1
|
Heden TD, Franklin MP, Dailey C, Mashek MT, Chen C, Mashek DG. ACOT1 deficiency attenuates high-fat diet-induced fat mass gain by increasing energy expenditure. JCI Insight 2023; 8:e160987. [PMID: 37561578 PMCID: PMC10561717 DOI: 10.1172/jci.insight.160987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Acyl-CoA thioesterase 1 (ACOT1) catalyzes the hydrolysis of long-chain acyl-CoAs to free fatty acids and CoA and is typically upregulated in obesity. Whether targeting ACOT1 in the setting of high-fat diet-induced (HFD-induced) obesity would be metabolically beneficial is not known. Here we report that male and female ACOT1KO mice are partially protected from HFD-induced obesity, an effect associated with increased energy expenditure without alterations in physical activity or food intake. In males, ACOT1 deficiency increased mitochondrial uncoupling protein-2 (UCP2) protein abundance while reducing 4-hydroxynonenal, a marker of oxidative stress, in white adipose tissue and liver of HFD-fed mice. Moreover, concurrent knockdown (KD) of UCP2 with ACOT1 in hepatocytes prevented increases in oxygen consumption observed with ACOT1 KD during high lipid loading, suggesting that UCP2-induced uncoupling may increase energy expenditure to attenuate weight gain. Together, these data indicate that targeting ACOT1 may be effective for obesity prevention during caloric excess by increasing energy expenditure.
Collapse
Affiliation(s)
- Timothy D. Heden
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Christina Dailey
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Chen Chen
- Department of Biochemistry, Molecular Biology and Biophysics and
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics and
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Rezapour S, Khosroshahi SA, Farajnia H, Mohseni F, Khoshbaten M, Farajnia S. Association of 45-bp ins/del polymorphism of uncoupling protein 2 (UCP2) and susceptibility to nonalcoholic fatty liver and type 2 diabetes mellitus in North-west of Iran. BMC Res Notes 2021; 14:169. [PMID: 33957975 PMCID: PMC8101211 DOI: 10.1186/s13104-021-05586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/24/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Uncoupling protein 2 (UCP2) plays a crucial role in energy homeostasis via insulin secretion regulation, free fatty acid concentrations, and lipid metabolism. This study aimed to investigate the association of 45-bp ins/del polymorphism of UCP2 with susceptibility to NAFLD (Non-Alcoholic Fatty Liver Disease) and T2DM (Type 2 Diabetes Mellitus). DNA was extracted from the white blood cells of the subjects, and the gene polymorphism was determined using polymerase chain reaction (PCR). In this study, 72 patients with NAFLD, 71 healthy individuals as control, 80 patients with T2DM, and 77 healthy controls were enrolled in the study. RESULTS A higher prevalence of insertion/insertion genotype was observed in T2DM patients compared to the controls (p- value˂ 0.05). There was no difference in genotype distribution between NAFLD patients and controls (p-value > 0.05). NAFLD patients with D/D, D/I genotype had higher triglyceride, ALT, and AST levels; however, their HDL levels were lower than healthy controls. Patients with T2DM with D/D or D/I genotype also had significantly higher fasting serum glucose (FSG). While we found an association between the 45 bp I/D polymorphism in 3'UTR of UCP2 and T2DM, no correlation between this polymorphism and NAFLD was identified.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Farajnia
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohseni
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, Egorov AD, Shidlovskii YV. Association of uncoupling protein (Ucp) gene polymorphisms with cardiometabolic diseases. Mol Med 2020; 26:51. [PMID: 32450815 PMCID: PMC7249395 DOI: 10.1186/s10020-020-00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D). A significant number of studies in the field focus on the UCP family. The Ucp genes code for electron transport carriers. UCP1 (thermogenin) is the most abundant protein of the UCP superfamily and is expressed in BAT, contributing to its capability of generating heat. Single nucleotide polymorphisms (SNPs) of Ucp1-Ucp3 were recently associated with risk of cardiometabolic diseases. This review covers the main Ucp SNPs A-3826G, A-1766G, A-112C, Met229Leu, Ala64Thr (Ucp1), Ala55Val, G-866A (Ucp2), and C-55 T (Ucp3), which may be associated with the development of obesity, disturbance in lipid metabolism, T2D, and cardiovascular diseases.
