1
|
Han L, Wang Z, Chen H, Li J, Zhang S, Zhang S, Shao S, Zhang Y, Shen C, Tao H. Sa12b-Modified Functional Self-Assembling Peptide Hydrogel Enhances the Biological Activity of Nucleus Pulposus Mesenchymal Stem Cells by Inhibiting Acid-Sensing Ion Channels. Front Cell Dev Biol 2022; 10:822501. [PMID: 35252187 PMCID: PMC8888415 DOI: 10.3389/fcell.2022.822501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Various hydrogels have been studied for nucleus pulposus regeneration. However, they failed to overcome the changes in the acidic environment during intervertebral disc degeneration. Therefore, a new functionalized peptide RAD/SA1 was designed by conjugating Sa12b, an inhibitor of acid-sensing ion channels, onto the C-terminus of RADA16-I. Then, the material characteristics and biocompatibility of RAD/SA1, and the bioactivities and mechanisms of degenerated human nucleus pulposus mesenchymal stem cells (hNPMSCs) were evaluated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that RAD/SA1 self-assembling into three-dimensional (3D) nanofiber hydrogel scaffolds under acidic conditions. Analysis of the hNPMSCs cultured in the 3D scaffolds revealed that both RADA16-I and RAD/SA1 exhibited reliable attachment and extremely low cytotoxicity, which were verified by SEM and cytotoxicity assays, respectively. The results also showed that RAD/SA1 increased the proliferation of hNPMSCs compared to that in culture plates and pure RADA16-I. Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting demonstrated that the expression of collagen I was downregulated, while collagen II, aggrecan, and SOX-9 were upregulated. Furthermore, Ca2+ concentration measurement and western blotting showed that RAD/SA1 inhibited the expression of p-ERK through Ca2+-dependent p-ERK signaling pathways. Therefore, the functional self-assembling peptide nanofiber hydrogel designed with the short motif of Sa12b could be used as an excellent scaffold for nucleus pulposus tissue engineering. Moreover, RAD/SA1 exhibits great potential applications in the regeneration of mildly degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Letian Han
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shanzhong Shao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinshun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
3
|
Hu A, Xing R, Jiang L, Li Z, Liu P, Wang H, Li X, Dong J. Thermosensitive hydrogels loaded with human‐induced pluripotent stem cells overexpressing growth differentiation factor‐5 ameliorate intervertebral disc degeneration in rats. J Biomed Mater Res B Appl Biomater 2020; 108:2005-2016. [DOI: 10.1002/jbm.b.34541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/29/2019] [Indexed: 08/30/2023]
Abstract
AbstractTo evaluate the effects of thermosensitive hydrogels loaded with human‐induced pluripotent stem cells transfected with the growth differentiation factor‐5 (GDF5‐hiPSCs) on rat intervertebral disc regeneration. GDF5‐hiPSCs were cocultured with rat nucleus pulposus (NP) cells in vitro. Real‐time PCR and western blot were used to determine the differentiation of hiPSCs. Rat caudal intervertebral discs were punctured using a needle under X‐ray, and groups of coccygeal (Co) discs were subject to various treatments: Puncture group (Co6/7, punctured without treatment); Hydrogel group (Co7/8, 2 μl of hydrogel injected without cells); GDF5‐hiPSCs + Hydrogel group (Co8/9, 2 μl of GDF5‐hiPSCs‐loaded hydrogel injected); and Normal control (Co5/6). X‐ray, MRI, and histological evaluations were performed at 1, 2, and 3 months after cell transplantation and relative changes in the disc height index (DHI%) and voxel count were calculated and compared. GDF5‐hiPSCs were successfully differentiated to a chondrogenic linage after cocultured with rat NP cells. In terms of X‐ray, MRI, and HE staining scores, the GDF5‐hiPSCs + Hydrogel group was significantly superior to the Puncture and Hydrogel groups (p < .05). Compared with the Normal group, the MRI‐based voxel count of the GDF5‐hiPSCs + Hydrogel group was significantly lower at 1, 2, and 3 months after cell transplantation (p < .05). However, there were no significant differences in histological scores at 1 and 2 months after cell transplantation compared with the Normal group (p > .05). In conclusion, thermosensitive hydrogel‐encapsulated hiPSCs overexpressing the GDF5 gene ameliorated intervertebral disc degeneration.
