1
|
Leite LB, Soares LL, Guimarães-Ervilha LO, Costa SFF, Generoso SCDL, Xavier MAM, Iasbik-Lima T, de Oliveira LL, Della Lucia CM, Bianchi SE, Bassani VL, Herter FG, Turck P, da Rosa Araujo AS, Forte P, Reis ECC, Machado-Neves M, José Natali A. Blueberry Extract and Resistance Training Prevent Left Ventricular Redox Dysregulation and Pathological Remodeling in Experimental Severe Pulmonary Arterial Hypertension. Nutrients 2025; 17:1145. [PMID: 40218902 PMCID: PMC11990098 DOI: 10.3390/nu17071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To investigate whether the regular administration of blueberry extract and low-intensity resistance exercise training (RT), either alone or in combination, during the development of monocrotaline (MCT)-induced severe pulmonary arterial hypertension (PAH) in rats protect the left ventricle (LV) from redox dysregulation and pathological remodeling. METHODS Groups of seven male Wistar rats were formed for the experiment: sedentary control; sedentary hypertensive; sedentary hypertensive blueberry; exercise hypertensive; and exercise hypertensive blueberry. PAH was experimentally induced through a single intraperitoneal administration of MCT at a dose of 60 mg/kg. One day after injection, the blueberry groups started receiving a daily dose of blueberry extract (100 mg/kg) by gavage, while the exercise groups initiated a three-week program of RT (ladder climbing; 15 climbs carrying 60% of maximum load; one session/day; 5 times/week). Echocardiographic evaluations were conducted 23 days after injection, and the rats were euthanized the next day to harvest LV tissue. RESULTS Separately, blueberry extract and RT mitigated augments in pulmonary artery resistance, LV tissue redox dysregulation (i.e., increased PC levels) and detrimental remodeling (i.e., reduced inflammation), and reductions in ejection fraction (EF) and fractional shortening (FS) caused by PAH. The combination of treatments prevented reductions in EF and FS, along with the development of a D-shaped LV. CONCLUSIONS blueberry extract and moderate-intensity resistance training administered during the development of MCT-induced severe PAH in rats prevented LV redox dysregulation and pathological remodeling, thereby preserving its function.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Leôncio Lopes Soares
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Luiz Otávio Guimarães-Ervilha
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Sebastião Felipe Ferreira Costa
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Sara Caco dos Lúcio Generoso
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| | - Mirielly Alexia Miranda Xavier
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Thainá Iasbik-Lima
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Leandro Licursi de Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Ceres Mattos Della Lucia
- Laboratory of Vitamin Analysis, Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Sara Elis Bianchi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (S.E.B.); (V.L.B.)
| | - Valquíria Linck Bassani
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (S.E.B.); (V.L.B.)
| | | | - Patrick Turck
- Department of Physiology, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (P.T.); (A.S.d.R.A.)
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (P.T.); (A.S.d.R.A.)
| | - Pedro Forte
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- CI-ISCE, ISCE Douro, 4560-547 Penafiel, Portugal
- Research Center for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | | | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.O.G.-E.); (M.A.M.X.); (T.I.-L.); (L.L.d.O.); (M.M.-N.)
| | - Antônio José Natali
- Exercise Biology Laboratory, Department of Physical Education, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (L.L.S.); (S.F.F.C.); (S.C.d.L.G.); (A.J.N.)
