1
|
Mateo Orobia AJ, Benítez Del Castillo JM, Calonge M, Baudouin C, Labetoulle M. A narrative literature review about alpha-lipoic acid role in dry eye and ocular surface disease. Acta Ophthalmol 2025. [PMID: 40207422 DOI: 10.1111/aos.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Ocular surface diseases (OSD) include various conditions that affect the eye's surface, causing discomfort and pain. One such condition, dry eye disease (DED), is a multifactorial disorder that significantly impacts patients' quality of life, with prevalence rates ranging from 5% to 50% and higher incidence in women. DED involves tear film instability, inflammation and neurosensory abnormalities, making its management challenging due to diverse underlying mechanisms. Conventional treatments typically focus on symptom relief, but new approaches targeting the disease's pathogenesis are emerging. Alpha-lipoic acid (ALA) is gaining attention for its potential in treating OSD and DED. ALA acts as a potent antioxidant, neutralizing reactive oxygen species. It protects cell membranes by interacting with vitamin C and glutathione, potentially recycling vitamin E. Its antioxidative properties are particularly relevant in meibomian gland dysfunction, a condition implicated in DED. By scavenging free radicals and modulating redox status in the meibomian glands, ALA can reduce oxidative damage, preserve glandular function and decrease inflammation. In diabetic patients with DED, ALA administration has been found to improve tear film parameters, reduce corneal defects, enhance antioxidant status and potentially prevent diabetic retinopathy and keratopathy. Its therapeutic effects on neurosensory abnormalities, especially in diabetic polyneuropathy and other neuropathies, are primarily due to its antioxidant, anti-inflammatory and metal-chelating properties. In summary, ALA holds promise as a therapeutic agent for DED and OSD and could be a promising treatment option for diabetic retinopathy and keratopathy, although further research is needed to confirm its efficacy.
Collapse
Affiliation(s)
- Antonio J Mateo Orobia
- Hospital Universitario Miguel Servet Zaragoza, Instituto Oftalmológico Biotech-Visión. Quirónsalud Zaragoza, Zaragoza, Spain
| | | | - Margarita Calonge
- Universidad de Valladolid, Instituto Universitario de Oftalmología Aplicada Valladolid (IOBA), Valladolid, Spain
| | - Christophe Baudouin
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
| | - Marc Labetoulle
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
- Service d'Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Zhang Q, Sun B, Guo M, Qian K, Zhang M, Shi D, Zheng C, Yang X, Zhao Y. Lipoic Acid/Choline Ionic Liquid Enhanced Intratumoral Heat/Mass Transfer for Suppressing Thermo-Mediated Tumor Relapse and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415157. [PMID: 40018831 DOI: 10.1002/adma.202415157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/20/2024] [Indexed: 03/01/2025]
Abstract
Thermal ablation (TA) is widely used for clinical treatment of various cancers. However, TA often struggles to efficiently kill tumor cells without injuring adjacent normal tissues/cells, leading to thermo-mediated tumor relapse and metastasis, owing to the immunosuppressive microenvironment surrounding residual tumor cells. In this study, a temperature-sensitive ionic liquid composed of lipoic acid and choline (LACH/PNA) is developed as a multifunctional TA sensitizer to suppress tumor metastasis induced by incomplete microwave ablation. LACH/PNA exhibits a high diffusion coefficient by disrupting the tumor matrix and modulating cancer-associated fibroblasts, thereby facilitating heat and mass transfer in tumors. LACH/PNA demonstrates greater cytotoxicity toward hepatoma cells than on normal hepatocytes with this effect further intensified by thermal treatment. These findings highlight LACH/PNA as a promising multifunctional sensitizer for clinical chemoablation-microwave ablation synergy.
Collapse
Affiliation(s)
- Qingqing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Qian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meirong Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, 437000, China
| |
Collapse
|
3
|
Ahmadi A, Hosseini F, Rostami M, Soukhtanloo M. Anticancer effects of alpha-lipoic acid, a potent organosulfur compound by modulating matrix metalloproteinases and apoptotic markers in osteosarcoma MG-63 cells. J Steroid Biochem Mol Biol 2025; 247:106664. [PMID: 39694075 DOI: 10.1016/j.jsbmb.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Osteosarcoma (OS), an extremely aggressive form of bone tumor primarily affects young adults. Despite significant advancements in clinical trials, the ability of cancer cells to metastasize and resist apoptosis remains a major challenge. To address these issues, novel therapeutic interventions with high specificity for these processes are essential. Alpha-lipoic acid (ALA), an organosulfur compound derived from octanoic acid, possesses a range of pharmacological properties. This study hypothesizes that ALA would inhibit metastasis and induce cell apoptosis in OS. To evaluate the potential of ALA, its effects on the migration, metastasis, and cell cycle of MG-63 OS cells were assessed, along with its ability to trigger apoptosis. To these aims, MG-63 cells were exposed to varying concentrations of ALA, and cell viability was measured using the alamarBlue assay. The impact of ALA on cell cycle progression, apoptosis, migration, and metastasis was analyzed through flow cytometry, scratch assay, and gelatin zymography. After validating the expression of MMP2, MMP9, VEGF, VEGFR, BAX, BCL-2, and P53 by the GEO database, the expression levels of these genes were examined through quantitative PCR (qPCR). Eventually, molecular docking was employed to simulate the interactions between ALA and matrix metalloproteinase (MMPs). The results demonstrated that ALA significantly inhibited cell migration, induced cell cycle arrest, and promoted apoptosis by upregulating P53 and BAX expression while downregulating BCL-2 levels. Furthermore, ALA was found to suppress the activity and expression of MMP2 and MMP9 and reduce the expression of angiogenesis markers. Notably, ALA interacted directly with the active site of MMP2 and MMP9. These findings suggest that ALA has the potential to be a promising agent with anti-cancer effects on MG-63 cells, warranting further preclinical investigations.
