
| | - Erik Arne Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark
| | - Gerrit Van Hall
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Ulrik Dixen
- Department of Cardiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Kobenhavn, Denmark
- NovoNordisk Center for Basic Metabolic Research, University of Copenhagen, Kobenhavn, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Per Lav Madsen
- Department of Cardiology, Herlev Hospital, Herlev, Denmark
| | | |
Collapse
|
8
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
9
|
Watson WD, Timm KN, Lewis AJ, Miller JJJ, Emmanuel Y, Clarke K, Neubauer S, Tyler DJ, Rider OJ. Nicotinic acid receptor agonists impair myocardial contractility by energy starvation. FASEB J 2020; 34:14878-14891. [PMID: 32954525 DOI: 10.1096/fj.202000084rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Nicotinic acid receptor agonists have previously been shown to cause acute reductions in cardiac contractility. We sought to uncover the changes in cardiac metabolism underlying these alterations in function. In nine humans, we recorded cardiac energetics and function before and after a single oral dose of nicotinic acid using cardiac MRI to demonstrate contractile function and Phosphorus-31 (31 P) magnetic resonance spectroscopy to demonstrate myocardial energetics. Nicotinic Acid 400 mg lowered ejection fraction by 4% (64 ± 8% to 60 ± 7%, P = .03), and was accompanied by a fall in phosphocreatine/ATP ratio by 0.4 (2.2 ± 0.4 to 1.8 ± 0.1, P = .04). In four groups of eight Wistar rats, we used pyruvate dehydrogenase (PDH) flux studies to demonstrate changes in carbohydrate metabolism induced by the nicotinic acid receptor agonist, Acipimox, using hyperpolarized Carbon-13 (13 C) magnetic resonance spectroscopy. In rats which had been starved overnight, Acipimox caused a fall in ejection fraction by 7.8% (67.5 ± 8.9 to 60 ± 3.1, P = .03) and a nearly threefold rise in flux through PDH (from 0.182 ± 0.114 to 0.486 ± 0.139, P = .002), though this rise did not match pyruvate dehydrogenase flux observed in rats fed carbohydrate rich chow (0.726 ± 0.201). In fed rats, Acipimox decreased pyruvate dehydrogenase flux (to 0.512 ± 0.13, P = .04). Concentration of plasma insulin fell by two-thirds in fed rats administered Acipimox (from 1695 ± 891 ng/L to 550 ± 222 ng/L, P = .005) in spite of glucose concentrations remaining the same. In conclusion, we demonstrate that nicotinic acid receptor agonists impair cardiac contractility associated with a decline in cardiac energetics and show that the mechanism is likely a combination of reduced fatty acid availability and a failure to upregulate carbohydrate metabolism, essentially starving the heart of fuel.
Collapse
Affiliation(s)
- William D Watson
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J Lewis
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Jack J J Miller
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - Yaso Emmanuel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Malik D, Mittal BR, Sood A, Parmar M, Kaur K, Bahl A. Prognostic value of left ventricular mechanical dyssynchrony indices in long-standing type II diabetes mellitus with normal perfusion and left ventricular systolic functions on SPECT-MPI. J Nucl Cardiol 2020; 27:1640-1648. [PMID: 30209757 DOI: 10.1007/s12350-018-1436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To test whether phase analysis indices from SPECT-MPI for left ventricular mechanical dyssynchrony (LVMD) are predictors of major adverse cardiac events (MACEs) in long-standing diabetes mellitus (DM). METHODS A total of 136 DM patients with normal perfusion and left ventricular systolic functions were followed up for about two years and divided into two groups according to the presence and the absence of MACEs. RESULT Thirteen (9.5%) patients experienced MACEs during follow-up. Patients experiencing MACEs showed significantly higher phase standard deviation (PSD) and wider phase bandwidth (PBW) than those who did not. Moreover, both PSD and PBW showed significant correlations (r = 0.25 and 0.27; P < 0.05) with duration of DM. Logistic regression analysis revealed significant associations of DM duration, microvascular complications, and LVMD indices for predicting MACEs. Kaplan-Meier event-free survival analysis revealed significantly higher rate of MACEs (Logrank = 10.02; P = 0.001) in patients with high PSD and wide PBW. An overall fit model consisting of high-PSD and wide-PBW group was improved with the addition of microvascular complications (χ2 = 15.9; P = 0.03) and further by addition of DM duration of ≥ 15 years (χ2 = 24.3; P = 0.007) as variables. CONCLUSION LVMD indices are novel prognostic markers in diabetic patients with normal perfusion and left ventricular systolic functions and their increases in magnitudes with DM-duration and in the presence of microvascular complications.
