1
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Piotrowska K, Zgutka K, Kupnicka P, Chlubek D, Pawlik A, Baranowska-Bosiacka I. Analysis of Bone Mineral Profile After Prolonged Every-Other-Day Feeding in C57BL/6J Male and Female Mice. Biol Trace Elem Res 2020; 194:177-183. [PMID: 31175634 PMCID: PMC6987084 DOI: 10.1007/s12011-019-01758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Intermitted fasting or every-other-day feeding (EOD) has many positive effects in rodents and humans. Our goal was to describe how EOD influences bone mineral composition in female and male mice under prolonged EOD feeding. Male and female adult mice were fed EOD for 9 months. After this time, we used a direct method of measurement of mineral components in ashes of long bones (humerus and radius) to estimate the content of calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), and sodium (Na). We also performed histological analysis of sections of long bones. We found no significant changes in mineral composition between ad libitum and EOD fed males and females. We noted higher Ca and P contents in control males vs. females and lower content of Mg in control males vs. females. We observed the presence of marrow adipose tissue (MAT) in sections of EOD-fed females. EOD without supplementation during feeding days did not increase loss of mineral content of bones in C57BL/6J mice, but the presence of MAT only in EOD females indicates a gender-dependent response to EOD treatment in C57BL/6J mice.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Katarzyna Zgutka
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
3
|
Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice. Nutrients 2016; 8:176. [PMID: 27007393 PMCID: PMC4808902 DOI: 10.3390/nu8030176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.
Collapse
|
4
|
Jashni HK, Mohebbi H, Delpasand A, Jahromy HK. Caloric restriction and exercise training, combined, not solely improve total plasma adiponectin and glucose homeostasis in streptozocin-induced diabetic rats. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-014-0212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Cai H, Daimon CM, Cong WN, Wang R, Chirdon P, de Cabo R, Sévigny J, Maudsley S, Martin B. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators. J Gerontol A Biol Sci Med Sci 2013; 69:532-44. [PMID: 24077597 DOI: 10.1093/gerona/glt129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.
Collapse
Affiliation(s)
- Huan Cai
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Styskal J, Nwagwu FA, Watkins YN, Liang H, Richardson A, Musi N, Salmon AB. Methionine sulfoxide reductase A affects insulin resistance by protecting insulin receptor function. Free Radic Biol Med 2013; 56:123-32. [PMID: 23089224 PMCID: PMC3578155 DOI: 10.1016/j.freeradbiomed.2012.10.544] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays a significant role in the development of insulin resistance; however, the cellular targets of oxidation that cause insulin resistance have yet to be fully elucidated. Methionine sulfoxide reductases reduce oxidized methionine residues, thereby repairing and protecting proteins from oxidation. Recently, several genome-wide analyses have found human obesity to be strongly correlated with polymorphisms near the methionine sulfoxide reductase A (MsrA) locus. In this study, we tested whether modulation of MsrA expression significantly alters the development of obesity and/or insulin resistance in mice. We show that mice lacking MsrA (MsrA(-/-)) are prone to the development of high-fat-diet-induced insulin resistance and a reduced physiological insulin response compared to high-fat-fed wild-type mice. We also show that oxidative stress in C2C12 cell cultures reduces both insulin-stimulated phosphorylation and autophosphorylation of the insulin receptor. Tissues from high-fat-fed mice show similar reduction in insulin receptor function and increase in insulin receptor oxidation, which are further exacerbated by the lack of MsrA. Together, these data demonstrate for the first time that MsrA and protein oxidation play a role in the regulation of glucose homeostasis. In addition, these data support a novel hypothesis that obesity-induced insulin resistance is caused in part by reduced function of insulin signaling proteins arising from protein oxidation.
Collapse
Affiliation(s)
- JennaLynn Styskal
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Florence A. Nwagwu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Yvonne N. Watkins
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Hanyu Liang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Division of Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Arlan Richardson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Nicolas Musi
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Division of Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| |
Collapse
|
7
|
De Solís AJ, Fernández-Agulló T, García-SanFrutos M, Pérez-Pardo P, Bogónez E, Andrés A, Ros M, Carrascosa JM. Impairment of skeletal muscle insulin action with aging in Wistar rats: Role of leptin and caloric restriction. Mech Ageing Dev 2012; 133:306-16. [DOI: 10.1016/j.mad.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 01/04/2023]
|
8
|
Sequea DA, Sharma N, Arias EB, Cartee GD. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci 2012; 67:1279-85. [PMID: 22454372 DOI: 10.1093/gerona/gls085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.