| |
Collapse
|
2
|
Leite LB, Soares LL, Portes AMO, da Silva BAF, Dias TR, Soares TI, Assis MQ, Guimarães-Ervilha LO, Carneiro-Júnior MA, Forte P, Machado-Neves M, Reis ECC, Natali AJ. Combined exercise hinders the progression of pulmonary and right heart harmful remodeling in monocrotaline-induced pulmonary arterial hypertension. J Appl Physiol (1985) 2025; 138:182-194. [PMID: 39611819 DOI: 10.1152/japplphysiol.00379.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
The aim of this study was to test whether combined physical exercise training of moderate intensity executed during the development of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) hinders the progression of pulmonary and right heart harmful functional and structural remodeling in rats. Wistar rats were injected with MCT (60 mg/kg) and after 24 h were exposed to a combined exercise training program: aerobic exercise (treadmill running-60 min/day; 60% of maximum running speed); and resistance exercise (vertical ladder climbing-15 climbs; 60% of maximum carrying load), on alternate days, 5 days/wk, for ∼3 wk. After euthanasia, the lung and right ventricle (RV) were excised and processed for histological, single myocyte, and biochemical analyses. Combined exercise increased the tolerance to physical effort (time until fatigue and relative maximum load) and prevented increases in pulmonary artery resistance (acceleration time (TA)/ejection time (TE)] and reductions in RV function [tricuspid annular plane systolic excursion (TAPSE)]. Moreover, in myocytes isolated from the RV, combined exercise preserved contraction amplitude, as well as contraction and relaxation velocities, and inhibited reductions in the amplitude and maximum speeds to peak and to decay of the intracellular Ca2+ transient. Furthermore, combined exercise avoided RV (RV weight, cardiomyocyte, extracellular matrix, collagen, inflammatory infiltrate, and extracellular matrix) and lung (pulmonary alveoli and alveolar septum) harmful structural remodeling. In addition, combined exercise restricted RV [nitric oxide (NO) and carbonyl protein (CP)] and lung [catalase (CAT), glutathione S-transferase (GST), and NO] oxidative stress. In conclusion, the applied combined exercise regime hinders the progression of pulmonary and right heart functional and structural harmful remodeling in rats with MCT-induced PAH.NEW & NOTEWORTHY This study reveals that combined exercise improves tolerance to physical effort, prevents increases in pulmonary artery resistance, and conserves the right heart function during the progression of pulmonary arterial hypertension. Our analyses show that combined exercise hinders harmful right ventricular and lung structural remodeling and oxidative stress, which reflects in the maintenance of right ventricular myocytes' contractile function by preserving the intracellular calcium cycling. An attenuated progression of the disease impacts positively on its prognosis.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Taís Rodrigues Dias
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Thayana Inácia Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Mirian Quintão Assis
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Pedro Forte
- Research Center for Physical Activity and Wellbeing (Livewell), Polytechnic Institute of Bragança, Bragança, Portugal
- CI-ISCE, Higher Instituto of Educational Sciences of the Douro, Penafiel, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, Penafiel, Portugal
| | - Mariana Machado-Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
3
|
Chi B, Zhang M, Sun L, Liu H, Tian Z. Study on the hypotensive effect and mechanism of hawthorn ( Crataegus pinnatifida) fruits and hyperoside in spontaneously hypertensive rats. Food Funct 2024; 15:5627-5640. [PMID: 38722076 DOI: 10.1039/d3fo02641h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hawthorn fruits have a sweet and sour taste, besides having beneficial therapeutic effects on hyperlipidemia, hypertension, and coronary heart disease, making them widely used in food and clinical medicine. However, their hypotensive effects and potential mechanisms of anti-hypertension still need to be elucidated. This study aims to explore the antihypertensive effect of hawthorn and its monomer hyperoside on spontaneously hypertensive rats through pharmacodynamics, serum metabolomics, and in vivo mechanism studies. After 7 weeks of intervention with hawthorn extract and hyperoside, the blood pressure was significantly reduced. Aortic vascular staining results showed that the injury was significantly improved after intervention with hawthorn extract and hyperoside. According to the serum metabolomics study, the main metabolic pathway regulating blood pressure in hawthorn extract and hyperoside groups was the primary bile acid biosynthesis pathway. Quantitative experiments confirmed that the level of bile acid in the model group was significantly different from that in the normal group, while that in the hawthorn group and the hyperoside group was close to that in the normal group. Based on the prediction of bile acid-hypertension related targets and the literature, nine genes involved in bile acid metabolism and inflammatory pathways were selected for further study. The FXR, TGR5, ET-1, NOS3, Akt1, TNF-α, Ptgs2, ACE2 and Kdr mRNA expression levels in the hawthorn extract and hyperoside groups were significantly different from those in the model groups. In summary, hawthorn extract and hyperoside have a hypotensive effect on spontaneously hypertensive rats through bile acid and inflammation related targets. Hence, hawthorn extract has the potential to become a functional food or an alternative therapy for hypertension.