Collapse
Affiliation(s)
- Dharmender Malik
- Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bhagwant Rai Mittal
- Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashwani Sood
- Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Madan Parmar
- Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Komalpreet Kaur
- Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Bahl
- Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, Lu Z, Yang J, Li Y, Jiang Y, Wu X, Meng H, Zhao M. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction. Front Physiol 2020; 11:805. [PMID: 32848816 PMCID: PMC7396640 DOI: 10.3389/fphys.2020.00805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic modulation is a promising therapy for ischemic heart disease and heart failure. This study aimed to clarify the regional modulatory effect of Qiliqiangxin capsules (QLQX), a traditional Chinese medicine, on cardiac metabolic phenotypes. Sprague-Dawley rats underwent left anterior descending coronary artery ligation and were treated with QLQX and enalapril. Striking global left ventricular dysfunction and left ventricular remodeling were significantly improved by QLQX. In addition to the posterior wall, QLQX also had a unique beneficial effect on the anterior wall subject to a severe oxygen deficit. Cardiac tissues in the border and remote areas were separated for detection. QLQX enhanced the cardiac 18F-fluorodeoxyglucose uptake and the levels and translocation of glucose transport 4 (GLUT4) in the border area. Meanwhile, it also suppressed glucose transport 1 (GLUT1) in both areas, indicating that QLQX encouraged border myocytes to use more glucose in a GLUT4-dependent manner. It was inferred that QLQX promoted a shift from glucose oxidation to anaerobic glycolysis in the border area by the augmentation of phosphorylated pyruvate dehydrogenase, pyruvate dehydrogenase kinases 4, and lactic dehydrogenase A. QLQX also upregulated the protein expression of fatty acid translocase and carnitine palmitoyl transferase-1 in the remote area to possibly normalize fatty acid (FA) uptake and oxidation similar to that in healthy hearts. QLQX protected global viable cardiomyocytes and promoted metabolic flexibility by modulating metabolic proteins regionally, indicating its potential for driving the border myocardium into an anaerobic glycolytic pathway against hypoxia injuries and urging the remote myocardium to oxidize FA to maximize energy production.
Collapse
Affiliation(s)
- Wenkun Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yangyang Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Gao Y, Ren Y, Guo YK, Liu X, Xie LJ, Jiang L, Shen MT, Deng MY, Yang ZG. Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Cardiovasc Diabetol 2020; 19:70. [PMID: 32471503 PMCID: PMC7260782 DOI: 10.1186/s12933-020-01044-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that collectively cause an increased risk of type 2 diabetes mellitus (T2DM) and nonatherosclerotic cardiovascular disease. This study aimed to evaluate the role of myocardial steatosis in T2DM patients with or without MetS, as well as the relationship between subclinical left ventricular (LV) myocardial dysfunction and myocardial steatosis. METHODS AND MATERIALS We recruited 53 T2DM patients and 20 healthy controls underwent cardiac magnetic resonance examination. All T2DM patients were subdivide into two group: MetS group and non-MetS. LV deformation, perfusion parameters and myocardial triglyceride (TG) content were measured and compared among these three groups. Pearson's and Spearman analysis were performed to investigate the correlation between LV cardiac parameters and myocardial steatosis. The receiver operating characteristic curve (ROC) was performed to illustrate the relationship between myocardial steatosis and LV subclinical myocardial dysfunction. RESULTS An increase in myocardial TG content was found in the MetS group compared with that in the other groups (MetS vs. non-MetS: 1.54 ± 0.63% vs. 1.16 ± 0.45%; MetS vs. normal: 1.54 ± 0.63% vs. 0.61 ± 0.22%; all p < 0.001). Furthermore, reduced LV deformation [reduced longitudinal and radial peak strain (PS); all p < 0.017] and microvascular dysfunction [increased time to maximum signal intensity (TTM) and reduced Upslope; all p < 0.017)] was found in the MetS group. Myocardial TG content was positively associated with MetS (r = 0.314, p < 0.001), and it was independently associated with TTM (β = 0.441, p < 0.001) and LV longitudinal PS (β = 0.323, p = 0.021). ROC analysis exhibited that myocardial TG content might predict the risk of decreased LV longitudinal myocardial deformation (AUC = 0.74) and perfusion function (AUC = 0.71). CONCLUSION Myocardial TG content increased in T2DM patients with concurrent MetS. Myocardial steatosis was positively associated with decreased myocardial deformation and perfusion dysfunction, which may be an indicator for predicting diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Lin-Jun Xie