Collapse
Affiliation(s)
- Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Y. Shevchenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Manana R. Skhirtladze
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana N. Larina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Egorov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Kaabi YA. The Deletion Polymorphism in Exon 8 of Uncoupling Protein 2 is Associated with Severe Obesity in a Saudi Arabian Case-control Study. Indian J Endocrinol Metab 2018; 22:200-203. [PMID: 29911031 PMCID: PMC5972474 DOI: 10.4103/ijem.ijem_655_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Obesity is a major health concern in Saudi Arabia. Uncoupling protein 2 (UCP2) seems to play a major role in the regulation of human metabolism; therefore, genetic polymorphisms in the UCP2 gene might contribute to obesity. AIM This study aims to establish whether 45-blood pressure (BP) insertion (I)/deletion (D) polymorphisms in UCP2 are associated with moderate and/or severe obesity in a Saudi Arabian population. SETTINGS AND DESIGN Case-control study design. MATERIALS AND METHODS The study enrolled 151 male and female subjects originating from the eastern province of Saudi Arabia, and assigned each to a "nonobese," "moderately obese," or "severely obese" group. Genomic DNA was extracted from all subjects and screened for UCP2 I/D polymorphisms using a standard polymerase chain response protocol. STATISTICAL ANALYSIS USED Analysis of variance, Chi-squared tests, and logistic regression analysis. RESULTS The frequencies of the UCP2 45-BP I/D genotypes D/D, I/D, and I/I within the analyzed population were 58.3%, 36.4%, and 5.3%, respectively. The D/D genotype was highly prevalent within the severely obese group (82.9%) compared to the nonobese (46.2%) and moderately obese (53.3%) groups. Using a dominance model, the conducted logistic regression analysis showed a strong association between the deletion allele and severe obesity (Odds ratio = 0.18, 95% confidence interval: 0.07-0.44, P = 0.0004). CONCLUSIONS The present study reported that the frequency of UCP2 45-BP I/D polymorphisms in a population originating from eastern Saudi Arabia and identified a strong association between the D/D genotype and severe obesity.
Collapse
Affiliation(s)
- Yahia A. Kaabi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Say YH. The association of insertions/deletions (INDELs) and variable number tandem repeats (VNTRs) with obesity and its related traits and complications. J Physiol Anthropol 2017; 36:25. [PMID: 28615046 PMCID: PMC5471687 DOI: 10.1186/s40101-017-0142-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the fact that insertions/deletions (INDELs) are the second most common type of genetic variations and variable number tandem repeats (VNTRs) represent a large portion of the human genome, they have received far less attention than single nucleotide polymorphisms (SNPs) and larger forms of structural variation like copy number variations (CNVs), especially in genome-wide association studies (GWAS) of complex diseases like polygenic obesity. This is exemplified by the vast amount of review papers on the role of SNPs and CNVs in obesity, its related traits (like anthropometric measurements, biochemical variables, and eating behavior), and its related complications (like hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin resistance-collectively known as metabolic syndrome). Hence, this paper reviews the types of INDELs and VNTRs that have been studied for association with obesity and its related traits and complications. These INDELs and VNTRs could be found in the obesity loci or genes from the earliest GWAS and candidate gene association studies, like FTO, genes in the leptin-proopiomelanocortin pathway, and UCP2/3. Given the important role of the brain serotonergic and dopaminergic reward system in obesity susceptibility, the association of INDELs and VNTRs in these neurotransmitters' metabolism and transport genes with obesity is also reviewed. Next, the role of INS VNTR in obesity and its related traits is questionable, since recent large-scale studies failed to replicate the earlier positive associations. As obesity results in chronic low-grade inflammation of the adipose tissue, the proinflammatory cytokine gene IL1RA and anti-inflammatory cytokine gene IL4 have VNTRs that are implicated in obesity. A systemic proinflammatory state in combination with activation of the renin-angiotensin system and decreased nitric oxide bioavailability as found in obesity leads to endothelial dysfunction. This explains why VNTR and INDEL in eNOS and ACE, respectively, could be predisposing factors of obesity. Finally, two novel genes, DOCK5 and PER3, which are involved in the regulation of the Akt/MAPK pathway and circadian rhythm, respectively, have VNTRs and INDEL that might be associated with obesity. SHORT CONCLUSION In conclusion, INDELs and VNTRs could have important functional consequences in the pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction, prevention, and treatment.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| |
Collapse
|
6
|
Liu Z, Xie J, Luo T, Zhang T, Zhao X, Zhao H, Li P. An epidemiologic study of mitochondrial membrane transporter protein gene polymorphism and risk factors for neural tube defects in Shanxi, China. Neural Regen Res 2015; 7:463-9. [PMID: 25774190 PMCID: PMC4350134 DOI: 10.3969/j.issn.1673-5374.2011.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/02/2011] [Indexed: 01/25/2023] Open
Abstract
The present study involved a questionnaire survey of 156 mothers that gave birth to children with neural tube defects or had a history of pregnancy resulting in children with neural tube defects (case group) and 156 control mothers with concurrent healthy children (control group) as well as detection of mitochondrial membrane transporter protein gene [uncoupling protein 2 (UCP2)] polymorphism. The maternal UCP2 3’ untranslated region (UTR) D/D genotype and D allele frequency were significantly higher in the case group compared with the control group (odds ratio (OR) 3.233; 95% confidence interval (CI) 1.103–9.476; P = 0.040; OR: 3.484; 95% CI: for neural tube defects 2.109–5.753; P < 0.001). Univariate and multivariate logistic regression analysis of risk factors for neural tube defects showed that a maternal UCP2 3’ UTR D/D genotype was negatively interacted with the mothers’ consumption of frequent fresh fruit and vegetables (S = 0.007), positively interacted with the mothers’ frequency of germinated potato consumption (S = 2.15) and positively interacted with the mothers’ body mass index (S = 3.50). These findings suggest that maternal UCP2 3’ UTR gene polymorphism, pregnancy time, consumption of germinated potatoes and body mass index are associated with an increased risk for neural tube defects in children from mothers living in Shanxi province, China. Moreover, there is an apparent gene-environment interaction involved in the development of neural tube defects in offspring.
