1
|
Sumi T, Kugo H, Higashihara M, Moriyama T, Zaima N. Food components and abdominal aortic aneurysm. Biosci Biotechnol Biochem 2025; 89:152-160. [PMID: 39375828 DOI: 10.1093/bbb/zbae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a disease in which the abdominal aorta expands irreversibly and ruptures. At present, no preventive methods are available for this disease. Among potential risk factors, certain foods are considered to play important roles in the development of AAA. Epidemiological studies suggest a close relationship between AAA and dietary habits. Experimental studies have clarified potential suppressive or progressive food components for AAA. In this review, a summary of studies related to nutritional science in the fields of AAA and/or aortic degeneration are provided.
Collapse
Affiliation(s)
- Tomoko Sumi
- Graduate School of Agriculture, Kindai University, Nara City, Nara, Japan
| | - Hirona Kugo
- Graduate School of Agriculture, Kindai University, Nara City, Nara, Japan
| | - Mayo Higashihara
- Graduate School of Agriculture, Kindai University, Nara City, Nara, Japan
| | - Tatsuya Moriyama
- Graduate School of Agriculture, Kindai University, Nara City, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Graduate School of Agriculture, Kindai University, Nara City, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
2
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
3
|
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li DS, Youshao E, Tellides G, Iyengar R, Humphrey JD, Schwartz MA. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e132-e150. [PMID: 36994727 PMCID: PMC10133209 DOI: 10.1161/atvbaha.123.319120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Minghao Chen
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Keiichiro Tanaka
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Pengwei Ren
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Abdulrahman Hassab
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Eric Youshao
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - George Tellides
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Martin A Schwartz
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Departments of Medicine (Cardiology) and Cell Biology (M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| |
Collapse
|
4
|
Zhou M, Zha Z, Zheng Z, Pan Y. Cordycepin suppresses vascular inflammation, apoptosis and oxidative stress of arterial smooth muscle cell in thoracic aortic aneurysm with VEGF inhibition. Int Immunopharmacol 2023; 116:109759. [PMID: 36731150 DOI: 10.1016/j.intimp.2023.109759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a type of common and serious vascular disease, in which inflammation, apoptosis and oxidative stress are strongly involved in the progression. Cordycepin, a bioactive compound from Cordyceps militaris, exhibits anti-inflammatory and anti-oxidative activities. This study aimed to address the role and mechanism of cordycepin in TAA. METHODS The thoracic aortas were perivascularly administrated with calcium chloride (CaCl2), and human aortic smooth muscle cells (HASMCs) were incubated with angiotensin II (Ang II) to simulate the TAA model in vivo and in vitro, respectively. The effect and mechanism of cordycepin in TAA were explored by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, biochemical test, cell counting kit-8 (CCK-8), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assays. RESULTS Cordycepin improved the CaCl2-induced the aneurysmal alteration and disappearance of normal wavy elastic structures of the aorta tissues, TAA incidence and thoracic aortic diameter in rats, and Ang II-induced the cell viability of HASMCs. Cordycepin reversed the CaCl2-induced the relative protein expression of cleaved caspase 9, cleaved caspase 3, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, and the relative levels of glutathione (GSH), malonaldehyde (MDA) and reactive oxygen species (ROS) in vivo, or Ang II-induced these changes in vitro. Mechanically, cordycepin reduced the relative protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), cluster of differentiation 31 (CD31) and endothelial nitric oxide synthase (eNOS) in the Ang II-induced HASMCs. Correspondingly, overexpression of VEGF increased the levels of the indicators involved in apoptosis, inflammation and oxidative stress, which were antagonized with the cordycepin incubation in the Ang II-induced HASMCs. CONCLUSION Cordycepin inhibited apoptosis, inflammation and oxidative stress of TAA through the inhibition of VEGF.