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Ming-Yan Deng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Malik D, Mittal B, Sood A, Parmar M, Kaur G, Bahl A. Left ventricular mechanical dyssynchrony assessment in long-standing type II diabetes mellitus patients with normal gated SPECT-MPI. J Nucl Cardiol 2019; 26:1650-1658. [PMID: 29392627 DOI: 10.1007/s12350-018-1208-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Assessment of left ventricular mechanical dyssynchrony (LVMD) using phase analysis of gated SPECT-MPI is well established. However, there is little information about the influence of diabetes mellitus on phase analysis. The present work was to evaluate the LVMD in longstanding type II diabetes mellitus (DM) patients with normal gated SPECT-MPI. METHODS Retrospective analysis of 146 (86 type II diabetics for > 5 years' duration and 60 nondiabetics) consecutive patients with normal gated SPECT-MPI and adequate LVEF was done. Sixty age- and sex-matched nondiabetic served as control. LVMD was determined from the cutoff values (> mean + 2 SD) observed for phase standard deviation (PSD) and phase bandwidth (PBW) from the control subjects. Multivariate logistic regression analysis was applied to assess the correlation between various confounding factors. RESULTS LVMD was detected in 24 (28%) diabetic patients with the pre-defined cut-off values for PSD (> 10.8) and PBW (> 35.6) derived from the controls. Hyperlipidemia, overweight/obesity, duration of DM and its long-term complications were independently associated with LVMD, with long-term complications being the highest risk factor (OR 28.00; P < .001). CONCLUSION The evolution time of the patients with type II diabetes mellitus affects the left ventricular mechanical synchrony.
Collapse
Affiliation(s)
- Dharmender Malik
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bhagwant Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Madan Parmar
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Gurvinder Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
15
|
Wolf P, Beiglböck H, Fellinger P, Pfleger L, Aschauer S, Gessl A, Marculescu R, Trattnig S, Kautzky-Willer A, Luger A, Winhofer Y, Krššák M, Krebs M. Plasma renin levels are associated with cardiac function in primary adrenal insufficiency. Endocrine 2019; 65:399-407. [PMID: 31177424 PMCID: PMC6656897 DOI: 10.1007/s12020-019-01974-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite adequate glucocorticoid (GC) and mineralocorticoid (MC) replacement therapy, primary adrenal insufficiency (AI) is associated with an increased mortality, mainly due to cardiovascular disease. The role of MC replacement is not known. Therefore, we assessed whether renin concentrations during routine GC and MC substitution therapy are associated with heart function and morphology. METHODS Thirty two patients with primary AI were included in a cross-sectional case-control study. In total, 17 patients and 34 healthy controls (age: 48 ± 12 vs. 46 ± 18 years; BMI: 23 ± 3 vs. 24 ± 3 kg/m2) underwent magnetic resonance spectroscopy and imaging measurements to assess cardiac function, morphology, ectopic lipids, and visceral/subcutaneous fat mass. Patients were divided according to their actual plasma renin concentration at the study visit (Actual-Reninlow vs. Actual-Reninhigh) and their median plasma renin concentration of previous visits (Median-Reninlow vs. Median-Reninhigh). RESULTS Ejection fraction was higher (67 ± 5 vs. 55 ± 3%; p = 0.001) and left ventricular mass was lower (60 ± 9 vs. 73 ± 10 g/m2; p = 0.025) in Actual-Reninhigh. Median-Reninhigh was associated with lower cardiac mass (64 ± 9 vs. 76 ± 11 g/m2; p = 0.029). Blood pressure, glucose, and lipid metabolism, as well as ectopic lipid content, pericardial fat mass, and visceral/subcutaneous fat were not different between the groups. Compared with controls, ejection fraction was significantly lower in patients with AI (56 ± 4 vs. 63 ± 8%; p = 0.019). No differences were found in patients with ≤20 mg compared with >20 mg of hydrocortisone per day. CONCLUSIONS Higher renin concentrations are associated with more favorable cardiac function and morphology in patients with primary AI.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefan Aschauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Alois Gessl