Collapse
Affiliation(s)
- Bingqing Chi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Meng Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Luping Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hongyan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhenhua Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Battisti MA, Constantino L, Argenta DF, Reginatto FH, Pizzol FD, Caon T, Campos AM. Nanoemulsions and nanocapsules loaded with Melaleuca alternifolia essential oil for sepsis treatment. Drug Deliv Transl Res 2024; 14:1239-1252. [PMID: 38227165 DOI: 10.1007/s13346-023-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 01/17/2024]
Abstract
Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.
Collapse
Affiliation(s)
- Mariana Alves Battisti
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Larissa Constantino
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Débora Fretes Argenta
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Felipe Dal Pizzol
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of South Santa Catarina, Criciúma, Brazil
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Angela Machado Campos
- Postgraduate Program in Pharmacy (PGFAR), Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Carraro CC, Turck P, Bahr A, Donatti L, Corssac G, Lacerda D, da Rosa Araujo AS, de Castro AL, Koester L, Belló-Klein A. Effect of free and nanoemulsified β-caryophyllene on monocrotaline-induced pulmonary arterial hypertension. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119704. [PMID: 38462075 DOI: 10.1016/j.bbamcr.2024.119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as β-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified β-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + β-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with β-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with β-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified β-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both β-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, β-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.
Collapse
Affiliation(s)
| | - Patrick Turck
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Alan Bahr
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Luiza Donatti
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Giana Corssac
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Jiang G, Shi LF, Li LJ, Duan XJ, Zheng ZF. Activation of the p62-Keap1-Nrf2 pathway improves pulmonary arterial hypertension in MCT-induced rats by inhibiting autophagy. FASEB J 2024; 38:e23452. [PMID: 38308640 DOI: 10.1096/fj.202301563r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Autophagy is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We aimed to investigate whether the p62-Keap1-Nrf2 pathway affects the development of PAH by mediating autophagy. A PAH rat model was established using monocrotaline (MCT). Pulmonary artery smooth muscle cells (PASMCs) were extracted, and the changes in proliferation, migration, autophagy, and oxidative stress were analyzed following overexpression or knockdown of p62. The impact of p62 on the symptoms of PAH rats was assessed by the injection of an adenovirus overexpressing p62. We found that the knockdown of p62 increased the proliferation and migration of PASMCs, elevating the oxidative stress of PASMCs and upregulating gene expression of NADPH oxidases. Co-IP assay results demonstrated that p62 interacted with Keap1. p62 knockdown enhanced Keap1 protein stability and Nrf2 ubiquitination. LC3II/I and ATG5 were expressed more often when p62 was knocked down. Treating with an inhibitor of autophagy reversed the impact of p62 knockdown on PASMCs. Nrf2 inhibitor treatment reduced the expression of Nrf2 and p62, while increasing the expression of Keap1, LC3II/I, and ATG5 in PASMCs. However, overexpressing p62 diminished mRVP, SPAP, and Fulton index in PAH rats and attenuated pulmonary vascular wall thickening. Overexpression of p62 also decreased the expression of Keap1, LC3II/I, and ATG5 and increased the nuclear expression of Nrf2 in PAH rats. Importantly, overexpression of p62 reduced oxidative stress and the NADPH oxidase expression in PAH rats. Overall, activation of the p62-Keap1-Nrf2 positive feedback signaling axis reduces the proliferation and migration of PASMCs and alleviates PAH by inhibiting autophagy and oxidative stress.