Collapse
Affiliation(s)
- Donel A Sequea
- University of Michigan, School of Kinesiology, Room 4745F, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA.
| | | | | | | |
Collapse
|
9
|
Han X, Turdi S, Hu N, Guo R, Zhang Y, Ren J. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J Nutr Biochem 2012; 23:1592-9. [PMID: 22444502 DOI: 10.1016/j.jnutbio.2011.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/29/2011] [Accepted: 11/03/2011] [Indexed: 11/20/2022]
Abstract
Both clinical and experimental evidence has revealed that calorie restriction (CR) is capable of improving heart function. However, most the reports are focused on the effect of CR on the pathological states such as obesity, while the effect of CR on heart function in otherwise healthy subjects is not well understood. This study examined the long-term CR effect on cardiac contractile function and possible underlying mechanisms involved. C57BL/6 mice were subjected to a 40% CR or ad libitum feeding for 20 weeks. Echocardiographic and cardiomyocyte contractile properties were evaluated. Intracellular signaling pathways were examined using Western blot analysis. Our results showed that CR overtly lessened glucose intolerance, lessened body and heart weights (although not heart size), lowered fat tissue density, decreased left ventricular (LV) wall thickness (septum and posterior wall) in both systole and diastole, and reduced LV mass (not normalized LV mass) without affecting fractional shortening. Cardiomyocyte cell length and cross-sectional area were reduced, while peak shortening amplitude was increased following CR. CR failed to affect maximal velocity of shortening/relengthening and duration of shortening and relengthening. Immunoblotting data depicted decreased and increased phosphorylation of Akt/glycogen synthase kinase-3β and AMP-dependent protein kinase/acetyl-CoA carboxylase, respectively, following CR. CR also dampened the phosphorylation of mammalian target of rapamycin, extracellular-signal-regulated protein kinase 1/2 and c-Jun, while it increased the phosphorylation of c-Jun NH2-terminal kinase. Last but not least, CR significantly promoted cardiac autophagy as evidenced by increased expression of LC3B-II (and LC3B-II to LC3B-I ratio) and Beclin-1. In summary, our data suggested that long-term CR may preserve cardiac contractile function with improved cardiomyocyte function, lessen cardiac remodeling and promote autophagy.
Collapse
Affiliation(s)
- Xuefeng Han
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
| | | | | | | | | | | |
Collapse
|
10
|
Avenatti R. The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. COMPARATIVE EXERCISE PHYSIOLOGY 2012. [DOI: 10.3920/cep12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation-associated insulin resistance contributes to chronic disease in humans and other long-lived species, such as horses. Insulin resistance arises due to an imbalance among molecular signalling mediators in response to pro-inflammatory cytokines in the aged and obese. The mammalian heat shock protein response has received much attention as an avenue for attenuating inflammatory mediator signalling and for contributing to preservation and restoration of insulin signalling in metabolically important tissues. Data on heat shock proteins and inflammatory signalling mediators in untrained and aged horses are lacking, and horses represent an untapped resource for studying the mediator imbalance contributing to insulin resistance in a comparative model.
Collapse
Affiliation(s)
- R.C. Avenatti
- Rutgers Equine Science Center, Rutgers, the State University of New Jersey, 57 U.S. Highway 1, New Brunswick, NJ 08850, USA
| |
Collapse
|
11
|
Cerqueira FM, da Cunha FM, Caldeira da Silva CC, Chausse B, Romano RL, Garcia CCM, Colepicolo P, Medeiros MHG, Kowaltowski AJ. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med 2011; 51:1454-60. [PMID: 21816219 DOI: 10.1016/j.freeradbiomed.2011.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/08/2011] [Indexed: 12/13/2022]
Abstract
Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance.