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anton Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Centre of Excellence - High Field MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Stamenkovic A, Ganguly R, Aliani M, Ravandi A, Pierce GN. Overcoming the Bitter Taste of Oils Enriched in Fatty Acids to Obtain Their Effects on the Heart in Health and Disease. Nutrients 2019; 11:E1179. [PMID: 31137794 PMCID: PMC6566568 DOI: 10.3390/nu11051179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one's health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Riya Ganguly
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Michel Aliani
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| |
Collapse
|
17
|
Zhu N, Jiang W, Wang Y, Wu Y, Chen H, Zhao X. Plasma levels of free fatty acid differ in patients with left ventricular preserved, mid-range, and reduced ejection fraction. BMC Cardiovasc Disord 2018; 18:104. [PMID: 29843618 PMCID: PMC5975423 DOI: 10.1186/s12872-018-0850-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Free fatty acids (FFAs) predicted the risk of heart failure (HF) and were elevated in HF with very low left ventricular ejection fraction (LVEF) compared to healthy subjects. The aim of this study was to investigate whether total levels of FFA in plasma differed in patients with HF with preserved (HFpEF), mid-range (HFmrEF), and reduced ejection fraction (HFrEF) and the association with the three categories. METHODS One hundred thirty-nine patients with HFpEF, HFmrEF and HFrEF were investigated in this study. Plasma FFA levels were measured using commercially available assay kits, and LVEF was calculated by echocardiography with the Simpson biplane method. Dyspnea ranked by New York Heart Association (NYHA) was also identified. RESULTS FFA concentrations were higher in HFrEF than in HFmrEF and HFpEF, respectively (689 ± 321.5 μmol/L vs. 537.9 ± 221.6 μmol/L, p = 0.036; 689 ± 321.5 μmol/L vs. 527.5 ± 185.5 μmol/L, p = 0.008). No significant differences in FFA levels were found between HFmrEF and HFpEF (537.9 ± 221.6 μmol/L vs. 527.5 ± 185.5 μmol/L, p = 0.619). In addition, we found a negative correlation between FFA levels and LVEF (regression coefficient: - 0.229, p = 0.004) and a positive correlation between FFAs and NYHA class (regression coefficient: 0.214, p = 0.014) after adjustment for clinical characteristic, medical history and therapies. ROC analysis revealed that FFAs predicted HFrEF across the three categories (AUC: 0.644, p = 0.005) and the optimal cut-off level to predict HFrEF was FFA levels above 575 μmol/L. CONCLUSIONS FFA levels differed across the three categories, which suggests that energy metabolism differs between HFpEF, HFmrEF and HFrEF.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| | - Wenbing Jiang
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| | - Yi Wang
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| | - Youyang Wu
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| | - Hao Chen
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| | - Xuyong Zhao
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s Hospital, No. 57 Canghou Street, Wenzhou, 325000 Zhejiang Province People’s Republic of China
| |
Collapse
|
18
|
Abstract
Type 2 diabetes mellitus (T2DM) is a major risk factor for several cardiovascular (CV) conditions, including heart failure (HF). However, until recently, no therapy to treat patients with diabetes could also reduce CV risks related to HF. The EMPA-REG OUTCOME trial with empagliflozin was the first to demonstrate significant cardioprotective benefits in this population. Its impressive 35% reduction in hospitalizations for HF drew the attention of the scientific community to the possibility that pharmacologic sodium-glucose cotransporter 2 (SGLT2) inhibition could be part of the armamentarium for treating patients with HF, with and without diabetes. The recently published CANVAS Program (with canagliflozin) and real-life data from the CVD-Real Study (using dapagliflozin, empagliflozin, and canagliflozin) further strengthened this hypothesis, suggesting that the observed benefit is not restricted to a particular drug, but is rather a class effect. This review explores the effects of pharmacologic SGLT2 inhibitors' use in cardiac function and discusses the potential role of this class of medication as a treatment for HF.