Collapse
Affiliation(s)
- Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
5
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
6
|
Gull S, Tasneem F, Ahmed I, Aslam MA, Tayyeb A, Abid L, Arshad MI, Shahzad N. Ethanolic extract of Euphorbia royleana Boiss. reduces metastasis of breast cancer cells and inhibits tumor progression in vivo. Med Oncol 2024; 41:152. [PMID: 38743193 DOI: 10.1007/s12032-024-02378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Metastasis is the most devastating attribute of breast cancer (BC) that leads to high mortality. It is a complex process of tumor cell migration, invasion, and angiogenesis. In this study, we evaluated the effect of ERA on BC metastasis and BC progression in vivo. The transwell invasion/migration and wound healing assays showed that ERA treatment significantly reduced the invasion and migration of BC cell lines. The expression of mesenchymal (E-cadherin and N-cadherin), matrix metalloproteinases (MMP2, MMP9), and stemness markers (Oct3) were down-regulated by ERA. Furthermore, ERA down-regulated angiogenic chemokines (CXCL1/2/3, CXCL5, and CXCL12) expression in the highly metastatic MDA-MB-231 cell line. The clonogenic survival of BC cells was also reduced by ERA treatment. Strikingly, ERA prevented DMBA-induced tumor growth in Swiss albino mice as depicted by a high animal survival rate (84%) in the ERA group and histopathological analysis. Conclusively, this study revealed that ERA possesses anti-metastatic potential and also reduces the growth of BC in vivo. Moreover, the GC-MS data revealed the presence of biologically active compounds (Lupeol, Phytol, phytosterol) and some rare (9, 19-Cyclolanost) phyto metabolites in ERA extract. However, further studies are suggestive to identify and isolate the therapeutic agents from ERA to combat BC and metastasis.
Collapse
Affiliation(s)
- Sheereen Gull
- School of Biological Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Fareeda Tasneem
- Department of Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ishtiaq Ahmed
- Department of Pathobiology, University of Veterinary and Animal Sciences (sub-campus Jhang), Lahore, Pakistan
| | | | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Luqman Abid
- School of Biological Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | | | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, 54000, Pakistan.
| |
Collapse
|
7
|
Khalife H, Fayyad-Kazan M, Fayyad-Kazan H, Hadchity E, Borghol N, Hussein N, Badran B. Lipoic acid alters the microRNA signature in breast cancer cells. Pathol Res Pract 2024; 257:155321. [PMID: 38678851 DOI: 10.1016/j.prp.2024.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Breast cancer, the deadliest disease affecting women globally, exhibits heterogeneity with distinct molecular subtypes. Despite advances in cancer therapy, the persistence of high mortality rates due to chemotherapy resistance remains a major challenge. Lipoic acid (LA), a natural antioxidant, has proven potent anticancer properties. Yet, the impact of LA on microRNA (miRNA) expression profile in breast cancer remains unexplored. AIM The aim of this study was to unravel the effect of LA on miRNA expression profiles in different breast cancer cell lines. METHODS The MiRCURY LNA miRNA miRNome qPCR Panel was used to compare the miRNA signature in MDA-MB-231 and MCF-7 cells treated or not with LA. RESULTS We identified six upregulated and six downregulated miRNAs in LA-treated MDA-MB-231 cells and 14 upregulated and four downregulated miRNAs in LA-treated MCF-7 cells compared to control cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the deregulated miRNAs could alter different signaling cascades including FoxO, P53 and Hippo pathways. CONCLUSION The outcome of this study provides further insights into the molecular mechanisms underlying the therapeutic benefit of LA. This in turn could assist the amelioration of LA-based anticancer therapies.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Mohammad Fayyad-Kazan
- The American University of Iraq-Baghdad, School of Arts and Sciences, Department of Natural and Applied Sciences, Baghdad, Iraq
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Elie Hadchity
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nada Borghol
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nader Hussein
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon; Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon.
| |
Collapse
|
8
|
Bossio S, Perri A, Gallo R, De Bartolo A, Rago V, La Russa D, Di Dio M, La Vignera S, Calogero AE, Vitale G, Aversa A. Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies. Int J Mol Sci 2023; 24:17111. [PMID: 38069431 PMCID: PMC10707055 DOI: 10.3390/ijms242317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFβ1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Raffaella Gallo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, University of Calabria, 87036 Rende, Italy;
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| |
Collapse
|
9
|
Izadi A, Soukhtanloo M, Mirzavi F, Jalili-Nik M, Sadeghi A. Alpha-Lipoic Acid, Auraptene, and Particularly Their Combination Prevent the Metastasis of U87 Human Glioblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8618575. [PMID: 37496822 PMCID: PMC10368506 DOI: 10.1155/2023/8618575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Background The primary malignant brain tumor glioblastoma multiforme (GBM) is most commonly detected in individuals over 60 years old. The standard therapeutic approach for GBM is radiotherapy combined with temozolomide. Recently, herbal products, such as alpha-lipoic acid (ALA) and auraptene (AUR), have shown promising anticancer effects on various cancer cells and animal models. However, it is not well understood how ALA, AUR, and their combination in GBM work to combat cancer. Thus, the purpose of this study was to investigate the antimetastatic effects of the ALA-AUR combination on U87 human glioblastoma cells. Methods The inhibitory effects of ALA, AUR, and the ALA/AUR combination on the migration and metastasis of U87 cells were evaluated using a wound healing test and gelatin zymography. The expression levels of matrix metalloproteinase MMP-2 and MMP-9 were assessed at the transcriptional and translational levels using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Results Our findings revealed that combination therapy reduced cell migration and metastasis, which was indicated by the reduction in MMP-2/-9 expression both at mRNA and protein levels, as well as their enzymatic activity in U87 cells. Conclusion This study demonstrated that the combination of ALA and AUR effectively inhibited the migration and metastasis of U87 cells. Thus, given their safety and favorable specifications, the combination of these drugs can be a promising candidate for GBM treatment as primary or adjuvant therapy.
Collapse
Affiliation(s)
- Azam Izadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Soukhtanloo
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Celik A, Bakar-Ates F. Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression. Med Oncol 2023; 40:244. [PMID: 37453954 DOI: 10.1007/s12032-023-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.