Collapse
Affiliation(s)
- Fernanda M Cerqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu M, Hu J, Perez E, Phillips D, Kim W, Ghaedian R, Napora JK, Zou S. Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci 2011; 66:1139-51. [PMID: 21768504 DOI: 10.1093/gerona/glr105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effects of long-term cranberry consumption on age-related changes in endocrine pancreas are not fully understood. Here we treated male Fischer 344 rats with either 2% whole cranberry powder supplemented or normal rodent chow from 6 to 22 month old. Both groups displayed an age-related decline in basal plasma insulin concentrations, but this age-related decline was delayed by cranberry. Cranberry supplementation led to increased β-cell glucose responsiveness during the oral glucose tolerance test. Portal insulin concentration was 7.6-fold higher in rats fed cranberry, coupled with improved β-cell function. However, insulin resistance values were similar in both groups. Total β-cell mass and expression of pancreatic and duodenal homeobox 1 and insulin within islets were significantly enhanced in rats fed cranberry relative to controls. Furthermore, cranberry increased insulin release of an insulin-producing β-cell line, revealing its insulinotropic effect. These findings suggest that cranberry is of particular benefit to β-cell function in normal aging rats.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Experimental Gerontology, NIH Biomedical Research Center, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Horrillo D, Sierra J, Arribas C, García-San Frutos M, Carrascosa JM, Lauzurica N, Fernández-Agulló T, Ros M. Age-associated development of inflammation in Wistar rats: Effects of caloric restriction. Arch Physiol Biochem 2011; 117:140-50. [PMID: 21635187 DOI: 10.3109/13813455.2011.577435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Insulin resistance and type 2 Diabetes have been associated to a low grade of inflammation and their prevalence increase with ageing. OBJECTIVE To analyse the development of inflammation in adipose tissue, liver, muscle and hypothalamus during ageing and the effects of caloric restriction. MATERIALS AND METHODS We have analysed the expression of inflammatory cytokines (TNFα, IL1-β, IL-12B and IL-6), proteins involved in macrophage recruitment (MCP-1, CCR2), TLR4 and macrophage markers (CD11c, CD11b and arginase1). Immunohistochemistry of macrophages has also been performed. RESULTS All studied tissues present signs of inflammation during ageing, but with different pattern and intensity. Caloric restriction decreases the expression of most of inflammatory markers. DISCUSSION AND CONCLUSIONS These data indicate a role of adiposity in the development of inflammation and insulin resistance during ageing. Dietetic intervention could be a useful tool to ameliorate the development of inflammation and insulin resistance associated with ageing.
Collapse
Affiliation(s)
- Daniel Horrillo
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, Sajan MP, Farese RV, Cartee GD. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats. Am J Physiol Endocrinol Metab 2011; 300:E966-78. [PMID: 21386065 PMCID: PMC3118592 DOI: 10.1152/ajpendo.00659.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, Ann Arbor, MI 48109-2214, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hvid H, Klopfleisch R, Vienberg S, Hansen BF, Thorup I, Jensen HE, Oleksiewicz MB. Unique expression pattern of the three insulin receptor family members in the rat mammary gland: dominance of IGF-1R and IRR over the IR, and cyclical IGF-1R expression. J Appl Toxicol 2010; 31:312-28. [DOI: 10.1002/jat.1627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Henning Hvid
- Department of Veterinary Disease Biology; Faculty of Life Sciences; University of Copenhagen; Denmark
- Pathology; Novo Nordisk A/S; Copenhagen Denmark
| | | | - Sara Vienberg
- Insulin Biology; Novo Nordisk A/S; Copenhagen Denmark
| | - Bo F. Hansen
- Insulin Biology; Novo Nordisk A/S; Copenhagen Denmark
| | | | - Henrik E. Jensen
- Department of Veterinary Disease Biology; Faculty of Life Sciences; University of Copenhagen; Denmark
| | | |
Collapse
|
16
|
The effect of aging on insulin signalling pathway is tissue dependent: Central role of adipose tissue in the insulin resistance of aging. Mech Ageing Dev 2009; 130:189-97. [DOI: 10.1016/j.mad.2008.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 11/12/2008] [Indexed: 11/20/2022]
|
17
|
Donati A, Recchia G, Cavallini G, Bergamini E. Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. J Gerontol A Biol Sci Med Sci 2008; 63:550-5. [PMID: 18559627 DOI: 10.1093/gerona/63.6.550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autophagy is a process that sequesters and degrades altered organelles and macromolecular cytoplasmic constituents for cellular restructuring and repair, and as a source of nutrients for metabolic use in early starvation it may be involved in anti-aging mechanisms of caloric restriction. The effects of 40% daily dietary restriction (DR) and intermittent feeding (EOD) on the age-related changes in the endocrine regulation of autophagic proteolysis were studied by monitoring the rate of valine release from isolated rat liver cells. Results show that in ad libitum-fed rats sensitivity of autophagy to glucagon and insulin declines by one order of magnitude in older rats. Both DR and EOD maintain the sensitivity to glucagon at juvenile levels, whereas only EOD can fully maintain response to insulin. It is concluded that changes in the sensitivity to glucagon may have a role in the aging process.