Collapse
Affiliation(s)
- Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Li-Fang Shi
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Ling-Jiao Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiao-Ju Duan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Zhao-Fen Zheng
- Department of Cardiovascular Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
7
|
Coutinho-Wolino KS, Melo MFS, Mota JC, Mafra D, Guimarães JT, Stockler-Pinto MB. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr Rev 2024; 82:248-261. [PMID: 37164634 DOI: 10.1093/nutrit/nuad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Manuela F S Melo
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Jessica C Mota
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Denise Mafra
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
8
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Lovell ST, Krishnaswamy K, Lin CH, Meier N, Revord RS, Thomas AL. Nuts and berries from agroforestry systems in temperate regions can form the foundation for a healthier human diet and improved outcomes from diet-related diseases. AGROFORESTRY SYSTEMS 2023:1-14. [PMID: 37363637 PMCID: PMC10249563 DOI: 10.1007/s10457-023-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Agroforestry is a specific type of agroecosystem that includes trees and shrubs with the potential to yield nutrient-rich products that contribute to human health. This paper reviews the literature on the human health benefits of tree nut and berry species commonly associated with agroforestry systems of the United States, considering their potential for preventing certain diet-related diseases. Emphasis is placed on those diseases that are most closely associated with poor outcomes from COVID-19, as they are indicators of confounding health prognoses. Results indicate that tree nuts reduce the risk of coronary heart disease, and walnuts (Juglans species) are particularly effective because of their unique fatty acid profile. Berries that are grown on shrubs have the potential to contribute to mitigation of hypertension, prevention of Type II diabetes, and reduced risk of cardiovascular disease. To optimize human health benefits, plant breeding programs can focus on the traits that enhance the naturally-occurring phytochemicals, through biofortification. Value-added processing techniques should be selected and employed to preserve the phytonutrients, so they are maintained through the point of consumption. Agroforestry systems can offer valuable human health outcomes for common diet-related diseases, in addition to providing many environmental benefits, particularly if they are purposefully designed with that goal in mind. The food system policies in the U.S. might be reoriented to prioritize these food production systems based on the health benefits.
Collapse
Affiliation(s)
- Sarah Taylor Lovell
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Kiruba Krishnaswamy
- Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Nicholas Meier
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Ronald S. Revord
- Center for Agroforestry, University of Missouri, Columbia, MO USA
- School of Natural Resources, University of Missouri, Columbia, MO USA
| | - Andrew L. Thomas
- Division of Plant Sciences and Technology, Southwest Research, Extension, and Education Center, University of Missouri, Mt. Vernon, MO USA
| |
Collapse
|
10
|
Hussain T, Chai L, Wang Y, Zhang Q, Wang J, Shi W, Wang Q, Li M, Xie X. Activation of PPAR-γ prevents TERT-mediated pulmonary vascular remodeling in MCT-induced pulmonary hypertension. Heliyon 2023; 9:e14173. [PMID: 36938425 PMCID: PMC10015197 DOI: 10.1016/j.heliyon.2023.e14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background It has been demonstrated that elevated telomerase reverse transcriptase (TERT) expression or activity is implicated in pulmonary hypertension (PH). In addition, activation of peroxisome-proliferator-activated receptor γ (PPAR-γ) has been found to prevent PH progression. However, the molecular mechanism responsible for the protective effect of PPAR-γ activation on TERT expression in the pathogenesis of PH remains unknown. This study was performed to address these issues. Methods Intraperitoneal injection of monocrotaline (MCT) was used to establish PH. BIBR1532 was applied to inhibit the activity of telomerase. The right ventricular systolic pressure (RVSP) and histological analysis were used to detect the development of PH. The protein levels of p-Akt, t-Akt, c-Myc and TERT were determined by western blotting. Pharmacological inhibition of TERT by BIBR1532 effectively suppressed RVSP, RVHI and the WT% in MCT-induced PH rats. Results Pharmacological inhibition of Akt/c-Myc pathway by LY294002 diminished TERT upregulation, RVSP, RVHI and WT% in MCT-PH rats. Activation of PPAR-γ by pioglitazone inhibited p-Akt and c-Myc expressions and further downregulated TERT, thus to reduced RVSP, RVHI and WT% in MCT-treated PH rats. Conclusions In conclusion, TERT upregulation contributes to PH development in MCT-treated rats. Activation of PPAR-γ prevents pulmonary arterial remodeling through Akt/c-Myc/TERT axis suppression.