Collapse
Affiliation(s)
- Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey.
| |
Collapse
|
11
|
Marcianò G, Vocca C, Rania V, Citraro R, De Sarro G, Gallelli L. Metalloproteases in Pain Generation and Persistence: A Possible Target? Biomolecules 2023; 13:biom13020268. [PMID: 36830637 PMCID: PMC9953417 DOI: 10.3390/biom13020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent proteolytic enzymes associated with extracellular matrix protein turnover and tissue degradation. They participate to many different physiological reactions but are also hyperactivated in several diseases. Various literature studies have documented that MMPs play a role in the modulation of neuropathic and nociceptive pain. The heterogeneity of clinical and pre-clinical data is an important issue in this experimental context. Despite the presence of a good number of studies on MMP inhibitors, these drugs showed scarce efficacy and relevant side effects. In the present manuscript, we reviewed studies in the literature that define a possible role of MMPs in pain and the effects of their modulation.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
| | - Cristina Vocca
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
| | - Rita Citraro
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Operative Unit of Pharmacology and Pharmacovigilance, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy
- Medifarmagen SRL, Department of Health Science, “Mater Domini” University Hospital, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-712322
| |
Collapse
|
12
|
Evaluation of Dissolution Profiles of a Newly Developed Solid Oral Immediate-Release Formula Containing Alpha-Lipoic Acid. Processes (Basel) 2021. [DOI: 10.3390/pr9010176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-lipoic acid (ALA, thioctic acid), a naturally-occurring essential dithiol compound, has become a common ingredient in many pharmaceutical and food supplement products (FSP), used in oxidative stress-dependent pathologies; oral bioavailability of ALA is limited by pharmacokinetic particularities that reduce its therapeutic efficacy-reduced solubility, lack of gastric stability and hepatic degradation, doubled by formulation hinders. The objectives were to develop a solid oral 600 mg ALA FSP to obtain an optimal pharmaceutical profile compared to a reference listed drug (RLD) with a similarity factor f2 50. A comparative dissolution study was performed; an HPLC method was used for ALA quantification. After planning combinatory simulations (formulation stage), two prototype formulas (#1 and #2) were manufactured and further optimized by adjusting ALA physical characteristics and the excipients quantities (#3 and #4) in order to achieve the Quality Target Product Profile. A misshapen of ALA’s in vitro release was observed for #3 Formula (f2 = 31.6); the optimal profile was obtained for Formula #4 (f2 = 58.5). A simple quantitative formula is not enough to assure good ALA bioavailability; the formulation needs multiple compounding modulations under physicochemical compatibility algorithms, with multiple dissolution profiles testing back-ups. It is essential to ensure a formulation with an in vitro dissolution comparable with the RLD, allowing the compound to reach its target level to assure the optimum claimed antioxidant activity of ALA at the cellular level, even for food supplement formulations.
Collapse
|
13
|
Ajith TA. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol 2020; 47:1883-1890. [PMID: 32621549 DOI: 10.1111/1440-1681.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring dithiol micronutrient which acts as a cofactor for mitochondrial enzyme activity. Due to its potential antioxidant activity, it is considered as "universal antioxidant". Previous studies reported the pharmacological benefits of ALA such as glycaemic control, improved insulin sensitivity and alleviation of diabetic complications such as neuropathy and cardiovascular diseases. Dry eye disease and retinopathy are prevalent in diabetic patients. Experimental studies demonstrated the beneficial effects of ALA in dry eye and diabetic retinopathy. ALA can prevent the dry eye by down regulating the expression of matrix metalloproteinase-9 in the corneal epithelial cells and activating the antioxidant status of the ocular surface. Furthermore, its direct antioxidant effect can also prevent oxidative stress-induced corneal surface erosion and lachrymal gland damage. ALA prevents diabetic retinopathy through inhibition of O-linked β-N-acetylglucosamine transferase and nuclear factor-kappa B activity and alleviation of oxidative stress. It can activate the nuclear factor erythroid-2-related factor 2 and AMP-activated protein kinase in retinal ganglion cells. Clinical trials conducted in pre-retinopathic diabetic patients showed ALA with genistein and vitamins could protect the retinal cells and decline the inflammatory effect in diabetic patients. However, studies are scant to explore its beneficial effects in dry eye disease and diabetic retinopathy. Therefore, this review article discusses an update on the role of ALA in dry eye disease and diabetic retinopathy, two ocular diseases prevalent in diabetic patients.
Collapse
|
14
|
An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants (Basel) 2020; 9:antiox9050359. [PMID: 32344912 PMCID: PMC7278686 DOI: 10.3390/antiox9050359] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Antioxidants are known to minimize oxidative stress by interacting with free radicals produced as a result of cell aerobic reactions. Oxidative stress has long been linked to many diseases, especially tumours. Therefore, antioxidants play a crucial role in the prevention or management of free radical-related diseases. However, most of these antioxidants have anticancer effects only if taken in large doses. Others show inadequate bioavailability due to their instability in the blood or having a hydrophilic nature that limits their permeation through the cell membrane. Therefore, entrapping antioxidants in liposomes may overcome these drawbacks as liposomes have the capability to accommodate both hydrophilic and hydrophobic compounds with a considerable stability. Additionally, liposomes have the capability to accumulate at the cancer tissue passively, due to their small sizes, with enhanced drug delivery. Additionally, liposomes can be engineered with targeting moieties to increase the delivery of chemotherapeutic agents to specific tumour cells with decreased accumulation in healthy tissues. Therefore, combined use of liposomes and antioxidants, with or without chemotherapeutic agents, is an attractive strategy to combat varies tumours. This mini review focuses on the liposomal delivery of selected antioxidants, namely ascorbic acid (AA) and alpha-lipoic acid (ALA). The contribution of these nanocarriers in enhancing the antioxidant effect of AA and ALA and consequently their anticancer potentials will be demonstrated.
Collapse
|
15
|
Farhat D, Léon S, Ghayad SE, Gadot N, Icard P, Le Romancer M, Hussein N, Lincet H. Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation. Br J Cancer 2020; 122:885-894. [PMID: 31988347 PMCID: PMC7078196 DOI: 10.1038/s41416-020-0729-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breast cancer is the second most common cancer in the world. Despite advances in therapies, the mechanisms of resistance remain the underlying cause of morbidity and mortality. Lipoic acid (LA) is an antioxidant and essential cofactor in oxidative metabolism. Its potential therapeutic effects have been well documented, but its mechanisms of action (MOA) are not fully understood. METHODS The aim of this study is to validate the inhibitory LA effect on the proliferation of various breast cancer cell lines and to investigate the MOA that may be involved in this process. We tested LA effects by ex vivo studies on fresh human mammary tumour samples. RESULTS We demonstrate that LA inhibits the proliferation and Akt and ERK signalling pathways of several breast cancer cells. While searching for upstream dysregulations, we discovered the loss of expression of IGF-1R upon exposure to LA. This decrease is due to the downregulation of the convertase, furin, which is implicated in the maturation of IGF-1R. Moreover, ex vivo studies on human tumour samples showed that LA significantly decreases the expression of the proliferation marker Ki67. CONCLUSION LA exerts its anti-proliferative effect by inhibiting the maturation of IGF-1R via the downregulation of furin.