Collapse
Affiliation(s)
- Alessio Donati
- Università di Pisa, Centro di Ricerca Biologia e Patologia dell'Invecchiamento, Roma 55, Pisa, Italy 56126.
| | | | | | | |
Collapse
|
18
|
Arias EB, Cartee GD. In vitro simulation of calorie restriction-induced decline in glucose and insulin leads to increased insulin-stimulated glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 2007; 293:E1782-8. [PMID: 17925453 DOI: 10.1152/ajpendo.00531.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vivo calorie restriction [CR; consuming 60% of ad libitum (AL) intake] induces elevated insulin-stimulated glucose transport (GT) in skeletal muscle. The mechanisms triggering this adaptation are unknown. The aim of this study was to determine whether physiological reductions in extracellular glucose and/or insulin, similar to those found with in vivo CR, were sufficient to elevate GT in isolated muscles. Epitrochlearis muscles dissected from rats were incubated for 24 h in media with glucose (8 mM) and insulin (80 microU/ml) at levels similar to plasma values of AL-fed rats and compared with muscles incubated with glucose (5.5 mM) and/or insulin (20 microU/ml) at levels similar to plasma values of CR rats. Muscles incubated with CR levels of glucose and insulin for 24 h had a subsequently greater (P < 0.005) GT with 80 microU/ml insulin and 8 mM [(3)H]-3-O-methylglucose but unchanged GT without insulin. Reducing only glucose or insulin for 24 h or both glucose and insulin for 6 h did not induce altered GT. Increased GT after 24-h incubation with CR levels of glucose and insulin was not attributable to increased insulin receptor tyrosine phosphorylation, Akt serine phosphorylation, or Akt substrate of 160 kDa phosphorylation. Nor did 24-h incubation with CR levels of glucose and insulin alter the abundance of insulin receptor, insulin receptor substrate-1, GLUT1, or GLUT4 proteins. These results provide the proof of principle that reductions in extracellular glucose and insulin, similar to in vivo CR, are sufficient to induce an increase in insulin-stimulated glucose transport comparable to the increase found with in vivo CR.
Collapse
Affiliation(s)
- Edward B Arias
- Division of Kinesiology, Univ. of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
19
|
Warne JP, Horneman HF, Wick EC, Bhargava A, Pecoraro NC, Ginsberg AB, Akana SF, Dallman MF. Comparison of superior mesenteric versus jugular venous infusions of insulin in streptozotocin-diabetic rats on the choice of caloric intake, body weight, and fat stores. Endocrinology 2006; 147:5443-51. [PMID: 16873535 DOI: 10.1210/en.2006-0702] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticosterone (B) increases and insulin decreases food intake. However, in streptozotocin (STZ)-diabetic rats with high B, low insulin replacement promotes lard intake. To test the role of the liver on this, rats were given STZ and infused with insulin or vehicle into either the superior mesenteric or right jugular vein. Controls were nondiabetic; all rats were treated with high B. After 5 d, all rats were offered lard, 32% sucrose, chow, and water ad libitum until d 10. Diabetes exacerbated body weight loss from high B; this was prevented by insulin into the jugular, but not superior mesenteric, vein. Without insulin, STZ groups essentially consumed only chow; controls increased caloric intake about equally from the three sources. Insulin into both sites reduced chow and increased lard intake. Although circulating insulin was increased only by jugular infusion, plasma glucose and liver glycogen were similar after insulin into both sites. Fat depot weights differed: sc fat was heavier after jugular and mesenteric fat was heavier after mesenteric insulin infusions. We conclude that there are important site-specific effects of insulin in regulating the choice of, but not total, caloric intake, body weight, and fat storage in diabetic rats with high B. Furthermore, lard intake might be regulated by an insulin-derived, liver-mediated signal because superior mesenteric insulin infusion had similar effects on lard intake to jugular infusion but did not result in elevated circulating insulin levels likely associated with liver insulin removal.