Collapse
Affiliation(s)
- Joaquim Silva Custodio
- Department of Health Family, Medical School of Bahia, Federal University of Bahia, Praça XV de Novembro, s/n° - Largo do Terreiro de Jesus, Salvador, BA, 40026-010, Brazil.
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, BA, Brazil.
| | - Andre Rodrigues Duraes
- Department of Health Family, Medical School of Bahia, Federal University of Bahia, Praça XV de Novembro, s/n° - Largo do Terreiro de Jesus, Salvador, BA, 40026-010, Brazil
- Roberto Santos General Hospital - SESAB, Salvador, BA, Brazil
| | - Marconi Abreu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlandia, Uberlândia, MG, Brazil
| |
Collapse
|
19
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
20
|
Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, Zeng Z, Huang W, He Y. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front Physiol 2017; 8:519. [PMID: 28790925 PMCID: PMC5524816 DOI: 10.3389/fphys.2017.00519] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), a common consequence of longstanding diabetes mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive oxygen species (ROS) overproduction is a major contributor of the chronic low-grade inflammation that characterizes as the DCM. ROS may promote the activation of nucleotide-binding oligomerization domain like receptor (NLR) pyrin domain containing 3 (NLRP3) inflammasome, a novel regulator of inflammation and cell death, by nuclear factor-kB (NF-κB) and thioredoxin interacting/inhibiting protein (TXNIP). NLRP3 inflammasome regulates the death of cardiomyocyte and activation of fibroblast in DCM, which is involved in the structural and functional disorder of DCM. However, comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review the molecular mechanism(s) of NLRP3 inflammasome activation in response to hyperglycemia in DCM.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yanli Liu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yiying Liang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhe Wei
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Honghong Ke
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhiyu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yan He
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| |
Collapse
|
21
|
Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res 2017; 2017:1310265. [PMID: 28421204 PMCID: PMC5379137 DOI: 10.1155/2017/1310265] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
Although ischemic heart disease is the major cause of death in diabetic patients, diabetic cardiomyopathy (DCM) is increasingly recognized as a clinically relevant entity. Considering that it comprises a variety of mechanisms and effects on cardiac function, increasing the risk of heart failure and worsening the prognosis of this patient category, DCM represents an important complication of diabetes mellitus, with a silent development in its earlier stages, involving intricate pathophysiological mechanisms, including oxidative stress, defective calcium handling, altered mitochondrial function, remodeling of the extracellular matrix, and consequent deficient cardiomyocyte contractility. While DCM is common in diabetic asymptomatic patients, it is frequently underdiagnosed, due to few diagnostic possibilities in its early stages. Moreover, since a strategy for prevention and treatment in order to improve the prognosis of DCM has not been established, it is important to identify clear pathophysiological landmarks, to pinpoint the available diagnostic possibilities and to spot potential therapeutic targets.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gilca
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
| | - Gabriela Stefanescu
- Gastroenterology Department, “Sf. Spiridon” County Clinical Emergency Hospital, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
| | - Oana Badulescu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
| | - Daniela-Maria Tanase
- 3rd Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
| | - Iris Bararu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
- *Manuela Ciocoiu:
| |
Collapse
|
22
|
Cohen K, Waldman M, Abraham NG, Laniado-Schwartzman M, Gurfield D, Aravot D, Arad M, Hochhauser E. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes. Exp Cell Res 2016; 350:147-153. [PMID: 27884680 DOI: 10.1016/j.yexcr.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs. The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy. METHODS AND RESULTS Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased. CONCLUSIONS Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy.
Collapse
Affiliation(s)
- Keren Cohen
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Danny Gurfield
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel.
| |
Collapse
|