Collapse
Affiliation(s)
- Diana Farhat
- Université Lyon 1, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Sophie Léon
- Plateforme Ex-Vivo, Département de Recherche Translationnelle et Innovation, SIRIC LYriCAN, INCa-DGOS-Inserm_12563, Centre Léon Bérard, Lyon, France
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Nicolas Gadot
- Plateforme Anatomopathologie-Recherche, Département de Recherche Translationnelle et Innovation, Centre Léon Bérard, Lyon, France
| | - Philippe Icard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U 119, 14000, Caen, France
- Service de chirurgie thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Muriel Le Romancer
- Université Lyon 1, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Hubert Lincet
- Université Lyon 1, Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.
- ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
16
|
Farhat D, Ghayad SE, Icard P, Le Romancer M, Hussein N, Lincet H. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell lines. Oncogene 2020; 39:3604-3610. [PMID: 32060422 DOI: 10.1038/s41388-020-1211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The beneficial effects of lipoic acid (LA) in cancer treatment have been well documented in the last decade. Indeed, LA exerts crucial antiproliferative effects by reducing breast cancer cell viability, cell cycle progression and the epithelial-to-mesenchymal transition (EMT). However, the mechanisms of action (MOA) underlying these antiproliferative effects remain to be elucidated. Recently, we demonstrated that LA decreases breast cancer cell proliferation by inhibiting IGF-1R maturation via the downregulation of the proprotein convertase furin. The aim of the present study was to investigate the MOA by which LA inhibits furin expression in estrogen receptor α (ERα) (+) and (-) breast cancer cell lines. We unveil that LA exerts a pro-oxidant effect on these cell lines, the resulting reactive oxygen species (ROS) generated being responsible for the reduction in the expression of the major (CREB) protein. This transcription factor is overexpressed in many types of cancers and regulates the expression of furin in breast cancer cells independently of ERα, as evidenced herein by the inhibition of furin expression following CREB silencing. Consequently, our findings expose for the first time the complete MOA of LA via the CREB/furin axis leading to inhibition of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Diana Farhat
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Philippe Icard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U 119, 14000, Caen, France.,Service de chirurgie thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Muriel Le Romancer
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Hubert Lincet
- Université Lyon 1, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
17
|
Tripathy J, Chowdhury AR, Prusty M, Muduli K, Priyadarshini N, Reddy KS, Banerjee B, Elangovan S. α-Lipoic acid prevents the ionizing radiation-induced epithelial-mesenchymal transition and enhances the radiosensitivity in breast cancer cells. Eur J Pharmacol 2020; 871:172938. [PMID: 31958458 DOI: 10.1016/j.ejphar.2020.172938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Radiotherapy is routinely used in the treatment of breast cancer. However, its efficiency is often limited by the development of radioresistance and metastasis. The cancer cells surviving irradiation show epithelial-mesenchymal transition (EMT) along with increased migration, invasion and metastasis. In this study, we have evaluated the role of α-lipoic acid in preventing the radiation-induced EMT and in sensitizing the breast cancer cells to radiation. The breast cancer cell lines, MCF-7 and MDA-MB-231 were pretreated with lipoic acid, irradiated and the changes associated with cell growth, clonogenicity, migration, matrix metalloproteinases (MMPs), EMT and TGFβ signaling were measured. Our data showed that lipoic acid pretreatment sensitized the breast cancer cells to the ionizing radiation and inhibited the radiation-induced migration and the release of MMP2 and MMP9. Lipoic acid also prevented the TGFβ1 release and inhibited the radiation-induced EMT in breast cancer cells. The inhibition of TGFβ signaling by lipoic acid is associated with the inhibition of radiation-induced activation and translocation of NF-κB. These results suggest that α-lipoic acid inhibits the radiation-induced TGFβ signaling and nuclear translocation of NF-κB, thereby inhibiting the radiation-induced EMT and sensitizing the breast cancer cells to ionizing radiation.
Collapse
Affiliation(s)
- Joytirmay Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Amit Roy Chowdhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Nilima Priyadarshini
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Birendranath Banerjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
18
|
Nemati A, Alipanah-Moghadam R, Molazadeh L, Naghizadeh Baghi A. The Effect of Glutamine Supplementation on Oxidative Stress and Matrix Metalloproteinase 2 and 9 After Exhaustive Exercise. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4215-4223. [PMID: 31849453 PMCID: PMC6912001 DOI: 10.2147/dddt.s218606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Background Glutamine is the most abundant amino acid in plasma and skeletal muscles and an important fuel for immune system cells. It has beneficial anti-inflammatory and antioxidant properties which may be considered as a potentially useful supplement for athletes. The present study was conducted to investigate the effect of glutamine supplementation on oxidative stress and matrix metalloproteinase 2 and 9 after exhaustive exercise in young healthy males. Materials and methods In this study, 30 healthy males (supplement =15 and control=15) were randomly assigned into two groups. The supplement group received 0.3 g/kg BW of glutamine along with 25 gr of sugar dissolved in 250 cc water per day. The control group received 25 gr of sugar in 250 cc water per day. Fasting blood samples were taken at baseline and at the end of 14 days of intervention. The participants underwent exercise until experiencing full-body exhaustive fatigue for 16 ± 2.84 mins, and then fasting blood samples were taken. Serum levels of TAC, MDA, MMP2, MMP9, glutathione, and hs-CRP were measured. Results Serum levels of MDA and hs-CRP significantly decreased in the supplement group (p< 0.05). The serum level of TAC significantly increased in the supplement group (p< 0.05). Glutathione serum levels significantly increased after exhaustive exercise (p< 0.05). Serum levels of MMP2 and MMP9 remained unchanged. Conclusion Results of this study showed that, some biochemical factors are time-dependent and can increase or decrease over time, as well as, serum levels of hs-CRP and MDA decreased with glutamine supplementation along with the increase in the TAC serum levels, but this supplementation had no effect on serum levels of MMP2 and MMP9 in exhaustive exercise.