Collapse
Affiliation(s)
- James P Warne
- Department of Physiology, Box 0444, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Park S, Komatsu T, Hayashi H, Yamaza H, Chiba T, Higami Y, Kuramoto K, Shimokawa I. Calorie restriction initiated at middle age improved glucose tolerance without affecting age-related impairments of insulin signaling in rat skeletal muscle. Exp Gerontol 2006; 41:837-45. [PMID: 16920310 DOI: 10.1016/j.exger.2006.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Calorie restriction (CR) may affect glucose tolerance via modulation of the insulin action in skeletal muscle. The present study investigated the effect of CR initiated at middle age in rats bearing glucose intolerance, in comparison with CR at a younger age. Male F344 rats at 2.5 and 18months (mo) of age were fed ad libitum (AL) or 30% CR diets for 4-4.5mo, subjected to glucose tolerance testing, and then sacrificed 15min after intraperitoneal glucose or saline injection to evaluate glucose-stimulated insulin response and subsequent activation of insulin signaling molecules. The protein abundance of phosphorylated (p) insulin receptors, p-Akt, and p-atypical PKC and the membrane fraction of glucose transporter 4 in quadriceps femoris muscle (QFM) were analyzed by EIA or immunoblotting. CR initiated either at young or middle age improved glucose tolerance with a lower serum insulin response to glucose. However, middle-aged CR did not improve aging-related impairments in insulin signaling in QFM. The present results emphasized the possibilities of CR activation of an insulin-independent mechanism in skeletal muscle and also of the involvement of non-muscle tissues in glucose uptake.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Haddad F, Adams GR. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol (1985) 2005; 100:1188-203. [PMID: 16373446 DOI: 10.1152/japplphysiol.01227.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is an age-related loss of muscle mass and strength. The aged can increase various measures of muscle size and strength in response to resistance exercise (RE), but this may not normalize specific tension. In rats, aging reduces the hypertrophy response and impairs regeneration. In this study, we measured cellular and molecular markers, indicative of muscle hypertrophy, that also respond to acute increases in loading. Comparing 6- and 30-mo-old rats, the aims were to 1) determine whether these markers are altered with age and 2) identify age-sensitive responses to acute RE. The muscles of old rats exhibited sarcopenia involving a deficit in contractile proteins and decreased force generation. The RNA-to-protein ratio was higher in the old muscles, suggesting a decrease in translational efficiency. There was evidence of reduced signaling via components downstream from the insulin/insulin-like growth factor (IGF)-I receptors in old muscles. The mRNA levels of myostatin and suppressor of cytokine signaling 2, negative regulators of muscle mass, were lower in old muscles but did not decrease following RE. RE induced increases in the mRNAs for IGF-I, mechano-growth factor, cyclin D1, and suppressor of cytokine signaling 3 were similar in old and young muscles. RE induced phosphorylation of the IGF-I receptor, and Akt increased in young but not old muscles, whereas that of S6K1 was similar for both. The results of this study indicate that a number of components of intracellular signaling pathways are sensitive to age. As a result, key anticatabolic responses appear to be refractory to the stimuli provided by RE.
Collapse
Affiliation(s)
- Fadia Haddad
- Department of Physiology & Biophysics, University of California, Irvine, Medical Sciences 1, Rm. D335, 92697-4560, USA
| | | |
Collapse
|