Collapse
Affiliation(s)
- Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tian'e Luo
- Department of Epidemiology and Statistics, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tao Zhang
- Shanghai Yangpu District Center for Disease Control and Prevention, Shanghai 200093, China
| | - Xia Zhao
- Department of Physical and Chemical Detection, Shanxi Centre for Disease Control and Prevention, Taiyuan 030001, Shanxi Province, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Peizhen Li
- Department of Epidemiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| |
Collapse
|
7
|
Say YH, Ban ZL, Arumugam Y, Kaur T, Tan ML, Chia PP, Fan SH. Uncoupling protein 2 gene (UCP2) 45-bp I/D polymorphism is associated with adiposity among Malaysian women. J Biosci 2014; 39:867-75. [PMID: 25431415 DOI: 10.1007/s12038-014-9488-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/07/2014] [Indexed: 12/27/2022]
Abstract
This study investigated the association of Uncoupling Protein 2 gene (UCP2) 45-bp I/D polymorphism with obesity and adiposity in 926 Malaysian subjects (416 males;265 obese; 102/672/152 Malays/Chinese/Indians). The overall minor allele frequency (MAF) was 0.14, while MAFs according to Malay/Chinese/Indian were 0.17/0.12/0.21. The polymorphism was associated with ethnicity, obesity and overall adiposity (total body fat percentage, TBF), but not gender and central adiposity (waist-hip ratio, WHR). Gender- and ethnicity-stratified analysis revealed that within males, the polymorphism was not associated with ethnicity and anthropometric classes. However, within females, significantly more Indians, obese and those with high TBF carried I allele. Logistic regression analysis among females further showed the polymorphism was associated with obesity and overall adiposity; however, when adjusted for age and ethnicity, this association was abolished for obesity but remained significant for overall adiposity [Odds Ratio (OR) for ID genotype = 2.02 (CI=1.18, 3.45; p=0.01); I allele =1.81 (CI=1.15, 2.84; p=0.01)]. Indeed, covariate analysis controlling for age and ethnicity also showed that those carrying ID genotype or I allele had significantly higher TBF than the rest. In conclusion, UCP2 45-bp I/D polymorphism is associated with overall adiposity among Malaysian women.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Science, Faculty of Science, Centre for Foundation Studies, Universiti Tunku Abdul Rahman (UTAR) Perak Campus, Kampar, Perak, Malaysia,
| | | | | | | | | | | | | |
Collapse
|
8
|
Lim KI, Shin YA. Impact of UCP2 polymorphism on long-term exercise-mediated changes in adipocytokines and markers of metabolic syndrome. Aging Clin Exp Res 2014; 26:491-6. [PMID: 24659521 DOI: 10.1007/s40520-014-0213-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Variations in genes involved in energy expenditure affect aerobic exercise efficiency, but it remains unclear whether the effect of aerobic exercise on adipocytokines is modified by the obesity-associated genotypes in the uncoupling protein 2 gene (UCP2). The purpose of this study was to assess whether genetic variation in UCP2 may affect exercise-mediated changes in adipocytokines and markers of metabolic syndrome in postmenopausal obese women. METHODS Forty-two sedentary postmenopausal obese women (age 52.74 ± 6.39 years) participated in this study. Participants were encouraged to train for 3 days a week, for 6 months, for 60 min per session of treadmill walking/running at 60 % [Formula: see text]. Subjects were genotyped for the 45-bp insertion/deletion (I/D) polymorphism in the 3'-untranslated region (UTR) of UCP2. RESULTS Among the subjects, 23 (57.1 %) and 19 (42.9 %), were deletion homozygotes (DD) and ID heterozygotes, respectively. For DD homozygotes, body weight, body mass index (BMI), % body fat, and waist circumference, and body weight, BMI, and waist circumference of ID heterozygotes, were significantly decreased after the exercise program. There were no significant changes in metabolic markers in individuals with the ID genotype, whereas insulin and HOMA-IR in individuals with the DD genotype were significantly decreased after the exercise program. In DD homozygotes, but not in ID heterozygotes, adiponectin was significantly increased, and leptin, TNF-α, and IL-6 were significantly decreased after exercise training. CONCLUSIONS Exercise-mediated changes in insulin resistance and adiponectin levels may be affected by genotypes in the 3'UTR I/D polymorphism in UCP2 in postmenopausal obese women.
Collapse
|
9
|
Brondani LDA, de Almeida Brondani L, de Souza BM, Assmann TS, Bouças AP, Bauer AC, Canani LH, Crispim D. Association of the UCP polymorphisms with susceptibility to obesity: case-control study and meta-analysis. Mol Biol Rep 2014; 41:5053-67. [PMID: 24752406 DOI: 10.1007/s11033-014-3371-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/05/2014] [Indexed: 12/25/2022]
Abstract
This paper describes a case-control study and a meta-analysis performed to evaluate if the following polymorphisms are associated with presence of obesity: -3826A/G (UCP1); -866G/A, Ala55Val and Ins/Del (UCP2) and -55C/T (UCP3). The case-control study enrolled 282 obese and 483 non-obese patients with type 2 diabetes. A literature search was made to identify all studies that evaluated associations between UCP1-3 polymorphisms and obesity. In the case-control study the distributions of the UCP variants did not differ between obese and non-obese groups (P > 0.05). Forty-seven studies were eligible for the meta-analysis and the results showed that the UCP2 -866G/A and UCP3 -55C/T polymorphisms were associated with protection to obesity in Europeans (OR = 0.89, 95% CI 0.82-0.97 and OR = 0.88, 95% CI 0.80-0.97, respectively). The UCP2 Ala55 val polymorphism was associated with obesity in Asians (OR = 1.61, 95% CI 1.13-2.30). The UCP2 Ins/Del polymorphism was associated with obesity mainly in Europeans (OR = 1.19, 95% CI 1.00-1.42). There was no significant association of the UCP1 -3826A/G polymorphism with obesity. In our case-control study we were not able to demonstrate any association between UCP polymorphisms and obesity in T2DM patients; however, in the meta-analysis we detected a significant association of UCP2 -866G/A, Ins/Del, Ala55Val and UCP3 -55C/T polymorphisms with obesity.