Collapse
Affiliation(s)
- Ali Nemati
- Ardabil University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Ardabil, Iran
| | - Reza Alipanah-Moghadam
- Ardabil University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Ardabil, Iran
| | - Leila Molazadeh
- Ardabil University of Medical Sciences, School of Medicine, Department of Clinical Biochemistry, Ardabil, Iran
| | | |
Collapse
|
19
|
Farhat D, Lincet H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim Biophys Acta Rev Cancer 2019; 1873:188317. [PMID: 31669587 DOI: 10.1016/j.bbcan.2019.188317] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Abstract
We discuss how lipoic acid (LA), a natural antioxidant, induces apoptosis and inhibits proliferation, EMT, metastasis and stemness of cancer cells. Furthermore, owing to its ability to reduce chemotherapy-induced side effects and chemoresistance, LA appears to be a promising compound for cancer treatment.
Collapse
Affiliation(s)
- D Farhat
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; Department of Chemistry-Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath- Beirut, Lebanon
| | - H Lincet
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
20
|
Al-Zharani M, Nasr FA, Abutaha N, Alqahtani AS, Noman OM, Mubarak M, Wadaan MA. Apoptotic Induction and Anti-Migratory Effects of Rhazya Stricta Fruit Extracts on a Human Breast Cancer Cell Line. Molecules 2019; 24:molecules24213968. [PMID: 31683960 PMCID: PMC6864471 DOI: 10.3390/molecules24213968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Rhazya stricta is a medicinal plant that is widely used in Saudi folklore medicine for treatment of various diseases. R. stricta fruit powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, and methanol using a Soxhlet extractor. The cytotoxic effects of these fractions on human breast cancer cells (MDA-MB-231 and MCF-7) and non-tumorigenic control cells (MCF-10A) were evaluated via cell viability measurements, microscopy, gene expression, and migration assays. Moreover, the effect of the most promising extract on 7,12-dimethyl-benz[a]anthracene (DMBA)-induced breast cancer was investigated in rats. The promising extract was also subjected to gas chromatography–mass spectrometry. Fruit extracts of R. stricta were significantly cytotoxic toward all tested cell lines, as demonstrated by MTT and LDH assays. Treatment of MDA-MB-231 cells with fruit ethyl acetate fraction (RSF EtOAc) increased expression 11of P53, Bax and activation of caspase 3/7. A cell migration scratch assay demonstrated that extracts at non-cytotoxic concentrations exerted a potent anti-migration activity against the highly invasive MDA-MB-231 cell line. Moreover, RT-PCR results showed that RSF EtOAc significantly downregulated MMP-2 and MMP-9 expression, which play an important role in breast cancer metastasis. Histological studies of breast tissue in experimental animals showed a slight improvement in tissue treated with fruit ethyl acetate extract. GC-MS chromatogram showed thirteen peaks with major constituents were camphor, trichosenic acid and guanidine. Our current study demonstrates that fruit extracts of R. stricta are cytotoxic toward breast cancer cell lines through apoptotic mechanisms.
Collapse
Affiliation(s)
- Mohammed Al-Zharani
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh 11623, Saudi Arabia.
| | - Fahd A Nasr
- Medicinal Aromatic, and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nael Abutaha
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- Medicinal Aromatic, and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Omar M Noman
- Medicinal Aromatic, and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammed Mubarak
- Electron Microscope Unit, King Saud University Medical City, Riyadh 11451, Saudi Arabia.
| | - Muhammad A Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
21
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
22
|
α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling. Life Sci 2018; 207:15-22. [DOI: 10.1016/j.lfs.2018.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023]
|
23
|
Tudose M, Culita DC, Musuc AM, Somacescu S, Ghica C, Chifiriuc MC, Bleotu C. Lipoic acid functionalized SiO 2@Ag nanoparticles. Synthesis, characterization and evaluation of biological activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629046 DOI: 10.1016/j.msec.2017.05.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel nanocomposite was obtained through the covalent immobilization of lipoic acid on the surface of silver nanoparticles-decorated silica nanoparticles (SiO2@Ag). The hybrid organic - inorganic material obtained was characterized by Fourier transform infrared spectroscopy, thermal analysis, scanning and transmision electron microscopy, X-ray photoelectron spectroscopy and UV-Visible spectroscopy. Its antioxidant, cytotoxic, antimicrobial activity and influence on mammalian cells cycle were evaluated. The results of this study have shown that the functionalization of SiO2@Ag with lipoic acid resulted in a composite with increased specificity of interaction with different mammalian cell lines and antioxidant activity, but with decreased cytotoxicity and antimicrobial properties. Therefore, the SiO2@Ag functionalized with lipoic acid could be successfully used in certain concentrations to modulate the cell cycle, in order to obtain the desired anti-proliferative or stimulatory therapeutic effect.
Collapse
Affiliation(s)
- Madalina Tudose
- "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei No. 202, 060021 Bucharest, Romania.
| | - Daniela Cristina Culita
- "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei No. 202, 060021 Bucharest, Romania.
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Simona Somacescu
- "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Cornel Ghica
- National Institute of Materials Physics, Atomistilor Street No. 405A, 077125 Magurele, Romania
| | - Mariana Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Microbiology Immunology Department, Aleea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Coralia Bleotu
- "Stefan S. Nicolau" Institute of Virology, Mihai Bravu Avenue No. 285, 030304 Bucharest, Romania
| |
Collapse
|
24
|
Song EJ, Chan MWY, Shin JW, Chen CC. Hard clam extracts induce atypical apoptosis in human gastric cancer cells. Exp Ther Med 2017; 14:1409-1418. [PMID: 28810604 PMCID: PMC5525584 DOI: 10.3892/etm.2017.4630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
Hard clams (HCs) are a nutritionally high-quality and popular seafood, and are established to be a potent antitumor food. The aim of the present study was to determine whether HC extracts induce apoptosis in the human gastric cancer cell line, AGS. In contrast with previously reported methods of extraction, crude extracts of HC were obtained by freezing and thawing and by a method free of hot water or organic solvents. The composition, quality and properties of the HC extracts were demonstrated to be stable since the extracts that were evaluated by capillary electrophoresis and HPLC analysis at different timepoints were similar. HC extracts also have an inhibitory effect against the survival of AGS cells. Treatment with HC extracts induced a marked sub-G1 DNA peak and reduced the expression of the anti-apoptotic genes BIRC5 and KPNA2. However, hallmarks of classical apoptosis such as DNA fragmentation and apoptotic body formation were not observed, indicating atypical apoptosis. Furthermore, it was revealed that HC extracts interrupted cell cycle progression in AGS cells through altered expression of six cell cycle-associated genes: CDC20, KPNA2, BIRC5, ANAPC2, CDKN1A and RB1. The present findings suggest that HC may contribute to a novel future anticancer agent.