Collapse
Affiliation(s)
- Minghe Zhou
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhengbiao Zha
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi Zheng
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Youmin Pan
- Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Mei H, Li X. Cerebroprotective Role of Stigmasterol Against the Progression of Experimentally Induced Intracranial Aneurysms in Rats. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.25.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Mladenov M, Bogdanov J, Bogdanov B, Hadzi-Petrushev N, Kamkin A, Stojchevski R, Avtanski D. Efficacy of the monocarbonyl curcumin analog C66 in the reduction of diabetes-associated cardiovascular and kidney complications. Mol Med 2022; 28:129. [PMID: 36316651 PMCID: PMC9620630 DOI: 10.1186/s10020-022-00559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-β/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Jane Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Bogdan Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
7
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
9
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
10
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Carney S, Broekelmann T, Mecham R, Ramamurthi A. JNK2 Gene Silencing for Elastic Matrix Regenerative Repair. Tissue Eng Part A 2022; 28:239-253. [PMID: 34409851 PMCID: PMC8972024 DOI: 10.1089/ten.tea.2020.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elastic fibers do not naturally regenerate in many proteolytic disorders, such as in abdominal aortic aneurysms, and prevent restoration of tissue homeostasis. We have shown drug-based attenuation of the stress-activated protein kinase, JNK-2 to stimulate elastic matrix neoassembly and to attenuate cellular proteolytic activity. We now investigate if JNK2 gene knockdown with small interfering RNA (siRNA) provides greater specificity of action and improved regenerative/antiproteolytic outcomes in a proteolytic injury culture model of rat aneurysmal smooth muscle cells (EaRASMCs). A siRNA dose of 12.5 nM delivered with a transfection reagent significantly enhanced downstream elastic fiber assembly and maturation versus untreated EaRASMC cultures. The optimal siRNA dose was also delivered as a complex with a polymeric transfection vector, polyethyleneimine (PEI) in preparation for future in vivo delivery. Linear 25 kDa PEI-siRNA (5:1 molar ratio of amine to phosphate) and linear 40 kDa PEI-siRNA (2.5:1 ratio) were effective in downregulating the JNK2 gene, and significantly increasing expression of elastic fiber assembly proteins, and decreases in elastolytic matrix metalloprotease-2 versus treatment controls to significantly increase mature elastic fiber assembly. The current work has identified siRNA dosing and siRNA-PEI complexing conditions that are safe and efficient in stimulating processes contributing to improved elastic matrix neoassembly via JNK2 gene knockdown. The results represent a mechanistic basis of a broader therapeutic approach to reverse elastic matrix pathophysiology in tissue disorders involving aberrations of elastic matrix homeostasis, such as in aortic aneurysms. Impact statement The elastic matrix and elastic fibers are key components of the structural extracellular matrix of elastic tissues and are essential to their stretch and recoil and to maintain healthy cell phenotype. Regeneration and repair of elastic matrix is naturally poor and impaired and is an unresolved challenge in tissue engineering. In this work, we investigate a novel gene silencing approach based on inhibiting the JNK2 gene, which provides significant downstream benefits to elastic fiber assembly and maturation. Combined with novel delivery strategies such as nanoparticles, we expect our approach to effect in situ elastic matrix repair in the future.
Collapse
Affiliation(s)
- Sarah Carney
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tom Broekelmann
- Department of Cell Biology and Physiology, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Robert Mecham
- Department of Cell Biology and Physiology, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Address correspondence to: Anand Ramamurthi, PhD, FAHA, Department of Bioengineering, Lehigh University, 111 Research Drive, D-331, Bethlehem, PA 18902, USA
| |
Collapse
|
12
|
Sadraei MR, Tavalaee M, Forouzanfar M, Nasr-Esfahani MH. Effect of curcumin, and nano-curcumin on sperm function in varicocele rat model. Andrologia 2021; 54:e14282. [PMID: 34755901 DOI: 10.1111/and.14282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Varicocele is one of the most important causes of infertility in men which gradually leads to testicular dysfunction. Testicular heat stress-induced oxidative stress is considered the main cause of pathology in these individuals. In this study, the effects of curcumin and nano-curcumin, as natural antioxidants, were investigated on spermatogenesis and sperm function in varicocele-induced rats. Seventy Wistar rats were randomly divided into seven groups; sham, control, varicocele, varicocele + curcumin 50 mg, varicocele + curcumin 100 mg, varicocele + nano-curcumin 4 mg and varicocele + nano-curcumin 8 mg. After 2 months of antioxidant therapy, all the rats were sacrificed. The results demonstrated that the mean sperm concentration and motility were significantly lower while the mean of abnormal morphology, lipid peroxidation, intracytoplasmic ROS and DNA damage was significantly higher in varicocelised rats compared to control and sham groups (p < .05). Both doses of curcumin and also nano-curcumin were significantly effective in improving the aforementioned parameters except for abnormal sperm morphology, and motility where nano-curcumin (4 mg) was significantly more effective than other groups (p < .05). The results of the current study suggest the application of nano-curcumin is more preferable to curcumin in infertile individuals with varicocele.
