1
|
Zhang M, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Pomegranate: A Comprehensive Review of Functional Components, Health Benefits, Processing, Food Applications, and Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5649-5665. [PMID: 40001286 DOI: 10.1021/acs.jafc.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Pomegranate gained widespread attention for its potential "medicine and food homology" properties. This review aims to elucidate the main health benefits of the functional components of pomegranate and to summarize its processing and application. It explores current research limitations and proposes potential research directions. Pomegranate juice is rich in punicalagin, ellagic acid, and cyanidin-3-O-glucoside. The gut microbiota metabolites of these compounds could exert biological effects through Nrf2/HO-1, miR-126/VCAM-1, Akt/IKK/NF-κB, and SIRT1/PGC-1α signaling pathways. The pomegranate peel also contains these components, which can be extracted by microwave-assisted extraction, ultrasonic-assisted extraction, and pressurized liquid extraction and then used in food additives or functional foods. Furthermore, safety concerns exist due to variations in extraction methods and potential food-drug interactions. This paper emphasizes the importance of developing standardized extraction methods and clear intake dosage guidelines, which will lay the foundation for the application of pomegranate in the food industry.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
2
|
Chen K, Ying J, Zhu J, Chen L, Liu R, Jing M, Wang Y, Zhou K, Wu L, Wu C, Xiao J, Ni W. Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury. Int Immunopharmacol 2025; 148:114057. [PMID: 39827665 DOI: 10.1016/j.intimp.2025.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health. Yet, its effects on acute inflammation following SCI remain unclear. In this study, we developed an impact-induced mouse model for SCI and treated the injured mice with UA (50 mg/kg/d, till 8 weeks) via intragastric administration. Furthermore, we subjected BV2 cells to lipopolysaccharide and adenosine 5'-triphosphate to simulate the post-injury inflammatory response. Our results demonstrated that pre-treatment with UA (10 μM) effectively inhibited NLRP3 inflammasome activation in LPS-primed BV2 cells. This inhibition was evidenced by reduced cleaved Caspase-1 and mature IL-1β release, diminished ASC speck formation, and decreased gasdermin D (GSDMD)-mediated pyroptosis. Additionally, UA treatment restored mitochondrial activity and ROS production attenuated by NLRP3 activation, increased LC3-II expression, and enhanced LC3 co-localization with mitochondria. 3-Methyladenine (3-MA), an autophagy inhibitor, can partially reverse the stimulatory effect of UA on mitophagy, as well as the inhibitory effect of UA on pyroptosis. This study highlighted the protective role of UA against SCI through its promotion of mitophagy, which in turn inhibits NLRP3 inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Kongbin Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiahao Ying
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiangwei Zhu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Liang Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Rongjie Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Mengqi Jing
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Yuchao Wang
- Department of Orthopedic, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116600, China
| | - Kailiang Zhou
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Long Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China.
| | - Chenyu Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Jian Xiao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Wenfei Ni
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| |
Collapse
|
3
|
Baghdadi G, Shidfar F, Dehnad A. The effect of pomegranate consumption on cardiovascular risk factors in hemodialysis patients: A systematic review of clinical trials. Phytother Res 2023; 37:4963-4975. [PMID: 37485775 DOI: 10.1002/ptr.7961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Patients undergoing maintenance dialysis have a significantly higher incidence of cardiovascular disease (CVD) compared with the general population. CVD is the most common cause of morbidity and mortality among hemodialysis patients, and has been attributed, among other causes, to increased oxidative stress, inflammation, hypertension and dyslipidemia. Pomegranate, a popular fruit worldwide, has demonstrated health benefits such as antioxidative, antidiabetic, antihypertensive, antihyperlipidemic and anti-inflammatory effects. In this systematic review of clinical trials, we aim to summarize the effect of different parts of pomegranate and the effects of its use on CVD risk factors in hemodialysis patients. PubMed/MEDLINE, EMBASE, Scopus, and Web of Science were searched to identify eligible clinical trials up to December 2021. Ultimately, seven clinical trials were included in this study. Different parts of pomegranate used in these trials were pomegranate juice, pomegranate extract and pomegranate peel extract. The duration of the studies varied from one dialysis session to 1 year. Our results showed that different parts of pomegranate may have anti-hypertensive, antioxidant, anti-inflammatory effects and improve lipid profile by decreasing TG (triglycerides) and increasing HDL-C (high-density lipoprotein cholesterol) in hemodialysis patients. However, due to limited number of studies, more clinical trials need to be performed.