Collapse
|
10
|
Zhang M, Wang M, Zhao ZT. Uncoupling protein 2 gene polymorphisms in association with overweight and obesity susceptibility: A meta-analysis. Meta Gene 2014; 2:143-59. [PMID: 25606398 PMCID: PMC4287797 DOI: 10.1016/j.mgene.2013.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A meta-analysis was performed to evaluate the associations of uncoupling protein 2 (UCP2) gene polymorphisms (Ala55Val, 45-bp insertion/deletion, and -866G/A) with overweight and obesity. A total of 42 studies were included in our analysis. Pooled effect estimates and 95% confidential intervals of each polymorphism were calculated under different inherited models. Fixed or random effect model was selected based on the between-study heterogeneity evaluated with I2. Source of heterogeneity was explored by subgroup analysis and meta-regression analysis. Potential publication bias was assessed using funnel plot and Peters test. After excluding studies that deviated from the Hardy–Weinberg equilibrium, T allele of Ala55Val polymorphism was associated with an increased risk of overweight and obesity under recessive model in the overall (OR = 1.24, 95%CI = 1.06–1.45) and Asian (OR = 1.28, 95%CI = 1.06–1.55) populations; and A allele of -866G/A polymorphism had a protective effect on overweight and obesity, especially for European populations (dominant model: OR = 0.88, 95%CI = 0.81–0.96, co-dominant 1 model: OR = 0.89, 95%CI = 0.81–0.98, co-dominant 2 model: OR = 0.85, 95%CI = 0.74–0.94, additive model: OR = 0.88, 95%CI = 0.80–0.95, and allelic model: OR = 0.91, 95%CI = 0.86–0.97). No evidence was observed in the association of 45-bp insertion/deletion polymorphism with overweight and obesity susceptibility. We failed to fully explore the between-study heterogeneity regarding the association of Ala55Val polymorphism with overweight and obesity. Further studies are required to provide more convincing evidence. We evaluated the association of UCP2 gene polymorphisms with overweight and obesity. Ala55Val polymorphism was associated with an increased risk in Asian populations. No association was observed for 45-bp insertion/deletion polymorphism. -866G/A polymorphism was associated with a decreased risk in European populations.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong 250012, China
| | - Meng Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong 250012, China
| | - Zhong-Tang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong 250012, China
| |
Collapse
|
11
|
Hashemi M, Rezaei H, Kaykhaei MA, Taheri M. A 45-bp insertion/deletion polymorphism of UCP2 gene is associated with metabolic syndrome. J Diabetes Metab Disord 2014; 13:12. [PMID: 24398006 PMCID: PMC3937167 DOI: 10.1186/2251-6581-13-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metabolic syndrome (MeS) is being recognized as a risk factor for insulin resistance and cardiovascular disease. The present study was aimed to find out the possible association between 45-bp I/D polymorphism of uncoupling protein 2 (UCP2) and MeS. METHODS DNA was extracted from peripheral blood of 151 subjects with and 149 subjects without MeS. 45-bp I/D variant of UCP2 was detected using polymerase chain reaction (PCR). RESULTS Our finding showed that 45-bp I/D polymorphism was associated with protection against MeS (OR = 0.56, 95% CI = 0.34-0.92, p = 0.020 D/I vs DD and OR = 0.54, 95% CI = 0.34-0.86, p = 0.009; D/I + I/I vs D/D). The I allele decreased the risk of MeS (OR = 0.62, 95% CI = 0.44-0.90, p = 0.011) in comparison with D allele. CONCLUSION In conclusion, our result suggests that 45-bp I/D polymorphism is associated with the risk of MeS, which remains to be cleared.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamzeh Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmoud-Ali Kaykhaei
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
12
|
Zhang M, Wang M, Zhao ZT. WITHDRAWN: Uncoupling protein 2 gene polymorphisms in association with overweight and obesity susceptibility: A meta-analysis. Gene 2013:S0378-1119(13)01024-X. [PMID: 23939465 DOI: 10.1016/j.gene.2013.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/28/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong 250012, China
| | | | | |
Collapse
|
13
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu X, Zhang B, Liu X, Shen Y, Li J, Zhao N, Ma L, Du Q, Liu L, Zhao J, Wang X. A 45-bp insertion/deletion polymorphism in uncoupling protein 2 is not associated with obesity in a Chinese population. Biochem Genet 2012; 50:784-96. [PMID: 22733179 DOI: 10.1007/s10528-012-9520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The association of a 45-bp insertion/deletion (UCP2-45 bp I/D) polymorphism in uncoupling protein 2 with body mass index (BMI) remains controversial. A case-control study was conducted to examine the association in a Chinese population. The 1,526 subjects recruited in downtown Beijing and genotyped included 616 obese subjects with BMI >28 and 910 age- and gender-matched controls with BMI <24. The association of the polymorphisms with obesity was estimated using multivariate logistic regression in three models of inheritance. The odds ratios were 1.08 (95 % CI 0.846-1.368; P = 0.551) in the dominant model, 0.931 (0.751-1.154; P = 0.513) in the additive model, and 1.18 (0.550-2.550; P = 0.666) in the recessive model. The overall comparison of the genotype distributions in obese and control subjects using the chi-square test yielded P = 0.801. Our study demonstrated no association between UCP2-45 bp I/D and BMI variation in the Chinese population.