Collapse
Affiliation(s)
- Mohamad Reza Sadraei
- Department of Biology, College of Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Forouzanfar
- Department of Biology, College of Science Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
13
|
Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021; 47:933-951. [PMID: 34388275 DOI: 10.1002/biof.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Basil Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
14
|
Xu T, Wang S, Li X, Li X, Qu K, Tong H, Zhang R, Bai S, Fan J. Lithium chloride represses abdominal aortic aneurysm via regulating GSK3β/SIRT1/NF-κB signaling pathway. Free Radic Biol Med 2021; 166:1-10. [PMID: 33588051 DOI: 10.1016/j.freeradbiomed.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Lithium chloride (LiCl), a pharmacological compound, was effective in reducing inflammation, but whether it can protect against abdominal aortic aneurysm (AAA) is largely unknown. This study is designed to investigate therapeutic effects of LiCl on AAA and the potential mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of LiCl or vehicle alone to study the protection effects of LiCl in vivo. Rat primary vascular smooth muscle cells (VSMCs) stimulated with tumor necrosis factor (TNF)-α served as an in vitro model. LiCl treatment prevented the development of AAA through inhibiting the inflammatory cells infiltration and inflammatory cytokines overproduction, as well as attenuating superoxide production and elastin degradation in aorta of AAA rats. Additionally, the downregulation of p-GSK3β(Ser9) and SIRT1, upregulation of NF-κB(p-65), MMP-2 and MMP-9 in AAA were abolished by LiCl treatment. In vitro by upregulating p-GSK3β(Ser9), LiCl significantly induced SIRT1 expression, along with inhibition of the NF-κB activation and decreased elastin level elicited in VSMCs by TNF-α stimulation. SIRT1 activator SRT1720 achieved similar repressive effects as LiCl on TNF-α-induced NF-κB activation and decreased elastin in VSMCs. Moreover, administration of LiCl also caused regression of established rats AAA. This study provided the first evidence that LiCl prevented the development of AAA through inhibiting inflammation, MMPs, and superoxide production, and facilitating the biosynthesis of elastin. The beneficial effect of LiCl may be mediated by regulation GSK3β/SIRT1/NF-κB cascade.
Collapse
Affiliation(s)
- Tong Xu
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Xiuquan Li
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Kaiyun Qu
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Ruijie Zhang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
15
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Xie S, Ma L, Guan H, Guan S, Wen L, Han C. Daphnetin suppresses experimental abdominal aortic aneurysms in mice via inhibition of aortic mural inflammation. Exp Ther Med 2020; 20:221. [PMID: 33193836 PMCID: PMC7646695 DOI: 10.3892/etm.2020.9351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Rupture of abdominal aortic aneurysm (AAA) is a devastating event that can be prevented by inhibiting the growth of small aneurysms. Therapeutic strategies targeting certain events that promote the development of AAA must be developed, in order to alter the course of AAA. Chronic inflammation of the aortic mural is a major characteristic of AAA and is related to AAA formation, development and rupture. Daphnetin (DAP) is a coumarin derivative with anti-inflammatory properties that is extracted from Daphne odora var. However, the effect of DAP on AAA development remains unclear. The present study investigated the effect of DAP on the formation and development of experimental AAAs and its potential underlying mechanisms. A mice AAA model was established by intra-aortic infusion of porcine pancreatic elastase (PPE), and mice were intraperitoneally injected with DAP immediately after PPE infusion. The maximum diameter of the abdominal aorta was measured by ultrasound system, and aortic mural changes were investigated by Elastica van Gieson (EVG) staining and immunohistochemical staining. The results demonstrated that DAP significantly suppressed PPE-induced AAA formation and attenuated the depletion of aortic medial elastin and smooth muscle cells in the media of the aorta. Furthermore, the density of mural macrophages, T cells and B cells were significantly attenuated in DAP-treated AAA mice. In addition, treatment with DAP resulted in a significant reduction in mural neovessels. These findings indicated that DAP may limit the formation and progression of experimental aneurysms by inhibiting mural inflammation and angiogenesis. These data confirmed the translational potential of DAP inclinical AAA inhibition strategies.
Collapse
Affiliation(s)
- Shiyun Xie
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, Shanxian, Shandong 274300, P.R. China
| | - Li Ma
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, Shanxian, Shandong 274300, P.R. China
| | - Hongliang Guan
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, Shanxian, Shandong 274300, P.R. China
| | - Su Guan
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, Shanxian, Shandong 274300, P.R. China
| | - Lijuan Wen
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, Shanxian, Shandong 274300, P.R. China
| | - Chanchan Han
- Department of Ultrasound, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
17
|
Quercetin Downregulates Cyclooxygenase-2 Expression and HIF-1 α/VEGF Signaling-Related Angiogenesis in a Mouse Model of Abdominal Aortic Aneurysm. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9485398. [PMID: 32908926 PMCID: PMC7463408 DOI: 10.1155/2020/9485398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Objective Abdominal aortic aneurysm (AAA) development has been characterized by increased expression of vascular endothelial growth factor (VEGF), which contributes to angiogenesis via cyclooxygenase-2 (COX-2). Quercetin, one of the most common and well-researched flavonoids and abundant in vegetables and fruits, has beneficial effects in inhibiting angiogenesis. This study investigated the antiangiogenic effects of quercetin on experimental aneurysms. Methods We utilized the in vivo AAA mouse model induced by the periaortic application of CaCl2 to examine the effectiveness of quercetin in blocking angiogenesis. Quercetin was administered at 60 mg/kg once daily on the day of the AAA induction and then continued for 6 weeks. Celecoxib, a selective COX-2 inhibitor, was used as the positive control. Results Our results demonstrated that quercetin significantly attenuated aneurysm growth in AAA mice and medial neovascularization. Accordingly, quercetin decreased the expression of proangiogenic mediators, including VEGF-A, intercellular adhesion molecule-1, vascular cell adhesion molecule 1, and vascular endothelial cadherin. Quercetin treatment also inhibited the expression of COX-2 and hypoxia-inducible factor 1α (HIF-1α). It was also found that quercetin-3-glucuronide, a major quercetin metabolite, downregulated the expression of COX-2, HIF-1α, VEGF-A, and matrix metalloproteinase activities in aortic vascular smooth muscle cells isolated from AAA mice. Conclusion Quercetin attenuates neovascularization during AAA growth, and this effect is mediated via the inhibition of COX-2, which decreases HIF-1α/VEGF signaling-related angiogenesis.