Collapse
Affiliation(s)
- Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Dehnad
- Department of English Language, School of Health Management and Information Sciences, Center for Educational Research in Medical Sciences (CERMS), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tse YH, Tuet CY, Lau KK, Tse HF. Dietary modification for prevention and control of high blood pressure. Postgrad Med J 2023; 99:1058-1067. [PMID: 37286197 DOI: 10.1093/postmj/qgad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 06/09/2023]
Abstract
Hypertension (HT) remains the leading cause of cardiovascular and premature death around the world. Diet is one of the important factors that contributes to the development of HT. We review the current evidence of how different dietary factors may influence blood pressure (BP) and consequent development of HT. There is evidence that BP is positively associated with higher consumption of sodium, alcohol, animal-based protein such as red meat, low-quality carbohydrates such as sugar-sweetened beverages, and saturated fatty acids. On the contrary, other dietary constituents have BP-lowering effects. These include potassium, calcium, magnesium, yogurt, eggs, plant-based proteins such as soy and legumes, mono- and polyunsaturated fatty acids, and high-quality carbohydrates such as whole grain and fruits. Dietary fibre is unrelated to BP lowering, possibly due to the different mechanisms of various types of fibre. The effects of caffeine, hibiscus tea, pomegranate, and sesame on BP are also unclear as evidence is hard to assess due to the varying concentrations and different types of drinks used in studies. Implementing dietary changes such as the Dietary Approaches to Stop Hypertension (DASH diet) or adopting a Mediterranean diet has been shown to reduce and control BP. Although the effect of diet on BP control has been established, the optimal amount of each dietary component and consequent ability to devise a personalized diet for HT prevention and BP control for different populations still require further investigation.
Collapse
Affiliation(s)
- Yiu-Hei Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Choi-Yee Tuet
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui-Kai Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
5
|
Wan R, Song J, Lv Z, Qi X, Han X, Guo Q, Wang S, Shi J, Jian Z, Hu Q, Chen Y. Genome-Wide Identification and Comprehensive Analysis of the AP2/ERF Gene Family in Pomegranate Fruit Development and Postharvest Preservation. Genes (Basel) 2022; 13:895. [PMID: 35627280 PMCID: PMC9141937 DOI: 10.3390/genes13050895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a kind of fruit with significant economic, ecological and health values. AP2/ERF transcription factors belong to a large group of factors mainly found in plants and play key roles in plant growth and development. However, AP2/ERF genes in pomegranate and their implication in development and postharvest preservation have been little described. In this study, 116 PgAP2/ERF genes in pomegranate were identified and renamed based on their chromosomal distributions. Phylogenetic relationship with genes from other species, structures, duplications, annotations, cis-elements in promoter sequences, and protein-protein interaction networks among PgAP2/ERF proteins were comprehensively explored. Expression analysis revealed several PgAP2/ERFs associated with the phenotypes of pomegranate seed hardness, including PgAP2/ERF5, PgAP2/ERF36, PgAP2/ERF58, and PgAP2/ERF86. Subsequent analysis indicated that many differentially expressed PgAP2/ERF genes are potentially important regulators of pomegranate fruit development. Furthermore, expression of more than one-half of PgAP2/ERFs was repressed in 'Tunisian soft seed' pomegranate fruit under low-temperature cold storage. The results showed that 1-MCP implicated in promoting postharvest preservation of 'Tunisian soft seed' pomegranate upregulated the PgAP2/ERF4, PgAP2/ERF15, PgAP2/ERF26, PgAP2/ERF30, PgAP2/ERF35 and PgAP2/ERF45 genes compared to those under low-temperature cold storage. This indicates that these genes are important candidate genes involved in pomegranate postharvest preservation. In summary, the findings of the present study provide an important basis for characterizing the PgAP2/ERF family genes and provide information on the candidate genes involved in pomegranate fruit development and postharvest preservation.