Collapse
Affiliation(s)
- Tafseel Hussain
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Corresponding author. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
11
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
12
|
Becker CU, Sartório CL, Campos-Carraro C, Siqueira R, Colombo R, Zimmer A, Belló-Klein A. Exercise training decreases oxidative stress in skeletal muscle of rats with pulmonary arterial hypertension. Arch Physiol Biochem 2022; 128:1330-1338. [PMID: 32449880 DOI: 10.1080/13813455.2020.1769679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of exercise training on oxidative stress in gastrocnemius of rats with pulmonary hypertension were studied. Four groups were established: sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), trained monocrotaline (TM). Exercise was applied for 4 weeks, 5 days/week, 50-60 min/session, at 60% of VO2 max. Right ventricular (RV) pressures were measured, heart and gastrocnemius were removed for morphometric/biochemical analysis. Lipid peroxidation (LPO), H2O2, GSH/GSSG, and activity/expression of antioxidant enzymes were evaluated. Increased RV hypertrophy, systolic and end-diastolic pressures (RVEDP) were observed in SM animals, and the RVEDP was decreased in TM vs. SM. H2O2, SOD-1, and LPO were higher in the SM group than in SC. In TM, H2O2 was further increased when compared to SM, with a rise in antioxidant defences and a decrease in LPO. GSH/GSSG was higher only in the TC group. Exercise induced an efficient antioxidant adaptation, preventing oxidative damage to lipids.
Collapse
Affiliation(s)
- C U Becker
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C L Sartório
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - C Campos-Carraro
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Siqueira
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Colombo
- Pharmacology and Physiology Laboratory, University of Caxias do Sul, Caxias do Sul, Brazil
| | - A Zimmer
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A Belló-Klein
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
13
|
Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27123724. [PMID: 35744848 PMCID: PMC9229274 DOI: 10.3390/molecules27123724] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.
Collapse
|
14
|
Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: Molecular Insight into Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7845503. [PMID: 35707273 PMCID: PMC9192195 DOI: 10.1155/2022/7845503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.
Collapse
|
15
|
Wang RR, Yuan TY, Chen D, Chen YC, Sun SC, Wang SB, Kong LL, Fang LH, Du GH. Dan-Shen-Yin Granules Prevent Hypoxia-Induced Pulmonary Hypertension via STAT3/HIF-1α/VEGF and FAK/AKT Signaling Pathways. Front Pharmacol 2022; 13:844400. [PMID: 35479305 PMCID: PMC9035666 DOI: 10.3389/fphar.2022.844400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.
Collapse
Affiliation(s)
- Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Lei Kong
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Sun Y, Wan W, Zhao X, Han X, Ye T, Chen X, Ran Q, Wang X, Liu X, Qu C, Shi S, Zhang C, Yang B. Chronic Sigma 1 receptor activation alleviates right ventricular dysfunction secondary to pulmonary arterial hypertension. Bioengineered 2022; 13:10843-10856. [PMID: 35473584 PMCID: PMC9208487 DOI: 10.1080/21655979.2022.2065953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sigma 1 receptor (S1R) has shown a preferable protective effect on left ventricular function, but whether it protects right ventricular (RV) function is still elusive.This study aimed to determine the effects of S1R on RV dysfunction secondary to pulmonary arterial hypertension.Sixty wild-type male Sprague–Dawley rats were randomly divided into the control group, the fluvoxamine group, the pulmonary arterial hypertension group and the pulmonary arterial hypertension combined with fluvoxamine group. Monocrotaline (60 mg/kg) was administered to induce pulmonary arterial hypertension, and fluvoxamine was given for 21 consecutive days to activate S1R after one week of monocrotaline administration. Echocardiographic, serologic, and histologic parameters, qRT-PCR, and western blotting were conducted after 4 weeks of monocrotaline administration.The expression of S1R was decreased in the right ventricle in pulmonary arterial hypertension. TAPSE, and the FAC of the right ventricle were significantly decreased, and RV EDP and the plasma concentration of N-terminal pro-B-type natriuretic peptide was increased in the pulmonary arterial hypertension group, but fluvoxamine partly restored those abnormalities (all P < 0.05). Moreover, pulmonary arteriole remodeling, and fibrosis and hypertrophy in the RV were shown in the pulmonary arterial hypertension group; interestingly, fluvoxamine recovered RV structural remodeling (all P < 0.05) but neither alleviated pulmonary arteriole remodeling nor reduced pulmonary artery pressure. Furthermore, S1R activation protects RV function by upgrading the NRF 2/HO 1-mediated antioxidant stress pathway. In conclusion, chronic S1R activation ameliorates structural remodeling and RV dysfunction secondary to pulmonary arterial hypertension without altering pulmonary artery pressure.