Collapse
Affiliation(s)
- Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Rong Xing
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Zefang Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Peng Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
4
|
Lin D, Alberton P, Delgado Caceres M, Prein C, Clausen‐Schaumann H, Dong J, Aszodi A, Shukunami C, Iatridis JC, Docheva D. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration. Aging Cell 2020; 19:e13091. [PMID: 32083813 PMCID: PMC7059137 DOI: 10.1111/acel.13091] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 01/30/2023] Open
Abstract
The intervertebral disc (IVD) degeneration is thought to be closely related to ingrowth of new blood vessels. However, the impact of anti-angiogenic factors in the maintenance of IVD avascularity remains unknown. Tenomodulin (Tnmd) is a tendon/ligament-specific marker and anti-angiogenic factor with abundant expression in the IVD. It is still unclear whether Tnmd contributes to the maintenance of IVD homeostasis, acting to inhibit vascular ingrowth into this normally avascular tissue. Herein, we investigated whether IVD degeneration could be induced spontaneously by the absence of Tnmd. Our results showed that Tnmd was expressed in an age-dependent manner primarily in the outer annulus fibrous (OAF) and it was downregulated at 6 months of age corresponding to the early IVD degeneration stage in mice. Tnmd knockout (Tnmd-/- ) mice exhibited more rapid progression of age-related IVD degeneration. These signs include smaller collagen fibril diameter, markedly lower compressive stiffness, reduced multiple IVD- and tendon/ligament-related gene expression, induced angiogenesis, and macrophage infiltration in OAF, as well as more hypertrophic-like chondrocytes in the nucleus pulposus. In addition, Tnmd and chondromodulin I (Chm1, the only homologous gene to Tnmd) double knockout (Tnmd-/- Chm1-/- ) mice displayed not only accelerated IVD degeneration, but also ectopic bone formation of IVD. Lastly, the absence of Tnmd in OAF-derived cells promoted p65 and matrix metalloproteinases upregulation, and increased migratory capacity of human umbilical vein endothelial cells. In sum, our data provide clear evidences that Tnmd acts as an angiogenic inhibitor in the IVD homeostasis and protects against age-related IVD degeneration. Targeting Tnmd may represent a novel therapeutic strategy for attenuating age-related IVD degeneration.
Collapse
Affiliation(s)
- Dasheng Lin
- Experimental Surgery and Regenerative MedicineClinic for General, Trauma and Reconstructive SurgeryLudwig‐Maximilians‐University (LMU)MunichGermany
- Orthopaedic Center of People’s Liberation ArmyThe Affiliated Southeast Hospital of Xiamen UniversityZhangzhouChina
| | - Paolo Alberton
- Experimental Surgery and Regenerative MedicineClinic for General, Trauma and Reconstructive SurgeryLudwig‐Maximilians‐University (LMU)MunichGermany
| | - Manuel Delgado Caceres
- Experimental Trauma SurgeryDepartment of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER)Munich University of Applied Sciences and Center for Nanoscience (CeNS)MunichGermany
| | - Hauke Clausen‐Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER)Munich University of Applied Sciences and Center for Nanoscience (CeNS)MunichGermany
| | - Jian Dong
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Attila Aszodi
- Experimental Surgery and Regenerative MedicineClinic for General, Trauma and Reconstructive SurgeryLudwig‐Maximilians‐University (LMU)MunichGermany
| | - Chisa Shukunami
- Department of Molecular Biology and BiochemistryGraduate School of Biomedical & Health SciencesHiroshima UniversityHiroshimaJapan
| | - James C Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Denitsa Docheva
- Experimental Trauma SurgeryDepartment of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| |
Collapse
|
5
|
Yuan D, Chen Z, Xiang X, Deng S, Liu K, Xiao D, Deng L, Feng G. The establishment and biological assessment of a whole tissue-engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed Mater Res B Appl Biomater 2019; 107:2305-2316. [PMID: 30680915 DOI: 10.1002/jbm.b.34323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain in the clinic. In the advanced stage of IDD, both cell transplantation and gene therapy have obvious limitations. At this stage, tissue-engineered IVDs (TE-IVDs) provide new hope for the treatment of this disease. We aimed to construct a TE-IVD with a relatively complete structure. The inner annulus fibrosus (AF) was constructed using poly (butylene succinate-co-terephthalate) copolyester (PBST) electrospun fibers, and the outer AF consisted of solid PBST. The nucleus pulposus (NP) scaffold was constructed using a chitosan hydrogel, as reported in our previous research. The three components were assembled in vitro, and the mechanical properties were analyzed. AF and NP cells were implanted on the corresponding scaffolds. Then, the cell-seeded scaffolds were implanted subcutaneously in nude mice and cultured for 4 weeks; then they were removed and implanted into New Zealand white rabbits. After 4 weeks, their properties were analyzed. The PBST outer AF provided mechanical support for the whole TE-IVD. The electrospun film and chitosan hydrogel simulated the natural structure of the IVD well. Its mechanical property could meet the requirement of the normal IVD. Four weeks later, X-ray and MR imaging examination results suggested that the height of the intervertebral space was retained. The cells on the TE-IVD expressed extracellular matrix, which indicated that the cells maintained their biological function. Therefore, we conclude that the whole TE-IVD has biological and biomechanical properties to some extent, which is a promising candidate for IVD replacement therapies. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2305-2316, 2019.