Collapse
Affiliation(s)
- Ran Wan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jinhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zhenyang Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xingcheng Qi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xuemeng Han
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qiang Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Sa Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qingxia Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
- Henan Key Laboratory of Fruit and Cucurbit Biology, College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
7
|
Qi M, Wang N, Xiao Y, Deng Y, Zha A, Tan B, Wang J, Yin Y, Liao P. Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118572. [PMID: 34838710 DOI: 10.1016/j.envpol.2021.118572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Collapse
Affiliation(s)
- Ming Qi
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Andong Zha
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Peng Liao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| |
Collapse
|
8
|
Wong TL, Strandberg KR, Croley CR, Fraser SE, Nagulapalli Venkata KC, Fimognari C, Sethi G, Bishayee A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin Cancer Biol 2021; 73:265-293. [DOI: 10.1016/j.semcancer.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
|
9
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Urolithin A attenuates renal fibrosis by inhibiting TGF-β1/Smad and MAPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Ellagic Acid Suppresses ApoB Secretion and Enhances ApoA-1 Secretion from Human Hepatoma Cells, HepG2. Molecules 2021; 26:molecules26133885. [PMID: 34202121 PMCID: PMC8271888 DOI: 10.3390/molecules26133885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
The effect of ellagic acid (EA), a naturally occurring polyphenolic compound, on the secretion of apolipoproteins from human hepatocytes, HepG2, was investigated. The levels of apoB and apoA-1 secreted in the cell culture medium were determined by sandwich ELISA. EA did not affect cell viability at the tested concentrations (up to 50 µM). EA suppressed the secretion of apoB and enhanced that of apoA-1 from HepG2 cells. However, cellular apoB levels were increased, suggesting that EA inhibited the trafficking of apoB during the process of secretion. In contrast, the increase in the cellular levels of apoA-1 was consistent with its secreted levels. These results indicate that EA inhibits the secretion of apoB from hepatocytes and increases the secretion of apoA-1. Both of these effects are beneficial for lipoprotein metabolism in the prevention of lifestyle-related diseases. The detailed mechanism underlying these effects of EA on lipoprotein metabolism should be elucidated in the future, but this naturally occurring polyphenolic compound might be antihyperlipidemic. Based on these results, EA is suggested as a candidate food-derived compound for the prevention of hyperlipidemia.
Collapse
|
12
|
Melgarejo-Sánchez P, Núñez-Gómez D, Martínez-Nicolás JJ, Hernández F, Legua P, Melgarejo P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. BIORESOUR BIOPROCESS 2021; 8:2. [PMID: 38650225 PMCID: PMC10973758 DOI: 10.1186/s40643-020-00351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomegranate (Punica granatum L.) belongs to the Punicaceae plant family. It is an important fruit due to its nutritional and medicinal properties. Pomegranates are widely distributed around the world and, therefore, have a broad genetic diversity, resulting in differences in their phytochemical composition. The scientific community has focused on the positive health effects of pomegranate as a whole, but the different varieties have rarely been compared according to their bioactive compounds and bioactivity. This review aims to provide a holistic overview of the current knowledge on the bioactivity of pomegranate trees, with an emphasis on differentiating both the varieties and the different plant parts. This review intends to provide a general and organized overview of the accumulated knowledge on pomegranates, the identification of the most bioactive varieties, their potential consumption pathways and seeks to provide knowledge on the present gaps to guide future research.
Collapse
Affiliation(s)
- Pablo Melgarejo-Sánchez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Dámaris Núñez-Gómez
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain.
| | - Juan J Martínez-Nicolás
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Francisca Hernández
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pilar Legua
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| | - Pablo Melgarejo
- Plant Production and Microbiology Department, Orihuela Polytechnical High School (EPSO), Miguel Hernandez University, Ctra. Beniel Km 3.2, 03312, Orihuela, Spain
| |
Collapse
|
13
|
Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 2019; 10:89. [PMID: 30626868 PMCID: PMC6327034 DOI: 10.1038/s41467-018-07859-7] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2–related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases. Urolithins are microbial metabolites derived from food polyphenols. Here, Singh et al. show that urolithin A and a synthetic analogue enhance gut barrier function via Nrf2-dependent pathways and mitigate inflammation and colitis in mice, highlighting a potential application for inflammatory bowel diseases.
Collapse
|