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- Department of Epidemiology, Public Health School, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Crispim D, Fagundes NJR, dos Santos KG, Rheinheimer J, Bouças AP, de Souza BM, Macedo GS, Leiria LB, Gross JL, Canani LH. Polymorphisms of the UCP2 gene are associated with proliferative diabetic retinopathy in patients with diabetes mellitus. Clin Endocrinol (Oxf) 2010; 72:612-9. [PMID: 19681913 DOI: 10.1111/j.1365-2265.2009.03684.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Uncoupling protein 2 (UCP2) plays a role in controlling reactive oxygen species (ROS) production by mitochondria. As ROS overproduction is related to diabetic retinopathy (DR), UCP2 gene polymorphisms might be involved in the development of this complication. We investigated whether the -866G/A (rs659366), Ala55Val (rs660339) and 45 bp insertion/deletion (Ins/Del) polymorphisms in the UCP2 gene might be associated with proliferative DR (PDR). DESIGN AND METHODS In this case-control study, we analysed 501 type 2 diabetic patients (242 patients with PDR and 259 subjects without any degree of DR) and 196 type 1 diabetic patients (85 cases with PDR and 111 without DR). Haplotypes constructed from the combination of the three UCP2 polymorphisms were inferred using a Bayesian statistical method. RESULTS In the type 2 diabetic group, multivariate analyses confirmed that the haplotype [A Val Ins] was an independent risk factor for PDR when present in one [adjusted odds ratio (aOR) = 2.12; P = 0.006], at least one (aOR = 2.75; P = 0.00001), or two copies (aOR = 5.30; P = 0.00001), suggesting an additive model of inheritance. Nevertheless, in type 1 diabetic patients, the association of this haplotype with PDR was confirmed only when it was present in at least one (aOR = 2.68; P = 0.014) or two copies (aOR = 6.02; P = 0.005). CONCLUSIONS The haplotype [A Val Ins] seems to be an important risk factor associated with PDR in both type 2 and 1 diabetic groups.
Collapse
Affiliation(s)
- Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yonezawa T, Kurata R, Hosomichi K, Kono A, Kimura M, Inoko H. Nutritional and hormonal regulation of uncoupling protein 2. IUBMB Life 2010; 61:1123-31. [PMID: 19946892 DOI: 10.1002/iub.264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Uncoupling proteins (UCPs) belong to a family of mitochondrial carrier proteins that are present in the mitochondrial inner membrane. Genetic and experimental studies have shown that UCP dysfunction can be involved in metabolic disorders and in obesity. Uncoupling protein-1 (UCP1; also known as thermogenin) was identified in 1988 and found to be highly expressed in brown adipose tissue. UCP1 allows the leak of protons in respiring mitochondria, dissipating the energy as heat; the enzyme has an important role in nonshivering heat production induced by cold exposure or food intake. In 1997, two homologs of UCP1 were identified and named UCP2 and UCP3. These novel proteins also lower mitochondrial membrane potential, but whether they can dissipate metabolic energy as heat as efficiently as UCP1 is open to dispute. Even after a decade of study, the physiological roles of these novel proteins have still not been completely elucidated. This review aims to shed light on the nutritional and hormonal regulation of UCP2 and on its physiological roles.
Collapse
Affiliation(s)
- Tomo Yonezawa
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Bohseidai, Ishehara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Jia JJ, Zhang X, Ge CR, Jois M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 2009; 10:519-26. [PMID: 19413708 DOI: 10.1111/j.1467-789x.2009.00569.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uncoupling proteins (UCPs) belong to the family of mitochondrial transporter proteins that may uncouple the transport of protons across the inner mitochondrial membrane from electron transport and the synthesis of ATP from ADP, hence generating heat rather than energy. In mammals, more than five family members have been identified, including UCP1, UCP2, UCP3, UCP4 (or BMCP1/UCP5) and UCP5. The UCPs may play an important role in energy homeostasis and have become prominent in the fields of thermogenesis, obesity, diabetes and free-radical biology and have been considered candidate genes for obesity and insulin resistance. They have been as important potential targets for treatment of aging, degenerative diseases, diabetes and obesity. Recently, a series of studies showed the polymorphisms of UCPs gene association with the fat metabolism, obesity and diabetes. This review summarizes data supporting the roles of UCP2 and UCP3 in energy dissipation, as well as the genetic variety association with fat metabolism, obesity and diabetes in humans.