Collapse
|
18
|
Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, Tewari D, Xu S, Nabavi SM. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv 2020; 38:107343. [DOI: 10.1016/j.biotechadv.2019.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
19
|
Abstract
Mutations in extracellular matrix and smooth muscle cell contractile proteins predispose to thoracic aortic aneurysms in Marfan syndrome (MFS) and related disorders. These genetic alterations lead to a compromised extracellular matrix-smooth muscle cell contractile unit. The abnormal aortic tissue responds with defective mechanosensing under hemodynamic stress. Aberrant mechanosensing is associated with transforming growth factor-beta (TGF-β) hyperactivity, enhanced angiotensin-II (Ang-II) signaling, and perturbation of other cellular signaling pathways. The downstream consequences include enhanced proteolytic activity, expression of inflammatory cytokines and chemokines, infiltration of inflammatory cells in the aortic wall, vascular smooth muscle cell apoptosis, and medial degeneration. Mouse models highlight aortic inflammation as a contributing factor in the development of aortic aneurysms. Anti-inflammatory drugs and antioxidants can reduce aortic oxidative stress that prevents aggravation of aortic disease in MFS mice. Targeting TGF-β and Ang-II downstream signaling pathways such as ERK1/2, mTOR, PI3/Akt, P38/MAPK, and Rho kinase signaling attenuates disease pathogenesis. Aortic extracellular matrix degradation and medial degeneration were reduced upon inhibition of inflammatory cytokines and matrix metalloproteinases, but the latter lack specificity. Treating inflammation associated with aortic aneurysms in MFS and related disorders could prove to be beneficial in limiting disease pathogenesis.
Collapse
|
20
|
Alhusaini AM, Faddah LM, Hasan IH, Jarallah SJ, Alghamdi SH, Alhadab NM, Badr A, Elorabi N, Zakaria E, Al-anazi A. Vitamin C and Turmeric Attenuate Bax and Bcl-2 Proteins' Expressions and DNA Damage in Lead Acetate-Induced Liver Injury. Dose Response 2019; 17:1559325819885782. [PMID: 31798354 PMCID: PMC6864043 DOI: 10.1177/1559325819885782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lead is a common environmental and occupational pollutant which induced multiorgans dysfunction. The present study was designed to investigate the hepatoprotective effects of turmeric (TUR) and/or vitamin C (Vit-C) alone or together against lead acetate toxicity and to explore novel molecular pathways. METHOD Acute hepatotoxicity was induced by lead acetate (100 mg/kg/day, i.p.) in male rats, and the effect of TUR (200 mg/kg/day, orally) and/or Vit-C (250 mg/kg/day, orally) along with lead acetate for 7 days was studied. RESULTS Lead acetate increased serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, hepatic lipid peroxidation and nitric oxide; while, hepatic superoxide dismutase and glutathione activities were downregulated. Hepatic Bcl-2-associated X (Bax) and B-cell lymphoma-2 (Bcl-2) proteins expressions were altered and hepatic DNA damaged was increased as well. Liver/body weight ratio was decreased. Hematoxylin and eosin demonstrated that lead acetate induced focal areas of massive hepatic degeneration of the hepatocytes. Treatment with both antioxidants ameliorated all the altered parameters and induced marked improvement of liver architecture. CONCLUSION The combination of TUR and Vit-C has shown the most protective effects against lead acetate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Laila M. Faddah
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Somayah J. Jarallah
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Shrouq H. Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Norah M. Alhadab
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, AIN
Shams University, Egypt
| | - Najlaa Elorabi
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez
Canal University, Ismailia, Egypt
| | - Enas Zakaria
- Department of Pharmaceutics Department, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-anazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King
Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
22
|
Novel Curcumin C66 That Protects Diabetes-Induced Aortic Damage Was Associated with Suppressing JNK2 and Upregulating Nrf2 Expression and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5783239. [PMID: 30622669 PMCID: PMC6304198 DOI: 10.1155/2018/5783239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/23/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related cardiovascular diseases are leading causes of the mortality worldwide. Our previous study has explored the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of the aorta. In the present study, we sought to reveal the underlying protective mechanisms of C66. Diabetes was induced in male WT and JNK2−/− mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched nondiabetic mice were randomly treated with either vehicle (WT, WT DM, JNK2−/−, and JNK2−/−DM) or C66 (WT + C66, WT DM + C66, JNK2−/− + C66, and JNK2−/−DM + C66) for three months. Aortic oxidative stress, cell apoptosis, inflammatory changes, fibrosis, and Nrf2 expression and function were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. The results suggested that either C66 treatment or JNK2 deletion can reverse diabetes-induced aortic oxidative stress, cell apoptosis, inflammation, and fibrosis. Nrf2 was also found to be activated either by C66 or JNK2 deletion. However, C66 had no extra effect on diabetic aortic damage or Nrf2 activation without JNK2. These results suggest that diabetes-induced pathological changes in the aorta can be protected by C66 mainly via inhibition of JNK2 and accompanied by the upregulation of Nrf2 expression and function.