Collapse
Affiliation(s)
- Yazhou Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xin Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaoli Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Qian Ran
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Wang R, Pan J, Han J, Gong M, Liu L, Zhang Y, Liu Y, Wang D, Tang Q, Wu N, Wang L, Yan J, Li H, Yuan Y. Melatonin Attenuates Dasatinib-Aggravated Hypoxic Pulmonary Hypertension via Inhibiting Pulmonary Vascular Remodeling. Front Cardiovasc Med 2022; 9:790921. [PMID: 35402542 PMCID: PMC8987569 DOI: 10.3389/fcvm.2022.790921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dasatinib treatment is approved as first-line therapy for chronic myeloid leukemia. However, pulmonary hypertension (PH) is a highly morbid and often fatal side-effect of dasatinib, characterized by progressive pulmonary vascular remodeling. Melatonin exerts strong antioxidant capacity against the progression of cardiovascular system diseases. The present work aimed to investigate the effect of melatonin on dasatinib-aggravated hypoxic PH and explore its possible mechanisms. Dasatinib-aggravated rat experimental model of hypoxic PH was established by utilizing dasatinib under hypoxia. The results indicated that melatonin could attenuate dasatinib-aggravated pulmonary pressure and vascular remodeling in rats under hypoxia. Additionally, melatonin attenuated the activity of XO, the content of MDA, the expression of NOX4, and elevated the activity of CAT, GPx, and SOD, the expression of SOD2, which were caused by dasatinib under hypoxia. In vitro, dasatinib led to decreased LDH activity and production of NO in human pulmonary microvascular endothelial cells (HPMECs), moreover increased generation of ROS, and expression of NOX4 both in HPMECs and primary rat pulmonary arterial smooth muscle cells (PASMCs) under hypoxia. Dasatinib up-regulated the expression of cleaved caspase-3 and the ratio of apoptotic cells in HPMECs, and also elevated the percentage of S phase and the expression of Cyclin D1 in primary PASMCs under hypoxia. Melatonin ameliorated dasatinib-aggravated oxidative damage and apoptosis in HPMECs, meanwhile reduced oxidative stress level, proliferation, and repressed the stability of HIF1-α protein in PASMCs under hypoxia. In conclusion, melatonin significantly attenuates dasatinib-aggravated hypoxic PH by inhibiting pulmonary vascular remodeling in rats. The possible mechanisms involved protecting endothelial cells and inhibiting abnormal proliferation of smooth muscle cells. Our findings may suggest that melatonin has potential clinical value as a therapeutic approach to alleviate dasatinib-aggravated hypoxic PH.
Collapse
Affiliation(s)
- Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinzhen Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunlong Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Liu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
- Jinsong Yan,
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian, China
- Hua Li,
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yuhui Yuan,
| |
Collapse
|
18
|
Türck P, Salvador IS, Campos-Carraro C, Ortiz V, Bahr A, Andrades M, Belló-Klein A, da Rosa Araujo AS. Blueberry extract improves redox balance and functional parameters in the right ventricle from rats with pulmonary arterial hypertension. Eur J Nutr 2022; 61:373-386. [PMID: 34374852 DOI: 10.1007/s00394-021-02642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Isadora Schein Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Du W, Fan HM, Zhang YX, Jiang XH, Li Y. Effect of Flavonoids in Hawthorn and Vitamin C Prevents Hypertension in Rats Induced by Heat Exposure. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030866. [PMID: 35164138 PMCID: PMC8840451 DOI: 10.3390/molecules27030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
Background: Excessive oxidative stress is associated with hypertension in professional high-temperature working conditions. Polyphenols exhibit a cardioprotective effect. Hawthorn contains high amounts of flavonoids, though its effect on hypertension protection has yet to be studied. This study aims to investigate this effect of extract of hawthorn (EH) or its combination with vitamin C (Vit. C) in rats induced by working under a hot environment. Methods: Forty-two male rats were randomly divided into a control group under normal temperature and six treatment groups exposed at 33 ± 1 °C along with 1 h of daily treadmill running. They were orally provided with water, Vit. C (14mg/kg), EH (125, 250, and 500 mg/kg), and EH500 + Vit. C, once a day for four weeks. Results: Both EH and Vit. C alone reduced the systolic and diastolic blood pressure of rats exposed to the heat environment; however, their joint supplementation completely maintained their blood pressure to the normal level throughout the experimental period. No morphological changes were found on the intima of aorta. Moreover, the co-supplementation of EH and Vit. C prevented the changes of heat exposure in inducing oxidative stress markers, such as glutathione peroxidase, catalase, total antioxidant capacity, and nitric oxide; the synergistic action was more effective than either individual treatment of EH and Vit. C. Furthermore, the administration of EH had more potent effects on increasing superoxide dismutase, IL-2, the 70 kilodalton heat shock proteins and high sensitivity C reactive protein, and decreasing serum malondialdehyde and lipofuscin in vascular tissue than those in Vit. C group. Conclusions: A strong synergistic effect of EH and Vit. C on the prevention of hypertension under heat exposure was established, as they inhibited the oxidative stress state. This study also sets up a novel intervention strategy in animal models for investigation on the early phases of hypertension induced by heat exposure.