Collapse
Affiliation(s)
- J-J Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | | | | | | |
Collapse
|
19
|
Steemburgo T, Azevedo MJ, Martínez JA. Interação entre gene e nutriente e sua associação à obesidade e ao diabetes melito. ACTA ACUST UNITED AC 2009; 53:497-508. [DOI: 10.1590/s0004-27302009000500003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 06/21/2009] [Indexed: 02/02/2023]
Abstract
A genômica nutricional avalia o efeito da variação genética na interação entre dieta e doenças crônicas. O objetivo deste manuscrito foi revisar os principais polimorfismos associados à obesidade, ao diabetes melito e também aos fatores da dieta. As principais interações entre polimorfismos genéticos e dieta foram: para obesidade: interleucina-6 (IL-6) com consumo energético; receptor ativado por proliferador de peroxissoma gama 2 (PPAR-gama2) e fat mass and obesity associated (FTO) com consumo de gorduras; receptor β-adrenérgico 2 (ADRB2) e receptor da melanocortina-4 (MCR4) com consumo de carboidratos; para perda de peso: proteínas desacopladoras (UCPs) com restrição calórica; para leptinemia: receptor da leptina (LEPR) com restrição calórica; para diabetes melito: PPAR-gama2 com consumo de gordura; para hipertrigliceridemia: proteína transportadora de ácidos graxos 2 (FABP2) com consumo de gordura. Os dados apresentados sugerem que a genômica nutricional é importante ao desenvolvimento da obesidade e do diabetes melito.
Collapse
|
20
|
Willig AL, Casazza KR, Divers J, Bigham AW, Gower BA, Hunter GR, Fernandez JR. Uncoupling protein 2 Ala55Val polymorphism is associated with a higher acute insulin response to glucose. Metabolism 2009; 58:877-81. [PMID: 19368944 PMCID: PMC2704067 DOI: 10.1016/j.metabol.2009.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/23/2009] [Indexed: 11/23/2022]
Abstract
Recent evidence suggests that mitochondrial uncoupling protein 2 (UCP2) in pancreatic beta-cells plays a crucial role in insulin production and secretion. We hypothesized that 2 UCP2 polymorphisms, a -55C/T (Ala55Val) substitution in exon 4 and an exon 8 insertion, would alter the acute insulin response to glucose (AIRg). Subjects were 155 African American (AA) and European American (EA) women. Body composition was determined by dual-energy x-ray absorptiometry. Insulin sensitivity and AIRg were measured with an intravenous glucose tolerance test and minimal modeling. To account for the confounding effects of population stratification, estimates of African admixture were obtained from approximately 35 ancestry-informative markers. Uncoupling protein 2 genotyping was conducted with gel electrophoresis. Information was analyzed using mixed linear models. A positive association between the -55C/T homozygous mutation and AIRg was identified in the total sample (P < .01) and independently in EA women (P = .02) but not AA women. The exon 8 insertion did not significantly affect AIRg. No interaction effects of the 2 polymorphisms on AIRg were noted. These results indicate that AIRg is associated with the -55C/T UCP2 homozygous mutation and that the presence of this mutation could alter postchallenge insulin concentration.
Collapse
Affiliation(s)
- Amanda L Willig
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mitchell A, Pangilinan F, Van der Meer J, Molloy AM, Troendle J, Conley M, Kirke PN, Scott JM, Brody LC, Mills JL. Uncoupling protein 2 polymorphisms as risk factors for NTDs. ACTA ACUST UNITED AC 2009; 85:156-60. [PMID: 19137581 DOI: 10.1002/bdra.20520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Both environmental and genetic factors are involved in the etiology of NTDs. Inadequate folate intake and obesity are important environmental risk factors. Several folate-related genetic variants have been identified as risk factors; however, little is known about how genetic variants relate to the increased risk seen in obese women. Uncoupling Protein 2 (UCP2) is an attractive candidate to screen for NTD risk because of its possible role in obesity as well as energy metabolism, type-2 diabetes, and the regulation of reactive oxygen species. Interestingly, a previous study found that a common UCP2 compound homozygous genotype was associated with a threefold increase in NTD risk. METHODS We evaluated three polymorphisms, -866G>A, A55V, and the 3'UTR 45 bp insertion/deletion, as risk factors for NTDs in Irish NTD cases (n = 169), their mothers (n = 163), their fathers (n = 167), and normal control subjects (n = 332). RESULTS Allele and genotype frequencies were not significantly different when comparing NTD mothers, NTD fathers, or affected children to controls. Additionally, the previously reported risk genotype (combined homozygosity of 55VV and 3'UTR 45 bp deletion/deletion) was not present at a higher frequency in any NTD group when compared to controls. CONCLUSIONS In our Irish study population, UCP2 polymorphisms did not influence NTD risk. Moreover, the prevalence of this allele in other populations was similar to the Irish prevalence but far lower than reported in the previous NTD study, suggesting that this previous finding of an association with NTDs might have been due to an unrepresentative study sample.