Collapse
|
23
|
Liu J, Wang Q, Yang S, Huang J, Feng X, Peng J, Lin Z, Liu W, Tao J, Chen L. Electroacupuncture Inhibits Apoptosis of Peri-Ischemic Regions via Modulating p38, Extracellular Signal-Regulated Kinase (ERK1/2), and c-Jun N Terminal Kinases (JNK) in Cerebral Ischemia-Reperfusion-Injured Rats. Med Sci Monit 2018; 24:4395-4404. [PMID: 29943755 PMCID: PMC6048997 DOI: 10.12659/msm.908473] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/23/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Previous studies suggested that inhibition of apoptosis prevents the dysfunction of ischemia-reperfusion injury. In the pathogenesis of ischemia-reperfusion injury, JNK/ERK1/2 and p38 play an essential role in regulation of cell apoptosis. Electroacupuncture (EA), a form of acupuncture, has demonstrated superiority in preventing ischemia-reperfusion injury, but the underlying mechanism is unclear. In the present study, we explored the effects of electroacupuncture at Shenting (GV24) and Baihui (GV20) acupoints on focal cerebral ischemia-reperfusion (MCAO) rats, and explored whether JNK/ERK1/2- and p38-mediated cell apoptosis are involved. MATERIAL AND METHODS The rats were divided into a sham operation control group, an ischemia group, and an electroacupuncture group with acupuncture applied for 10 days (30 min per day). TTC staining was used to calculate the ischemic brain volume. TUNEL staining and transmission electron microscopy were used to detect cell apoptosis. Western blot analysis and Bio-Plex were used to detect JNK, p38, ERK1/2, Bcl-2, and Bax protein expression. RESULTS We found that electroacupuncture at day 10 significantly reduced cerebral infarction. In addition, electroacupuncture suppressed activation of JNK and p38, while enhancing the activation of ERK1/2 in the peri-ischemic regions. Consequently, the effect of electroacupuncture on these pathways resulted in the inhibition of apoptosis, which was demonstrated by TUNEL and transmission electron microscopy. We found that electroacupuncture upregulated the anti-apoptotic Bcl-2/Bax ratio in peri-ischemic regions. CONCLUSIONS Our findings suggest that inhibition of cell apoptosis via regulating multiple signaling pathways might be a mechanism whereby electroacupuncture has a positive therapeutic effect on post-stroke impairment.
Collapse
Affiliation(s)
- Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Qin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Shanli Yang
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Xiaodong Feng
- First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Zhengkun Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Exercise Rehabilitation, Fuzhou, Fujian, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Exercise Rehabilitation, Fuzhou, Fujian, P.R. China
| |
Collapse
|
24
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
25
|
Bo LJ, Miao Z, Wang ZF, Zhang KZ, Gao Z. A study on effect of curcumin on anticerebral aneurysm in the male albino rats. Brain Behav 2017; 7:e00729. [PMID: 28948066 PMCID: PMC5607535 DOI: 10.1002/brb3.729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION This study investigated the curcumin effect on the cerebral aneurysm. Apoptosis is known to play a fundamental role in the pathogenesis of a cerebral aneurysm. Therefore, we investigated the effect of curcumin on apoptosis of smooth muscle cells of a cerebral aneurysm-induced male albino rats. METHODS In this study, the cerebral aneurysm has been induced in the male albino rats by the CaCl2 administration. After cerebral aneurysm induction, smooth muscle cells were isolated. Cells were treated with curcumin (25 & 50 mg/kg bwt) for 48 hr. RESULTS Curcumin reduced altered mitochondrial morphology significantly, evidenced through fluorescence and confocal study. Curcumin treatment reduced the expression of p53, caspase-3, and bax/bxl-2 ratio significantly. Curcumin treatment also reversed the cellular architecture of smooth muscle cell wall significantly. Fluorescence and the confocal study confirmed the reduction in apoptosis in a cerebral aneurysm-induced smooth muscle cells of male albino rats. CONCLUSION Taking all these data together, it may suggest that the curcumin could significantly reduce the CaCl2-induced cerebral aneurysm through the inhibition of cell apoptosis in the cells.