Collapse
Affiliation(s)
- Eing-Ju Song
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan R.O.C
| | - Michael W Y Chan
- Department of Life Science, Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan R.O.C
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medical, National Cheng Kung University, Tainan 70403, Taiwan R.O.C
| | - Che-Chun Chen
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 60004, Taiwan R.O.C
| |
Collapse
|
25
|
AMPK/p53 Axis Is Essential for α-Lipoic Acid-Regulated Metastasis in Human and Mouse Colon Cancer Cells. J Investig Med 2016; 63:882-5. [PMID: 26312825 DOI: 10.1097/jim.0000000000000233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α-Lipoic acid (ALA) has an anticancer property of lung, cervix, and prostate cancer cells. However, direct evidence that ALA contributes to the development of colon cancer has not been fully elucidated. In addition, no previous studies have evaluated whether ALA may regulate malignant potential, such as adhesion, invasion, and colony formation of colon cancer cells. To address the aforementioned questions, we conducted in vitro ALA signaling studies using human (HT29) and mouse (MCA38) colon cancer cell lines. We observed that cell proliferation is reduced by ALA administration in a dose-dependent manner in human and mouse colon cancer cell lines. Specifically, 0.5 to 1 mM concentration of ALA significantly decreased cell proliferation when compared with control. Similarly, we found that ALA downregulates adhesion, invasion, and colony formation. Finally, we observed that ALA activates p53 and AMPK signaling pathways in human and mouse colon cancer cells. We found for the first time that ALA suppresses cell proliferation and malignant potential via p53 and AMPK signaling pathways in human and mouse colon cancer cells. These new and early mechanistic studies provide a causal role of ALA in colon cancer, suggesting that ALA might be a useful agent in the management or chemoprevention of colon cancer.
Collapse
|
26
|
Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett 2015; 371:12-9. [PMID: 26604131 DOI: 10.1016/j.canlet.2015.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023]
Abstract
The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties.
Collapse
Affiliation(s)
- Bastian Dörsam
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
27
|
Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells leading to cell death. J Ovarian Res 2015; 8:36. [PMID: 26063499 PMCID: PMC4470044 DOI: 10.1186/s13048-015-0165-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
Background Ovarian carcinoma is the leading cause of death from gynecological cancer because there is risk of chemoresistance. As previously demonstrated in our laboratory, Alpha-lipoic acid (LA), a co-factor for metabolic enzymes, suppresses the tumor growth. In this study, we have researched the mechanisms that are responsible for the activity of LA. Methods We have studied the mechanisms of LA in two ovarian cancer cell lines, a cisplatin sensitive one, IGROV1 and its resistant counterpart, IGROV1-R10. These cells have been exposed to lipoic acid at various concentrations. Cell proliferation, cell cycle repartition and nuclear staining with DAPI were recorded. Western blot analyses were performed to detect various proteins implied in apoptotic cell death pathways. To investigate the formation of ROS, the oxidation of CM-DCFH2-DA were also determined. Findings LA suppressed growth proliferation and induced apoptosis in both ovarian cell lines. Moreover, LA provoked a down regulation of two anti-apoptotic proteins, Mcl-1 and Bcl-xL protein and a strong induction of the BH3-only protein Bim. Furthermore, LA induced ROS generation which could be involved in the CHOP induction which is known to activate the Bim translation. Conclusions Our results reveal novel actions of LA which could explain the anti-tumoral effects of the LA. Therefore, LA seems to be a promising compound for ovarian cancer treatment.
Collapse
|
28
|
Omran OM, Omer OH. The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study. Pathol Res Pract 2015; 211:462-9. [DOI: 10.1016/j.prp.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
29
|
Bozhokina E, Khaitlina S, Gamaley I. Dihydrolipoic but not alpha-lipoic acid affects susceptibility of eukaryotic cells to bacterial invasion. Biochem Biophys Res Commun 2015; 460:697-702. [PMID: 25817791 DOI: 10.1016/j.bbrc.2015.03.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
Abstract
Sensitivity of eukaryotic cells to facultative pathogens can depend on physiological state of host cells. Previously we have shown that pretreatment of HeLa cells with N-acetylcysteine (NAC) makes the cells 2-3-fold more sensitive to invasion by the wild-type Serratia grimesii and recombinant Escherichia coli expressing gene of actin-specific metalloprotease grimelysin [1]. To evaluate the impact of chemically different antioxidants, in the present work we studied the effects of α-Lipoic acid (LA) and dihydrolipoic acid (DHLA) on efficiency of S. grimesii and recombinant E. coli expressing grimelysin gene to penetrate into HeLa and CaCo cells. Similarly to the effect of NAC, pretreatment of HeLa and CaCo cells with 0.6 or 1.25 mM DHLA increased the entry of grimelysin producing bacteria by a factor of 2.5 and 3 for the wild-type S. grimesii and recombinant E. coli, respectively. In contrast, pretreatment of the cells with 0.6 or 1.25 mM LA did not affect the bacteria uptake. The increased invasion of HeLa and CaCo cells correlated with the enhanced expression of E-cadherin and β-catenin genes, whereas expression of these genes in the LA-treated cells was not changed. Comparison of these results suggests that it is sulfhydryl group of DHLA that promotes efficient modification of cell properties assisting bacterial uptake. We assume that the NAC- and DHLA-induced stimulation of the E-cadherin-catenin pathway contributes to the increased internalization of the grimelysin producing bacteria within transformed cells.