Collapse
Affiliation(s)
- Dechao Yuan
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China.,Department of Orthopedics, Zigong No.4 People's Hospital, Zigong, Sichuan, 643000, People's Republic of China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Shang Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Donqin Xiao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Li Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| |
Collapse
|
6
|
Lee JS, Lee SM, Jeong SW, Sung YG, Lee JH, Kim KW. Effects of age, replicative lifespan and growth rate of human nucleus pulposus cells on selecting age range for cell-based biological therapies for degenerative disc diseases. Biotech Histochem 2016; 91:377-85. [PMID: 27149303 DOI: 10.1080/10520295.2016.1179790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.
Collapse
Affiliation(s)
- J S Lee
- a Departments of Orthopedic Surgery , Seoul , Korea
| | - S M Lee
- a Departments of Orthopedic Surgery , Seoul , Korea
| | - S W Jeong
- b Orthopedic Research, Medical Research Institute , Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul , Korea
| | - Y G Sung
- a Departments of Orthopedic Surgery , Seoul , Korea
| | - J H Lee
- a Departments of Orthopedic Surgery , Seoul , Korea
| | - K W Kim
- a Departments of Orthopedic Surgery , Seoul , Korea
| |
Collapse
|
7
|
Priyadarshani P, Li Y, Yao L. Advances in biological therapy for nucleus pulposus regeneration. Osteoarthritis Cartilage 2016; 24:206-12. [PMID: 26342641 DOI: 10.1016/j.joca.2015.08.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The intervertebral disc (IVD) is composed of the external annulus fibrosus (AF) and the inner gel-like center, the nucleus pulposus (NP). The elastic NP can function to relieve stress and maintain IVD function by distributing hydraulic pressure evenly to annulus and endplate. Degeneration of the NP, which leads to increased death of NP cells, the loss of proteoglycan (PG), and aberrant gene expression, may result in an overall alteration of the biomechanics of the spinal column and cause low back pain. Recent advances in biological therapy strategies that target therapy at the regeneration of degenerated and damaged NP have been investigated in in vitro and in vivo studies and demonstrated promising outcomes. In this article, we review recent studies of biological approaches for NP regeneration. METHOD The articles regarding NP regeneration using biomaterials, stem cells, and gene vectors were identified in PubMed databases. RESULTS Stem cell-mediated cell therapy demonstrates the potential to restore the function and structure of the NP. The viral or non-viral vectors encoding functional genes may generate a therapeutic effect when they are introduced into grafted cells or native cells in the NP. Biomaterial scaffolds generate an initial permissive environment for cell growth and allow the remodeling of scaffolds in the regeneration process. Biomaterial scaffolds provide structural support for NP regeneration and serve as a carrier for stem cell and gene vector delivery. CONCLUSION Though recent studies advance the body of knowledge needed to treat degenerated discs, many challenges need to be overcome before the application of these approaches can be successful clinically.