Collapse
Affiliation(s)
- Li-Juan Bo
- Department of Infectious Disease China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhuang Miao
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhan-Feng Wang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Kai-Zhi Zhang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zheng Gao
- Department of Neurosurgery People's Hospital of Dandong City Dandong China
| |
Collapse
|
26
|
Li X, Fang Q, Tian X, Wang X, Ao Q, Hou W, Tong H, Fan J, Bai S. Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol Med Rep 2017; 16:4455-4462. [PMID: 28791384 PMCID: PMC5647005 DOI: 10.3892/mmr.2017.7169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is an important process in the pathogenesis of aortic aneurysm. The aim of the present study was to investigate the angiogenic balance and the expression of vascular endothelial growth factor (VEGF) in thoracic aortic aneurysm (TAA). A previous study demonstrated that curcumin exerts a marked effect on aortic aneurysm development. Therefore, the present study determined whether curcumin is able to modulate angiogenesis and inflammatory signaling in TAA by collecting human TAA samples and establishing a rat TAA model using periaortic application of CaCl2. TAA rats were treated with curcumin or 1% carboxymethyl cellulose and were sacrificed 4 weeks after the operation. All tissue specimens were analyzed by histological staining, immunohistochemistry and western blotting. Human TAA samples exhibited increased neovascularization and VEGF expression when compared with normal aortic walls. In rat tissues, treatment with curcumin resulted in reduced aneurysm size and restored the wavy structure of the elastic lamellae. In addition, curcumin decreased neovascularization and the expression of VEGF. Immunohistochemical analysis indicated that curcumin significantly inhibited infiltration of cluster of differentiation (CD)3+ and CD68+ cells in TAA. Furthermore, curcumin treatment decreased the expression of vascular cell adhesion molecule‑1, intracellular adhesion molecule‑1, monocyte chemoattractant protein‑1 and tumor necrosis factor‑α. Collectively, the results demonstrated that angiogenesis and VEGF expression were increased in the aortic wall in TAA. Treatment with curcumin inhibited TAA development in rats, which was associated with suppression of VEGF expression. In addition, curcumin attenuated inflammatory cell infiltration and suppressed inflammatory factor expression in the periaortic tissue of TAA.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cell Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qin Fang
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qiang Ao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Weijian Hou
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
27
|
Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin Exp Hypertens 2017; 39:711-717. [PMID: 28678631 DOI: 10.1080/10641963.2017.1313854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saibin Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Qian Ye
- Department of Cardiology, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Junwei Tu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Mingying Zhang
- Department of Cardiology, Wenzhou Municipal Central Hospital, Wenzhou, China
| | - Bin Ji
- Department of Anesthesiology, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Rabkin SW. The Role Matrix Metalloproteinases in the Production of Aortic Aneurysm. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:239-265. [PMID: 28413030 DOI: 10.1016/bs.pmbts.2017.02.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of aortic aneurysm because the histology of thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) is characterized by the loss of smooth muscle cells in the aortic media and the destruction of extracellular matrix (ECM). Furthermore, AAA have evidence of inflammation and the cellular elements involved in inflammation such as macrophages can produce and/or activate MMPs This chapter focuses on human aortic aneurysm that are not due to specific known genetic causes because this type of aneurysm is the more common type. This chapter will also focus on MMP protein expression rather than on genetic data which may not necessarily translate to increased MMP protein expression. There are supporting data that certain MMPs are increased in the aortic wall. For TAA, it is most notably MMP-1, -9, -12, and -14 and MMP-2 when a bicuspid aortic valve is present. For AAA, it is MMP-1, -2, -3, -9, -12, and -13. The data are weaker or insufficient for the other MMPs. Several studies of gene polymorphisms support MMP-9 for TAA and MMP-3 for AAA as potentially important factors. The signaling pathways in the aorta that can lead to MMP activation include JNK, JAK/stat, osteopontin, and AMP-activated protein kinase alpha2. Substrates in the human vasculature for MMP-3, MMP-9, or MMP-14 include collagen, elastin, ECM glycoprotein, and proteoglycans. Confirmed and potential substrates for MMPs, maintain aortic size and function so that a reduction in their content relative to other components of the aortic wall may produce a failure to maintain aortic size leading to dilatation and aneurysm formation.
