1
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
2
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
3
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
4
|
Zhang M, Hu Y, Yang F, Zhang J, Zhang J, Yu W, Wang M, Lv X, Li J, Bai T, Chang F. Interaction between AhR and HIF-1 signaling pathways mediated by ARNT/HIF-1β. BMC Pharmacol Toxicol 2022; 23:26. [PMID: 35473600 PMCID: PMC9044668 DOI: 10.1186/s40360-022-00564-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/29/2022] [Indexed: 04/12/2024] Open
Abstract
Background The main causes of lung cancer are smoking, environmental pollution and genetic susceptibility. It is an indisputable fact that PAHs are related to lung cancer, and benzo(a) pyrene is a representative of PAHs. The purpose of the current investigation was to investigate the interaction between AhR and HIF-1 signaling pathways in A549 cells, which provide some experimental basis for scientists to find drugs that block AhR and HIF-1 signaling pathway to prevent and treat cancer. Methods This project adopts the CYP1A1 signaling pathways and the expression of CYP1B1 is expressed as a measure of AhR strength index. The expression of VEGF and CAIX volume as a measure of the strength of the signal path HIF-1 indicators. Through the construction of plasmid vector, fluorescence resonance energy transfer, real-time quantitative PCR, western blotting and immunoprecipitation, the interaction between AhR signaling pathway and HIF-1 signaling pathway was observed. Results BaP can enhance the binding ability of HIF-1α protein to HIF-1β/ARNT in a dose-dependent manner without CoCl2. However, the binding ability of AhR protein to HIF-1β/ARNT is inhibited by HIF-1α signaling pathway in a dose-dependent manner with CoCl2. Conclusion It is shown that activation of the AhR signaling pathway does not inhibit the HIF-1α signaling pathway, but activation of the HIF-1α signaling pathway inhibits the AhR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00564-8.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Pharmacy Experimental Teaching Center of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Research Center for Drug Screening, Hohhot, China
| | - Yuxia Hu
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Hohhot, China
| | - Jingwen Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jianxin Zhang
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Wanjia Yu
- Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Minjie Wang
- Department of Pharmacology of Basic medical College, Inner Mongolia Medical university, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- Inner Mongolia Research Center for Drug Screening, Hohhot, China.,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| | - Fuhou Chang
- Inner Mongolia Research Center for Drug Screening, Hohhot, China. .,The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, China. .,Department of Pharmacology of Pharmaceutical College, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
5
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
6
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
7
|
Doan TQ, Connolly L, Igout A, Muller M, Scippo ML. In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114966. [PMID: 32563119 DOI: 10.1016/j.envpol.2020.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and several other environment/food-borne toxic compounds induce their toxicity via the aryl hydrocarbon receptor (AhR). AhR is also modulated by various endogenous ligands e.g. highly potent tryptophan (Trp)-derivative FICZ (6-formylindolo[3,2-b]carbazole) and natural ligands abundant in the human diet e.g. polyphenols. Therefore, evaluating AhR species-specific responses is crucial for understanding AhR physiological functions, establishing risk assessments, and exploring the applicability of AhR mediators in drug and food industry towards human-based usages. We studied AhR transactivation of FICZ/TCDD in vitro in a time-dependent and species-specific manner using dioxin responsive luciferase reporter gene assays derived from rat (DR-H4IIE) and human (DR-HepG2) hepatoma cells. We observed for the first time that FICZ potency was similar in both cell lines and was 40 times higher than TCDD in DR-HepG2 cells. Depleting Trp-derivative endogenously produced ligands by using culture medium without Trp, resulted in 3-fold higher AhR activation upon adding FICZ in DR-H4IIE cells, in contrast to DR-HepG2 cells which revealed a fast degradation of FICZ induction from 10 h post-exposure to complete disappearance after 24 h. Seven polyphenols and a mixture thereof, chosen based on commercially recommended doses and adjusted to human realistic exposure, caused rat and human species-specific AhR responses. Two isoflavones (daidzein and genistein) induced rat AhR synergistic effects with FICZ and/or TCDD, while quercetin, chrysin, curcumin, resveratrol, and the mixture exerted a strong inhibitory effect on the human AhR. Strikingly, resveratrol and quercetin at their realistic nanomolar concentrations acted additively in the mixture to abolish human AhR activation induced by various TCDD concentrations. Taken together, these results illustrate the species-specific complexity of AhR transcriptional activities modulated by various ligands and highlight the need for studies of human-based approaches.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
8
|
Licata P, Piccione G, Fazio F, Lauriano ER, Calò M. Protective effects of genistein on cytochrome P-450 and vitellogenin expression in liver of zebrafish after PCB-126 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:71-76. [PMID: 31004905 DOI: 10.1016/j.scitotenv.2019.03.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The objective of the research is to study the action of Vitellogenin and P-4501A1 following coexposure at different times to genistein and PCB-126 using zebrafish as a model system. Polychlorinated biphenyls are ubiquitous substances in environment. The genistein is a phytoestrogen extracted from soybeans and it's contained in food for humans and animals. For this study, 200 adult zebrafish were used. Our findings show a marked immunoreactivity of Vtg at 12h in liver than the control with only PCB-126. Regarding effects of PCB-126 on Vtg after pretreatment with genistein in fishes, the immunohistochemistry results show a minor increase at 12h. After 24h the immunoreactivity is lower than 12h and then slightly increased at 72h with only PCB-126 and PCB-126 and genistein together. CYP1A1 progressively increases from 12h to 72h in all groups with minor immunoreactivity when we treated fish with genistein and PCB-126. We show a reduction in the estrogenic effect when the fishes were treated with genistein and PCB-126 together at 12h than the group treated with only PCB-126. Moreover, low concentrations of genistein decrease the marked P450 expression induced by PCB-126. This shows that genistein decreases the expression of P450 target genes mediated by AhR.
Collapse
Affiliation(s)
- Patrizia Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Margherita Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| |
Collapse
|
9
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|