Collapse
Affiliation(s)
- Wei Du
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
- Nutrition and Cardiovascular Diseases Basic Research Group, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Hong-Min Fan
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
| | - Yu-Xin Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (Y.-X.Z.); (X.-H.J.)
- Key Laboratory for Chronic Diseases, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Xiao-Hua Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (Y.-X.Z.); (X.-H.J.)
- Key Laboratory for Chronic Diseases, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Yun Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
- Nutrition and Cardiovascular Diseases Basic Research Group, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
- Correspondence: ; Tel.: +86-0315-8805-586
| |
Collapse
|
20
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
21
|
Blueberry extract attenuates norepinephrine-induced oxidative stress and apoptosis in H9c2 cardiac cells. Mol Cell Biochem 2022; 477:663-672. [PMID: 34988854 DOI: 10.1007/s11010-021-04313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 μg/ml of BBE for 4 h and maintained in the presence of 100 μM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.
Collapse
|
22
|
Zimmer A, Teixeira RB, Constantin RL, Fernandes-Piedras TRG, Campos-Carraro C, Türck P, Visioli F, Baldo G, Schenkel PC, Araujo AS, Belló-Klein A. Thioredoxin system activation is associated with the progression of experimental pulmonary arterial hypertension. Life Sci 2021; 284:119917. [PMID: 34478759 DOI: 10.1016/j.lfs.2021.119917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tânia Regina Gatelli Fernandes-Piedras
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Türck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Laboratory of Oral Pathology, Post-Graduation Program in Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Department of Physiology and Pharmacology, Biology Institute, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats. Hypertens Res 2021; 44:918-931. [PMID: 33875858 DOI: 10.1038/s41440-021-00660-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.
Collapse
|
24
|
De Oliveira GS, Pinheiro GS, Proença IC, Blembeel A, Casal MZ, Pochmann D, Tartaruga L, Martinez FG, Araújo AS, Elsner V, Dani C. Aquatic exercise associated or not with grape juice consumption-modulated oxidative parameters in Parkinson disease patients: A randomized intervention study. Heliyon 2021; 7:e06185. [PMID: 33644467 PMCID: PMC7887390 DOI: 10.1016/j.heliyon.2021.e06185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with significant motor disabilities and cognitive decline. Importantly, the imbalance of oxidative stress is related to PD physiopathology and progression. This study aimed to evaluate the impact of grape juice consumption associated with an aquatic exercise protocol on oxidative stress parameters and cognitive function in individuals with PD. The participants were randomized into two groups: grape juice group (GJG) and control group (CG) and were submitted to 4 weeks of an aquatic intervention (twice a week, approximately 60 minutes/session). The GJG also consumed 400 ml of grape juice per day (integral and conventional) during this period. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCa) questionnaire. For the analysis of oxidative stress markers, specifically lipid oxidative damage (TBARS), proteins (Carbonil), acid uric and the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase), blood collection were done before and after intervention. No changes were observed in cognitive function after intervention in both groups. Regarding biomarkers, a reduction of antioxidant enzymes, thiobarbituric acid reactive substances (TBARS) and uric acid was observed in both groups. However, only the GJG showed a significant reduction on protein oxidation levels after intervention. In conclusion, the consumption of grape juice associated with an aquatic exercise protocol might be consider an effective alternative to reduce the oxidative damage in PD, reinforcing the importance of this intervention in promoting beneficial impact in this population.