Collapse
|
29
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
30
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
31
|
Yin L, Zheng L, Xu L, Dong D, Han X, Qi Y, Zhao Y, Xu Y, Peng J. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:41. [PMID: 25879470 PMCID: PMC4354738 DOI: 10.1186/s12906-015-0579-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/21/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. METHODS In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targets was applied to predict the related biological activities, signal pathways and processes networks of the compound by using MetaCore platform. After that, some most relevant regulating networks were considered, which included the nodes and relevant pathways of dioscin. RESULTS 71 potential targets of dioscin from humans, 7 from rats and 8 from mice were screened, and the prediction results showed that the most likely targets of dioscin were cyclin A2, calmodulin, hemoglobin subunit beta, DNA topoisomerase I, DNA polymerase lambda, nitric oxide synthase and UDP-N-acetylhexosamine pyrophosphorylase, etc. Many diseases including experimental autoimmune encephalomyelitis of human, temporal lobe epilepsy of rat and ankylosing spondylitis of mouse, may be inhibited by dioscin through regulating immune response alternative complement pathway, G-protein signaling RhoB regulation pathway and immune response antiviral actions of interferons, etc. The most relevant networks (5 from human, 3 from rat and 5 from mouse) indicated that dioscin may be a TOP1 inhibitor, which can treat cancer though the cell cycle- transition and termination of DNA replication pathway. Dioscin can down regulate EGFR and EGF to inhibit cancer, and also has anti-inflammation activity by regulating JNK signaling pathway. CONCLUSIONS The predictions of the possible targets, biological activities, signal pathways and relevant regulating networks of dioscin provide valuable information to guide further investigation of dioscin on pharmacodynamics and molecular mechanisms, which also suggests a practical and effective method for studies on the mechanism of other chemicals.
Collapse
Affiliation(s)
- Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Lingli Zheng
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116022, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Deshi Dong
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116022, China.
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshun South Road, Dalian, 116044, China.
- Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
32
|
Curcumin Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm by Inhibition of Inflammatory Response and ERK Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:270930. [PMID: 25431606 PMCID: PMC4241315 DOI: 10.1155/2014/270930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022]
Abstract
Background and Objectives. Curcumin has long been used to treat age-related diseases, such as atherosclerosis and coronary heart disease. In this study, we explored the effects of curcumin on the development of abdominal aortic aneurysm (AAA). Methods. ApoE−/− mice were randomly divided into 3 groups: AngII group, AngII + curcumin (AngII + Cur) group (100 mg/kg/d), and the control group. Miniosmotic pumps were implanted subcutaneously in ApoE−/− mice to deliver AngII for 28 days. After 4-week treatment, abdominal aortas with AAA were obtained for H&E staining, immunohistochemistry, and Western blotting. Results. The results showed that curcumin treatment significantly decreased the occurrence of AAA. The levels of macrophage infiltration, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factors-α (TNF-α) were significantly lower in AngII + Cur group than those in AngII group (all P < 0.01). The level of superoxide dismutase (SOD) was significantly higher in AngII + Cur group than those in AngII group (P < 0.01). The ERK1/2 phosphorylation in AngII + Cur group was significantly lower than that in AngII group (P < 0.01). Conclusions. These results suggested that curcumin can inhibit the AngII-induced AAA in ApoE−/− mice, whose mechanisms include the curcumin anti-inflammation, antioxidative stress, and downregulation of ERK signaling pathway.
Collapse
|
33
|
Wang Y, Zhou S, Sun W, McClung K, Pan Y, Liang G, Tan Y, Zhao Y, Liu Q, Sun J, Cai L. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am J Physiol Endocrinol Metab 2014; 306:E1239-E1247. [PMID: 24714399 DOI: 10.1152/ajpendo.00629.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of diabetic cardiomyopathy is attributed to diabetic oxidative stress, which may be related to the mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK) activation. The present study tested a hypothesis whether the curcumin analog C66 [(2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene) cyclohexanone] as a potent antioxidant can protect diabetes-induced cardiac functional and pathogenic changes via inhibition of JNK function. Diabetes was induced with a single intraperitoneal injection of streptozotocin in male C57BL/6 mice. Diabetic and age-matched control mice were randomly divided into three groups, each group treated with C66, JNK inhibitor (JNKi, SP600125), or vehicle (1% CMC-Na solution) by gavage at 5 mg/kg every other day for 3 mo. Neither C66 nor JNKi impacted diabetic hyperglycemia and inhibition of body-weight gain, but both significantly prevented diabetes-induced JNK phosphorylation in the heart. Compared with basal line, cardiac function was significantly decreased in diabetic mice at 3 mo of diabetes but not in C66- or JNKi-treated diabetic mice. Cardiac fibrosis, oxidative damage, endoplasmic reticulum stress, and cell apoptosis, examined by Sirius red staining, Western blot, and thiobarbituric acid assay, were also significantly increased in diabetic mice, all which were prevented by C66 or JNKi treatment under diabetic conditions. Cardiac metallothionein expression was significantly decreased in diabetic mice but was almost normal in C66- or JNKi-treated diabetic mice. These results suggest that, like JNKi, C66 is able to prevent diabetic upregulation of JNK function, resulting in a prevention of diabetes-induced cardiac fibrosis, oxidative stress, endoplasmic reticulum stress, and cell death, along with a preservation of cardiac metallothionein expression.