Collapse
Affiliation(s)
- Adam Mitchell
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, 50 South Drive, Bethesda, MD 20892-8004, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Obesity originates from a failure of the body-weight control systems, which may be affected by changing environmental influences. Basically, the obesity risk depends on two important mutually-interacting factors: (1) genetic variants (single-nucleotide polymorphisms, haplotypes); (2) exposure to environmental risks (diet, physical activity etc.). Common single-nucleotide polymorphisms at candidate genes for obesity may act as effect modifiers for environmental factors. More than 127 candidate genes for obesity have been reported and there is evidence to support the role of twenty-two genes in at least five different populations. Gene-environment interactions imply that the synergy between genotype and environment deviates from either the additive or multiplicative effect (the underlying model needs to be specified to appraise the nature of the interaction). Unravelling the details of these interactions is a complex task. Emphasis should be placed on the accuracy of the assessment methods for both genotype and lifestyle factors. Appropriate study design (sample size) is crucial in avoiding false positives and ensuring that studies have enough power to detect significant interactions, the ideal design being a nested case-control study within a cohort. A growing number of studies are examining the influence of gene-environmental interactions on obesity in either epidemiological observational or intervention studies. Positive evidence has been obtained for genes involved in adiposity, lipid metabolism or energy regulation such as PPARgamma2 (Pro12Ala), beta-adrenoceptor 2 (Gln27Glu) or uncoupling proteins 1, 2 and 3. Variants on other genes relating to appetite regulation such as melanocortin and leptin receptors have also been investigated. Examples of some recently-identified interactions are discussed.
Collapse
|
23
|
Lee HJ, Ryu HJ, Shin HD, Park BL, Kim JY, Cho YM, Park KS, Song J, Oh B. Associations between polymorphisms in the mitochondrial uncoupling proteins (UCPs) with T2DM. Clin Chim Acta 2008; 398:27-33. [PMID: 18755175 DOI: 10.1016/j.cca.2008.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/27/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mitochondrial uncoupling proteins (UCPs) are considered pivotal regulators of energy and glucose homeostasis. We examined the effect of 23 single nucleotide polymorphisms (SNPs) in the UCP genes on type 2 diabetes mellitus (T2DM) and related phenotypes to identify genetic factors that may be involved in susceptibility to T2DM. METHODS We directly sequenced the coding region, portions of the 5'- and 3'-flanking sequences, and the intron-exon boundaries of the UCP genes from 24 individuals. We genotyped 23 SNPs in 761 unrelated patients with T2DM and 632 unrelated non-diabetic control subjects and investigated their potential involvement in T2DM. RESULTS We identified association between T2DM and the following 3 SNPs in UCP2: UCP2 -5331G>A (P=0.018, odds ratio (OR)=1.38, 95% CI (confidence interval)=1.06-1.79), UCP2 -3998C>G (P=0.021, OR=1.37, 95% CI=1.05-1.78), and UCP2 +320C>T (P=0.019, OR=0.73, 95% CI=0.57-0.95). There was strong linkage disequilibrium (LD) among these 3 SNPs (r2=0.94-0.97). UCP2 -5331G>A is a regulatory SNP (rSNP), and its association with T2DM was significant among obese or abdominally obese subjects (P=0.017, OR=1.78, 95% CI=1.11-2.85; P=0.004, OR=1.82, 95% CI=1.21-2.74; respectively). UCP3 -2078C>T of UCP3 SNPs was associated with T2DM only among women (P=0.026, OR=0.71, 95% CI=0.52-0.96). Patients with combinations of the rSNPs UCP2 -5331G>A and UCP3 -2078C>T displayed an increased risk for T2DM. Specifically, those patients homozygous for both rSNPs among susceptible alleles had a higher risk for T2DM than patients heterozygous for one rSNP and homozygous for the other rSNP (P=0.033, OR=1.38, 95% CI=1.03-1.85). This association was more obvious in women (P=0.022, OR=1.58, 95% CI=1.07-2.34). CONCLUSIONS Our results suggest that the UCP2 -5331G>A and UCP3 -2078C>T polymorphisms are susceptibility markers for T2DM among Koreans.
Collapse
Affiliation(s)
- Hye-Ja Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee YH, Kim W, Yu BC, Park BL, Kim LH, Shin HD. Association of the ins/del polymorphisms of uncoupling protein 2 (UCP2) with BMI in a Korean population. Biochem Biophys Res Commun 2008; 371:767-71. [DOI: 10.1016/j.bbrc.2008.04.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 11/24/2022]
|
25
|
Ochoa MC, Santos JL, Azcona C, Moreno-Aliaga MJ, Martínez-González MA, Martínez JA, Marti A. Association between obesity and insulin resistance with UCP2-UCP3 gene variants in Spanish children and adolescents. Mol Genet Metab 2007; 92:351-8. [PMID: 17870627 DOI: 10.1016/j.ymgme.2007.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
A number of studies have yielded controversial results on the association between polymorphisms in UCP2 and UCP3 genes with obesity and its comorbidities. The discrepancy among studies might be partially explained by the lack of consideration of the effect of adjacent loci in the same haplotype and the exclusion of key lifestyle factors in the statistical analysis. In this study, we have assessed the association between three genetic variants of the UCP2-UCP3 gene cluster, the -866G/A (rs659366) and the 45bp insertion (in position 173247 of the AC019121) of the UCP2 gene, the -55C/T (rs1800849) polymorphism of the UCP3 gene and their estimated haplotypes with childhood obesity and insulin resistance. This research was designed as a case-control study and information about several environmental parameters such as leisure time physical activity and time spent watching television were included. The study sample consisted in 193 obese children and adolescents (cases) and 170 controls aged 6-18. We found that the individual polymorphisms were not associated with obesity, but the (-866G; rs659366)-(Del; 45bp)-(-55T; rs1800849) haplotype was significantly associated with obesity and its presence in the control group increased about nine times the insulin resistance risk. Thus, the (-866A; rs659366)-(Ins; 45bp)-(-55C; rs1800849) haplotype may protect against insulin resistance in the obese population group.