Collapse
Affiliation(s)
| | - Gislaine S. Pinheiro
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Isabel C.T. Proença
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Blembeel
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Marcela Z. Casal
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Leonardo Tartaruga
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Flavia G. Martinez
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alex Sander Araújo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Elsner
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Dani
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Villalpando DM, Verdasco-Martín CM, Plaza I, Gómez-Rivas J, R de Bethencourt F, Villarroel M, García JL, Otero C, Ferrer M. Beneficial Effects of Spirulina Aqueous Extract on Vasodilator Function of Arteries from Hypertensive Rats. Int J Vasc Med 2020; 2020:6657077. [PMID: 33457015 PMCID: PMC7787865 DOI: 10.1155/2020/6657077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Hypertension is a multifactorial disorder considered one of the major causes of premature death worldwide. This pathology is associated with vascular functional/structural alterations in which nitric oxide (NO) and oxygen reactive species participate. On the other hand, the use of microalgae extracts in the treatment of cardiovascular diseases is increasing. Based on the antioxidant and antihypertensive properties of Spirulina, this study aims to investigate the effect of an aqueous extract of Spirulina on the vasodilator function of the aorta from spontaneously hypertensive rats (SHR), analyzing the functional role of NO. For this, aortic segments from male SHR were divided into two groups, one control and the other exposed to an Spirulina aqueous extract (0.1% w/v, for 3 hours), to analyze (i) the production of NO, superoxide anion, and hydrogen peroxide; (ii) the vasodilator response induced by acetylcholine (ACh), by the NO donor and sodium nitroprusside (SNP), and by the KATP channel opener and pinacidil; and (iii) the expression of the p-Akt, p-eNOS, and HO-1 proteins. The results showed that the aqueous Spirulina extract (i) increased the production of NO, did not significantly modify that of superoxide, while decreased that of hydrogen peroxide; (ii) increased the vasodilatory responses induced by ACh, NPS, and pinacidil; and (iii) increased the expression of p-Akt and HO-1. These results suggest that incubation with the aqueous Spirulina extract improves the vascular function of arteries from SHR by increasing the release/bioavailability/function of NO. Increased KATP channel activation and expression of pAkt and HO-1 appear to be participating in these actions.
Collapse
Affiliation(s)
- Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Verdasco-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ignacio Plaza
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Gómez-Rivas
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Morris Villarroel
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - José L. García
- Centro de Investigaciones Biológicas Margarita Salas, Biotecnología Medioambiental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
26
|
Optimization of a Novel Method Based on Ultrasound-Assisted Extraction for the Quantification of Anthocyanins and Total Phenolic Compounds in Blueberry Samples ( Vaccinium corymbosum L.). Foods 2020; 9:foods9121763. [PMID: 33260750 PMCID: PMC7759891 DOI: 10.3390/foods9121763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, consumers' preference for fruits such as blueberry has increased noticeably. This fact is probably related to their bioactive components such as anthocyanins, phenolic compounds, vitamins, minerals, and tannins that have been found in blueberries by the latest research studies. Both total anthocyanins (TA) and total phenolic compounds (TPC) are known for their multiple beneficial effects on our health, due to their anti-inflammatory, anti-oxidant, and anti-cancer properties. This is the reason why the development of new methodologies for the quality control analysis of raw materials or derived products from blueberry has a great relevance. Two ultrasound-assisted extraction methods (UAE) have been optimized for the quantification of TA and TPC in blueberry samples. The six variables to be optimized were: solvent composition, temperature, amplitude, cycle, extraction solvent pH, and sample/solvent ratio using response surface methodology. The optimized methods have proven to be suitable for the extraction of the TPC and TA with good precision (repeatability and intermediate precision) (coefficient of variation (CV) < 5%) and potentially for application in commercial samples. This fact, together with the multiple advantages of UAE, makes these methods a good alternative to be used in quality control analysis by both industries and laboratories.
Collapse
|
27
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|