Collapse
Affiliation(s)
- P Priyadarshani
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| | - Y Li
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| | - L Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
8
|
Mern DS, Thomé C. Identification and characterization of human nucleus pulposus cell specific serotypes of adeno-associated virus for gene therapeutic approaches of intervertebral disc disorders. BMC Musculoskelet Disord 2015; 16:341. [PMID: 26552484 PMCID: PMC4640218 DOI: 10.1186/s12891-015-0799-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Background Intervertebral disc (IVD) disorders are often accompanied by painful inflammatory and immunopathological processes. Nucleus pulposus (NP) cells play a pivotal role in maintenance of IVD by organizing the expression of anabolic, catabolic, anti-catabolic and inflammatory cytokines. Human NP cells have been targeted by gene therapeutic approaches using lentiviral or adenoviral systems that could be critical due to genome incorporation or immunological side effects. Adeno-associated viruses (AAVs), which do not express any viral gene and are not linked with any known disease in humans, are attractive gene delivery vectors. However, their lack of specific tissue tropism and preexisting immune response are main problems for therapeutic applications. Heretofore, AAVs have not been studied in human IVD research. Therefore, we attempted to identify NP cell specific AAV serotype by targeting human NP cells with different self-complementary AAV (scAAV) serotypes. Identification and characterization of the proper serotype is crucial to establish less immunogenic and safer gene therapeutic approaches of IVD disorders. Methods Preoperative magnetic resonance imaging (MRI) was used for grading of IVD degeneration. NP cells were isolated, cultured with low-glucose and transduced with green fluorescent protein (GFP) packing scAAV serotypes (scAAV1-8) in a dose-dependent manner. scAAV titers were determined by quantitative polymerase chain reaction (qPCR). Transduction efficiencies were determined by fluorescence microscopy and fluorescence-activated cell sorting within 48 days of post-transduction. The 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine NP cell viability. Three-dimensional (3D) cell culture and enzyme-linked immunosorbant assay (ELISA) were performed to examine the expression levels of inflammatory, catabolic and matrix proteins in NP cells. Results scAAV6, scAAV2 and scAAV3 showed high and prolonged transgene GFP expressions with transdution efficiencies of 98.6 %, 91.5 % and 89.6 % respectively (p ≤ 0.002). Unlike scAAV6, the serotypes scAAV2 and scAAV3 declined the viability of NP cells by about 25 % and 10 % respectively (p ≤ 0.001). Moreover, scAAV6 did not affect the expression of the inflammatory, catabolic and matrix proteins. Conclusions As original primary research evaluating AAVs in degenerative human IVDs, this study identified scAAV6 as a proper serotype for high, stable and non-immunogenic target gene expression in human NP cells. The data could be very important to design efficient and safer gene therapeutic approaches of IVD disorders.
Collapse
Affiliation(s)
- Demissew S Mern
- Department of Neurosurgery, Innsbruck Medical University, Anichstrasse 35, Innsbruck, A-6020, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Anichstrasse 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
9
|
3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. Int J Mol Sci 2015; 16:15118-35. [PMID: 26151846 PMCID: PMC4519890 DOI: 10.3390/ijms160715118] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/04/2022] Open
Abstract
Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.
Collapse
|
10
|
Henry N, Colombier P, Lescaudron L, Hamel O, Le Bideau J, Guicheux J, Clouet J. Médecine régénératrice du disque intervertébral. Med Sci (Paris) 2014; 30:1091-100. [DOI: 10.1051/medsci/20143012012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
11
|
Sun W, Zhang K, Zhao CQ, Ding W, Yuan JJ, Sun Q, Sun XJ, Xie YZ, Li H, Zhao J. Quantitative T2 mapping to characterize the process of intervertebral disc degeneration in a rabbit model. BMC Musculoskelet Disord 2013; 14:357. [PMID: 24344686 PMCID: PMC3878325 DOI: 10.1186/1471-2474-14-357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/16/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To investigate the potential of T2 mapping for characterizing the process of intervertebral disc degeneration (IDD) in a rabbit model. METHODS Thirty-five rabbits underwent an annular stab to the L4/5 discs (L5/6 discs served as internal normal controls). Degenerative changes were graded according to the modified Thompson classification and quantified in T2 respectively at pre-operation, 1, 3, 6, 12 and 24 weeks postoperatively. After MRI analysis, expression analysis of aggrecan and type II collagen gene in nucleus pulposus (NP) was performed using real time polymerase chain reaction (real-time PCR). The longitudinal changes in NP T2 and gene expressions were studied by repeated measures and ANOVA, linear regression was performed for their correlations through the process of IDD. The reliability analysis of method of measurement of NP T2 was also performed. RESULTS There was a strong inverse correlation between NP T2 and Thompson grades (r = -0.85). The decline of L4/5 NP T2 through 24 weeks was nonlinear, the most significant decrease was observed in 3 weeks postoperatively (P<0.05). The tendency was confirmed at gene expression levels. NP T2 correlated strongly with aggrecan (R² = 0.85, P<0.01) and type II collagen (R² = 0.78, P<0.01) gene expressions. The intraclass correlation coefficients for interobserver and intraobserver reliability were 0.963 and 0.977 respectively. CONCLUSIONS NP T2 correlates well with aggrecan and type II collagen gene expressions. T2 mapping could act as a sensitive, noninvasive tool for quantitatively characterizing the process of IDD in longitudinal study, help better understanding of the pathophysiology of IDD, assist us to detect the degenerative cascade, and develop a T2-based quantification scale for evaluation of IDD and efficacy of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China.