Collapse
Affiliation(s)
- María C Ochoa
- Department of Nutrition and Food Sciences, Physiology and Toxicology, C/Irunlarrea s/n, University of Navarra, 31080 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Alfredo Martínez J, Martínez-Hernández A, Enríquez L, Moreno-Aliaga MJ, Moreno-Moreno MJ, Martí A. Genetics of obesity. Public Health Nutr 2007; 10:1138-44. [PMID: 17903322 DOI: 10.1017/s1368980007000626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjectiveThe aim was to review and update advances in genetics of obesity.DesignAnalysis and interpretation of recent investigations about regulating the energy balance as well as about gene-nutrient interactions and current nutrigenomic research methods.Background and main statementsObesity results from a long-term positive energy balance. However, its rising prevalence in developed and developing societies must reflect lifestyle changes, since genetic susceptibility remains stable over many generations. Like most complex diseases, obesity derives from a failure of adequate homoeostasis within the physiological system controlling body weight. The identification of genes that are involved in syndromic, monogenic and polygenic obesity has seriously improved our knowledge of body weight regulation. This disorder may arise from a deregulation at the genetic level (e.g. gene transcription or altered protein function) or environmental exposure (e.g. diet, physical activity, etc.).ConclusionsIn practice, obesity involves the interaction between genetic and environmental factors.
Collapse
Affiliation(s)
- J Alfredo Martínez
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Rance KA, Johnstone AM, Murison S, Duncan JS, Wood SG, Speakman JR. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene. Int J Obes (Lond) 2007; 31:1311-8. [PMID: 17342078 DOI: 10.1038/sj.ijo.0803535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Circulating leptin levels show a high degree of individual variability even after the main effect of body fatness is accounted for. We therefore wanted to determine the roles of variation in body composition, age, sex and polymorphisms of the UCP2 gene and promoter region on levels of circulating leptin. SUBJECTS One hundred and fifty Caucasian subjects, which represented a cross-section of the population from NE, Scotland, were recruited. MEASUREMENTS Body composition was measured using dual X-ray absorptiometry. Fasted circulating leptin, insulin, T3 and T4 levels were measured, and all individuals were genotyped for the UCP2 polymorphisms A55V, -866G>A and exon-8 ins/del. RESULTS The results indicate that circulating leptin was significantly related to sex and principle component (PC) scores representing overall adipose tissue mass and a second representing the contrast of central to peripheral bone mineral content. Residual leptin was associated with the A55V polymorphism (P< 0.001) explaining 11.3% of the residual variance. There was a marginal effect associated with exon-8 ins/del (P=0.045) explaining 4.4% of the residual variance in leptin. Log(e) transformed circulating fasting insulin was related to PC scores representing general adiposity and sex. Residual Log(e) insulin was associated with the A55V and exon-8 ins/del polymorphisms explaining 5.7% (P=0.015) and 5% (P=0.026) of the residual variation, respectively. The -866G>A polymorphism was not significantly associated with residual leptin or insulin. Leptin and insulin were significantly (P=0.007) correlated. Statistically removing the effect of insulin on leptin still showed association between leptin and A55V (P=0.002). Removing the effect of leptin on insulin, the A55V polymorphism was no longer significant (P=0.120). After accounting for the correlation between insulin and leptin, the exon-8 ins/del was no longer significant for residual leptin (P=0.119) or Log(e) insulin (P=0.252). CONCLUSION These data suggest that the A55V polymorphism directly affected the levels of leptin but not via an effect on insulin.
Collapse
Affiliation(s)
- K A Rance
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), Rowett Research Institute, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The prevalence of obesity is rising throughout the world. Indeed, obesity has reached epidemic proportions in many developed and transition countries. Obesity is a complex disease with multifactorial origin, which in many cases appears as a polygenic condition affected by environmental factors. Treatment or prevention of obesity is necessary to reverse or avoid the onset of type 2 diabetes and other obesity-related diseases. Weight loss is a complex trait that depends on many environmental, behavioural and genetic influences. An effective programme for the management of overweight and obesity must take into account all of these factors. Individual responses to weight loss interventions vary widely and reliable predictors of successful slimming are poorly understood. The individual genetic make-up participating in energy expenditure regulation, appetite control, lipid metabolism and adipogenesis, have been reported to affect the risk of treatment failure in some subjects. In addition, the genotype could also help to predict the changes in lipid profile, cardiovascular risk factors and insulin sensitivity in response to weight loss. Herein, the current evidence from human studies that support the existence of a genetic component and the participation of different polymorphisms in the prognosis of weight loss induced by interventions leading to a negative energy balance are reviewed.
Collapse
Affiliation(s)
- M J Moreno-Aliaga
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|