Collapse
Affiliation(s)
- Yonggang Wang
- The First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Shanshan Zhou
- The First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Wanqing Sun
- The First Hospital of Jilin University, Changchun, China
| | - Kristen McClung
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Yong Pan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; and
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Quan Liu
- The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
34
|
Liu Y, Wang Y, Miao X, Zhou S, Tan Y, Liang G, Zheng Y, Liu Q, Sun J, Cai L. Inhibition of JNK by compound C66 prevents pathological changes of the aorta in STZ-induced diabetes. J Cell Mol Med 2014; 18:1203-1212. [PMID: 24720784 PMCID: PMC4508159 DOI: 10.1111/jcmm.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/28/2014] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases as leading causes of the mortality world-wide are related to diabetes. The present study was to explore the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of aortas. Diabetes was induced in male C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched non-diabetic mice were randomly treated with either vehicle (Control and Diabetes), C66 (C66 and Diabetes/C66) or c-Jun N-terminal kinase (JNK) inhibitor (sp600125, JNKi and Diabetes/JNKi). All three treatments were given by gavage at 5 mg/kg every other day for 3 months. Aortic inflammation, oxidative stress, fibrosis, cell apoptosis and proliferation, Nrf2 expression and transcription were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. Diabetes increased aortic wall thickness and structural derangement as well as JNK phosphorylation, all of which were attenuated by C66 treatment as JNKi did. Inhibition of JNK phosphorylation by C66 and JNKi also significantly prevented diabetes-induced increases in inflammation, oxidative and nitrative stress, apoptosis, cell proliferation and fibrosis. Furthermore, inhibition of JNK phosphorylation by C66 and JNKi significantly increased aortic Nrf2 expression and transcription function (e.g. increased expression of Nrf2-downstream genes) in normal and diabetic conditions. These results suggest that diabetes-induced pathological changes in the aorta can be protected by C66 via inhibition of JNK function, accompanied by the up-regulation of Nrf2 expression and function.
Collapse
Affiliation(s)
- Yucheng Liu
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
| | - Yonggang Wang
- The First Hospital of Jilin UniversityChangchun, China
| | - Xiao Miao
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Second Hospital of Jilin UniversityChangchun, China
| | - Shanshan Zhou
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The First Hospital of Jilin UniversityChangchun, China
| | - Yi Tan
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| | - Guang Liang
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| | - Yang Zheng
- The First Hospital of Jilin UniversityChangchun, China
| | - Quan Liu
- The First Hospital of Jilin UniversityChangchun, China
| | - Jian Sun
- The First Hospital of Jilin UniversityChangchun, China
| | - Lu Cai
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
35
|
Sahebkar A. Are Curcuminoids Effective C-Reactive Protein-Lowering Agents in Clinical Practice? Evidence from a Meta-Analysis. Phytother Res 2014; 28:633-642. [DOI: 10.1002/ptr.5045] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/02/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
36
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
37
|
Zikaki K, Aggeli IK, Gaitanaki C, Beis I. Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis 2014; 19:958-74. [DOI: 10.1007/s10495-014-0979-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Chen J, Wang FL, Chen WD. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep 2014; 41:4583-94. [PMID: 24604727 DOI: 10.1007/s11033-014-3329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
A hallmark of cancer is resistance to apoptosis, with both the loss of proapoptotic signals and the gain of anti-apoptotic mechanisms contributing to tumorigenesis. As inducing apoptosis in malignant cells is one of the most challenging tasks regarding cancer, researchers increasingly focus on natural products to regulate apoptotic signaling pathways. Curcumin, a polyphenolic derivative of turmeric, is a natural compound derived from Curcuma longa, has attracted great interest in the research of cancer during the last half century. Extensive studies revealed that curcumin has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis in cancer cells either alone or in combination with chemotherapeutic agents or radiation. The underlying action mechanisms of curcumin are diverse and has not been elucidated so far. By regulating multiple important cellular signalling pathways including NF-κB, TRAIL, PI3 K/Akt, JAK/STAT, Notch-1, JNK, etc., curcumin are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells, thereby inhibiting tumor progression. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin induced apoptosis in cancer cells via cellular transduction pathways and provides an in depth assessment of its pharmacological activity in the management of tumor progression.
Collapse
Affiliation(s)
- Jin Chen
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, People's Republic of China,
| | | | | |
Collapse
|
39
|
Marinković G, Hibender S, Hoogenboezem M, van Broekhoven A, Girigorie AF, Bleeker N, Hamers AA, Stap J, van Buul JD, de Vries CJ, de Waard V. Immunosuppressive Drug Azathioprine Reduces Aneurysm Progression Through Inhibition of Rac1 and c-Jun-Terminal-N-Kinase in Endothelial Cells. Arterioscler Thromb Vasc Biol 2013; 33:2380-8. [DOI: 10.1161/atvbaha.113.301394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Goran Marinković
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Stijntje Hibender
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Amber van Broekhoven
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arginell F. Girigorie
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Natascha Bleeker
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anouk A.J. Hamers
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jan Stap
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D. van Buul
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Carlie J.M. de Vries
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Vivian de Waard
- From the Department of Medical Biochemistry (G.M., S.H., A.v.B., A.F.G., N.B., A.A.J.H., C.J.M.d.V., V.d.W.), Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory (M.H., J.D.v.B.), and Department of Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|