| |
Collapse
|
12
|
Kazemi N, Crew LK, Tredway TL. The future of spine surgery: New horizons in the treatment of spinal disorders. Surg Neurol Int 2013; 4:S15-21. [PMID: 23653885 PMCID: PMC3642747 DOI: 10.4103/2152-7806.109186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/31/2012] [Indexed: 02/07/2023] Open
Abstract
Background and Methods: As with any evolving surgical discipline, it is difficult to predict the future of the practice and science of spine surgery. In the last decade, there have been dramatic developments in both the techniques as well as the tools employed in the delivery of better outcomes to patients undergoing such surgery. In this article, we explore four specific areas in spine surgery: namely the role of minimally invasive spine surgery; motion preservation; robotic-aided surgery and neuro-navigation; and the use of biological substances to reduce the number of traditional and revision spine surgeries. Results: Minimally invasive spine surgery has flourished in the last decade with an increasing amount of surgeries being performed for a wide variety of degenerative, traumatic, and neoplastic processes. Particular progress in the development of a direct lateral approach as well as improvement of tubular retractors has been achieved. Improvements in motion preservation techniques have led to a significant number of patients achieving arthroplasty where fusion was the only option previously. Important caveats to the indications for arthroplasty are discussed. Both robotics and neuro-navigation have become further refined as tools to assist in spine surgery and have been demonstrated to increase accuracy in spinal instrumentation placement. There has much debate and refinement in the use of biologically active agents to aid and augment function in spine surgery. Biological agents targeted to the intervertebral disc space could increase function and halt degeneration in this anatomical region. Conclusions: Great improvements have been achieved in developing better techniques and tools in spine surgery. It is envisaged that progress in the four focus areas discussed will lead to better outcomes and reduced burdens on the future of both our patients and the health care system.
Collapse
Affiliation(s)
- Noojan Kazemi
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington, USA
| | | | | |
Collapse
|
13
|
Vadalà G, Russo F, Di Martino A, Denaro V. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering. J Tissue Eng Regen Med 2013; 9:679-90. [PMID: 23512973 DOI: 10.1002/term.1719] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 12/21/2012] [Accepted: 01/05/2013] [Indexed: 12/21/2022]
Abstract
Low back pain is one of the major health problems in industrialized countries, as a leading source of disability in the working population. Intervertebral disc degeneration has been identified as its main cause, being a progressive process mainly characterized by alteration of extracellular matrix composition and water content. Many factors are involved in the degenerative cascade, such as anabolism/catabolism imbalance, reduction of nutrition supply and progressive cell loss. Currently available treatments are symptomatic, and surgical procedures consisting of disc removal are often necessary. Recent advances in our understanding of intervertebral disc biology led to an increased interest in the development of novel biological treatments aimed at disc regeneration. Growth factors, gene therapy, stem cell transplantation and biomaterials-based tissue engineering might support intervertebral disc regeneration by overcoming the limitation of the self-renewal mechanism. The aim of this paper is to overview the literature discussing the current status of our knowledge from the degenerative cascade of the intervertebral disc to the latest molecular, cell-based therapies and tissue-engineering strategies for disc regeneration.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Alberto Di Martino
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Italy
| |
Collapse
|
14
|
Mern DS, Beierfuß A, Thomé C, Hegewald AA. Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: a systematic review. J Tissue Eng Regen Med 2012; 8:925-36. [PMID: 22927290 DOI: 10.1002/term.1583] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 06/26/2012] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration has been described as an aberrant, cell-mediated, age- and genetics-dependent molecular degeneration process, which can be accelerated by nutritional, mechanical and toxic factors. Collective involvement of these factors can result in structural failures, which are often associated with pain. Current treatment approaches are restricted to symptomatic therapies, not addressing options of restoring structural or biological deterioration of the IVD as the underlying problem. Therapeutic potentials of IVD cell transplantation, biomaterials, inhibiting or activating bioactive factors, including gene-therapeutic approaches, have been shown in vitro or in small animal models. Since human degenerative IVD cells display distinctive features with regard to cell biology and regenerative potential, we attempted a systematic review, investigating the in vitro response of human nucleus pulposus cells to different stimuli. Therefore, we conducted an electronic database search on Medline through July 2011 to identify, compare and discuss publications concerning the effects of cell-cell stimulation, bioactive factors, biomaterials and combinations thereof in terms of cell isolation, proliferation, differentiation and matrix protein synthesis. This survey and discussion might serve as a source for designing future biological treatment strategies for the human IVD.
Collapse
|
15
|
Response to “Overenthusiastic Interpretations of a Nonetheless Promising Study”. Transplantation 2012. [DOI: 10.1097/tp.0b013e31823f1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|