Collapse
Affiliation(s)
| | - Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Irina Gamaley
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
30
|
Mirtaheri E, Pourghassem Gargari B, Kolahi S, Dehghan P, Asghari-Jafarabadi M, Hajalilou M, Shakiba Novin Z, Mesgari Abbasi M. Effects of Alpha-Lipoic Acid Supplementation on Inflammatory Biomarkers and Matrix Metalloproteinase-3 in Rheumatoid Arthritis Patients. J Am Coll Nutr 2015; 34:310-7. [DOI: 10.1080/07315724.2014.910740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Voronkina IV, Vakhromova EA, Kirpichnikova KM, Smagina LV, Gamaley IA. Matrix metalloproteinase activity in transformed cells exposed to an antioxidant. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes. Mol Cell Biochem 2015; 403:179-86. [DOI: 10.1007/s11010-015-2348-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
|
33
|
González-González L, Pérez-Cortéz JG, Flores-Aldana M, Macías-Morales N, Hernández-Girón C. [Antioxidant use as dietary therapy in patients with multiple sclerosis]. Medwave 2015; 15:e6065. [PMID: 25629306 DOI: 10.5867/medwave.2015.01.6065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Multiple sclerosis is an immune-mediated disease that produces chronic inflammation and neural degeneration. The disease progresses with acute attacks that result in myelin inflammation. This in turn increases oxidative stress and favors the appearance of reactive oxygen species. Reactive oxygen species damage neural cells causing apoptosis. The etiology of multiple sclerosis remains unknown and current therapy is aggressive and expensive. Recently, complementary and alternative medicine therapies have been proposed to control pathogenesis and symptoms of this disease. It is believed that these therapies help slow the progression of multiple sclerosis and improve survival. METHODS We conducted a MEDLINE/PubMed search using the following MeSH terms: diet, multiple sclerosis, antioxidants. We selected the main articles containing multiple sclerosis and diet. RESULTS We analyzed three case control studies that evaluated different dietary approaches in multiple sclerosis. For this review, we also included five experimental studies that studied the efficacy of lipoic acid in humans and rodents in diseases like multiple sclerosis, experimental autoimmune encephalomyelitis, and breast cancer.
Collapse
Affiliation(s)
- Laura González-González
- Escuela de Nutrición, Universidad Latinoamericana, Cuernavaca, México. Address: Av. Universidad N°. 655, CP 62100, Cuernavaca, Morelos, México.
| | | | - Mario Flores-Aldana
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Nayeli Macías-Morales
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Carlos Hernández-Girón
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| |
Collapse
|
34
|
Bingham PM, Stuart SD, Zachar Z. Lipoic acid and lipoic acid analogs in cancer metabolism and chemotherapy. Expert Rev Clin Pharmacol 2014; 7:837-46. [DOI: 10.1586/17512433.2014.966816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Sun T, Gao F, Lin X, Yu R, Zhao Y, Luan J, Li H, Song M. α-Lipoic acid (α-LA) inhibits the transcriptional activity of interferon regulatory factor 1 (IRF-1) via SUMOylation. Toxicol In Vitro 2014; 28:1242-8. [DOI: 10.1016/j.tiv.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022]
|
36
|
Yamasaki M, Soda S, Sakakibara Y, Suiko M, Nishiyama K. The importance of 1,2-dithiolane structure in α-lipoic acid for the downregulation of cell surface β1-integrin expression of human bladder cancer cells. Biosci Biotechnol Biochem 2014; 78:1939-42. [PMID: 25081893 DOI: 10.1080/09168451.2014.943647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Here, we show that cell surface β1-integrin expression, cell adhesion to fibronectin, migration, and invasion were all significantly inhibited by α-lipoic acid. These effects were not observed when cells were treated with dihydrolipoic acid or caprylic acid. These data reveal that the 1,2-dithiolane structure plays an important role in the action of α-lipoic acid.
Collapse
Affiliation(s)
- Masao Yamasaki
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | | | | | | | | |
Collapse
|
37
|
Yamasaki M, Iwase M, Kawano K, Sakakibara Y, Suiko M, Ikeda M, Nishiyama K. α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells. J Clin Biochem Nutr 2013; 54:18-25. [PMID: 24426186 PMCID: PMC3882485 DOI: 10.3164/jcbn.13-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Abstract
Our previous study showed α-lipoic acid (LA) downregulated cell surface β1-integrin expression of v-H-ras-transformed derivative of rat fibroblast with amelioration of their malignant phenotype. Here, we evaluated the ameliorating effect of LA on the malignant characters in H-ras-transformed bladder cancer cells. H-ras mutated bladder cancer line, T24 cells were incubated with LA to evaluate the inhibitory effect on proliferation, migration, invasion and β1-integrin expression. Fluorescence staining of F-actin and western blotting analyses of the related signaling pathways were also performed. LA inhibited the proliferation of T24 cells. Cell adhesion to collagen IV and fibronectin was strikingly inhibited by LA treatment accompanied by downregulation of cell surface but not whole cell β1-integrin expression. LA clearly inhibited cell migration and invasion of T24 cells, which were mimicked by extracellular signal-regulated kinase (ERK) and Akt pathway inhibition. Actually, LA significantly downregulated the phosphorylated ERK and Akt levels. Moreover, LA downregulated phosphorylated focal adhesion kinase level with disappearance of stress fiber formation. Finally, although LA induced the internalization of cell surface β1-integrin, disruption of the raft did not affect the action of LA. Taken together, LA is a promising agent to improve malignant character of bladder cancer cells through regulation of cellular β1-integrin localization.
Collapse
Affiliation(s)
- Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahiro Iwase
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Kazuo Kawano
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Masahiro Ikeda
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| | - Kazuo Nishiyama
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi Miyazaki 889-2192, Japan
| |
Collapse
|
38
|
Cavdar Z, Ozbal S, Celik A, Ergur BU, Guneli E, Ural C, Camsari T, Guner GA. The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem 2013; 89:304-14. [PMID: 24160412 DOI: 10.3109/10520295.2013.847498] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that are responsible for degradation of extracellular matrix (ECM); they are involved in the pathogenesis of ischemia-re-perfusion (I-R) injury. We investigated the possible preventive effect of alpha-lipoic acid (LA) in a renal I-R injury model in rats by assessing its reducing effect on the expression and activation of MMP-2 and MMP-9 induced by I-R. Rats were assigned to four groups: control, sham-operated, I-R (saline, i.p.) and I-R+ LA (100 mg/kg, i.p.). After a right nephrectomy, I-R was induced by clamping the left renal pedicle for 1 h, followed by 6 h re-perfusion. In the sham group, a right nephrectomy was performed and left renal pedicles were dissected without clamping and the entire left kidney was excised after 6 h. LA pretreatment was started 30 min prior to induction of ischemia. Injury to tubules was evaluated using light and electron microscopy. The expressions of MMP-2 and MMP-9 were determined by immunohistochemistry and their activities were analyzed by gelatin zymography. Serum creatinine was measured using a quantitative kit based on the Jaffe colorimetric technique. Malondialdehyde (MDA) and glutathione (GSH) were analyzed using high performance liquid chromatography. Tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 were assessed using enzyme-linked immunosorbent assay (ELISA). I-R caused tubular dilatation and brush border loss. LA decreased both renal dysfunction and abnormal levels of MDA and GSH during I-R. Moreover, LA decreased significantly both MMP-2 and MMP-9 expressions and activations during I-R. TIMP-1 and TIMP-2 levels were increased significantly by LA administration. LA modulated increased MMP-2 and MMP-9 activities and decreased TIMP-1 and TIMP-2 levels during renal I-R.
Collapse
Affiliation(s)
- Z Cavdar
- Department of Molecular Medicine, Health Sciences Institute
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kapoor S. The Anti-neoplastic Effects of Alpha-Lipoic Acid: Clinical Benefits in System Tumors besides Lung Carcinomas. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2013; 46:162-3. [PMID: 23614108 PMCID: PMC3631796 DOI: 10.5090/kjtcs.2013.46.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/21/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022]
|
40
|
Chen HW, Chao CY, Lin LL, Lu CY, Liu KL, Lii CK, Li CC. Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Arch Toxicol 2013; 87:857-69. [PMID: 23288142 DOI: 10.1007/s00204-012-1003-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a crucial role in tumor metastasis. Previous studies showed that polyunsaturated fatty acids exhibit an anti-cancer effect in various human carcinoma cells, but the effect of docosahexaenoic acid (DHA) and linoleic acid (LA) on metastasis of breast cancer cells is not fully clarified. We studied the anti-metastasis potential of DHA and LA in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. We found that TPA (100 ng/ml) induced MMP-9 enzyme activity both dose- and time-dependently, and 200 μM DHA and LA significantly inhibited MMP-9 mRNA and protein expression, enzyme activity, cell migration, and invasion. Treatment with PD98059 (10 μM), wortmannin (10 μM), and GF109203X (0.5 μM) decreased TPA-induced MMP-9 protein expression and enzyme activity. TPA-induced activation of ERK1, Akt, and PKCδ was attenuated by DHA, whereas LA attenuated only ERK1 activation. GF109203X also suppressed ERK1 activation. EMSA showed that DHA, LA, PD98059, and wortmannin decreased TPA-induced NF-κB and AP-1 DNA-binding activity. Furthermore, DHA rather than LA dose-dependently increased HO-1 expression. HO-1 siRNA alleviated the inhibition by DHA of TPA-induced MMP-9 protein expression and enzyme activity in MCF-7 cells, and HO-1 knockdown reversed the DHA inhibition of cell migration. These results suggest that DHA and LA have both similar and divergent signaling pathways in the suppression of TPA-induced MCF-7 metastasis.
Collapse
Affiliation(s)
- Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012; 65:553-65. [PMID: 23132681 DOI: 10.1007/s10616-012-9504-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022] Open
Abstract
Antitumor agents are used in therapy against many forms of human cancer. One of these is mitomycin-C (MMC). As with many agents, it can interact with biological molecules and can induce genetic hazards in non-tumor cells. One of the possible approaches to protect DNA from this damage is to supply antioxidants that can remove free radicals produced by antitumor agents. Lipoic acid (LA) is known as one of the most powerful antioxidants. The aim of this study was to investigate antigenotoxic effects of LA against MMC induced chromosomal aberrations (CA), sister chromatid exchanges (SCE) and micronucleus (MN) formation in human lymphocytes. Lymphocytes were treated with 0.2 μg MMC/heparinized mL for 48 h. Three different concentrations (0.5, 1, 2 μg/mL) of LA were used together with MMC in three different applications; 1 h pre-treatment, simultaneous treatment and 1 h post-treatment. A negative, a positive and a solvent control were also included. In all the cultures treated with MMC + LA, the frequency of abnormal cells and CA/cell significantly decreased compared to MMC. Statistically significant reduction was also observed in SCE/cell and MN frequencies in all treatments. These results demonstrated anticlastogenic and antimutagenic effects of LA against MMC induced genotoxicity. LA showed the most efficient effect during 1 h pretreatment. On the other hand, MMC + LA treatments induced significant reduction in mitotic index than that of MMC treatment alone. These results are encouraging that LA can be a possible chemopreventive agent in tumorigenesis in both cancer patients and in health care persons handling anti-cancer drugs.
Collapse
|
42
|
Huang S, Yang N, Liu Y, Hu L, Zhao J, Gao J, Li Y, Li C, Zhang X, Huang T. Grape seed proanthocyanidins inhibit angiogenesis via the downregulation of both vascular endothelial growth factor and angiopoietin signaling. Nutr Res 2012; 32:530-6. [PMID: 22901561 DOI: 10.1016/j.nutres.2012.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF)/VEGF receptor 2 and angiopoietin 1/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 signaling pathways regulate different, but complementary, aspects of blood vessel growth in tumors. Simultaneous inhibition of both pathways not only exhibits additive antiangiogenic effects but also overcomes the resistance to anti-VEGF therapy. Grape seed proanthocyanidins (GSPs) are widely consumed dietary supplements with antiangiogenic activity. However, the molecular mechanisms underlying their antiangiogenic action have not been fully understood. We hypothesized that GSPs modulate multiple signaling pathways to exhibit antiangiogenic effects. In the present study, we aimed to test this hypothesis by examining the effects of GSPs on human microvascular endothelial cell-1 and chick chorioallantoic membrane. Our results showed that GSPs inhibited the migration, matrix metalloproteinase-2 and -9 secretion, and tube formation of human microvascular endothelial cell-1 in vitro in a dose-dependent manner. In addition, chick chorioallantoic membrane angiogenesis assay showed that GSPs inhibited neovascularization in a dose-dependent manner. Furthermore, we demonstrated that GSPs inhibited the phosphorylation of VEGF receptor 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 as well as downstream signaling component extracellular signal-regulated kinase 1/2. In summary, these data suggest that GSPs inhibit both VEGF and angiopoietin 1 signaling to execute the antiangiogenic effects and indicate that GSPs could be developed as a pharmacologically safe chemopreventive agent against cancer.
Collapse
Affiliation(s)
- Shuangsheng Huang
- Medical College of Northwest University for Nationalities, Lanzhou 730030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid – biological activity and therapeutic potential. Pharmacol Rep 2011; 63:849-58. [DOI: 10.1016/s1734-1140(11)70600-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/06/2011] [Indexed: 12/17/2022]
|