1
|
Zaman Q, Alharthi MTH, Alahmari SAS, Khan T, Abbas M, Latif M, Jelani M. Whole exome sequencing: Unlocking the molecular diagnostic odyssey in Pakhtun ethnic group of Pakistani population. Gene 2025; 962:149586. [PMID: 40404069 DOI: 10.1016/j.gene.2025.149586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The Pakhtuns are 40.86 million people, accounting for 16.9 % of the Pakistani population, and primarily reside in the Khyber Pakhtunkhwa province. The Pakistani population in general, and the Pakhtun belt in particular, is divided into small, isolated tribes where inbreeding is very high (>55 %). This leads to high frequency of rare genetic diseases, making "Rare" conditions relatively common in this population. Due to the high frequency and overlapping phenotypes of affected individuals, molecular diagnostics are often difficult and time consuming. We investigated 1374 individuals from 272 families, including those with skin disorders (n = 52), vision disorders (n = 50), deafness (n = 26), neurological disorders (n = 102), and skeletal disorders (n = 42). Whole exome sequencing of the index patient was performed, and causative variant prioritization was carried out using an autosomal recessive model, following the ACMG 2015 guidelines and confirming segregation with the disease phenotypes via Sanger sequencing. Successfully resolved cases comprised of 69.5 %, of which 70.8 % (n = 136) had homozygous variants, while 6.3 % (n = 12) had compound heterozygous variations. This is a comprehensive study of the Pakhtun ethnic group, addressing the most common genetic disorders within this population. It has implications for the policy already approved by the local government to conduct pre-marital testing, aiming to reduce the disease burden in future generations. However, the study had limitations: we could not perform whole genome sequencing for the unresolved 30.5 % families (n = 83), and the sample size was not representative of the entire 40.86 million population. Nonetheless, the alarming incidence of rare diseases in this population supports the assertion that "rare" conditions are indeed common here.
Collapse
Affiliation(s)
- Qaiser Zaman
- Department of Zoology, Government Postgraduate College Dargai 23060 Malakand Khyber Pakhtunkhwa, Pakistan; Kaisee Dreams Research Laboratory Dargai 23060 Malakand Khyber Pakhtunkhwa, Pakistan; Departmemt of Zoology, Abdul Wali Khan University, Mardan 23200 Khyber Pakhtunkhwa, Pakistan; Higher Education Department, Peshawar 25120, Government of Khyber Pakhtunkhwa, Pakistan
| | | | - Shar Ahmed S Alahmari
- Clinical Pathology, Main Hospital Laboratory and Blood Bank Department, King Salman Bin Abdulaziz Medical City, Madinah 42353, Saudi Arabia
| | - Taimoor Khan
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College Peshawar 25120, Pakistan
| | - Muhammad Abbas
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College Peshawar 25120, Pakistan
| | - Muhammad Latif
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia; Centre for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia
| | - Musharraf Jelani
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College Peshawar 25120, Pakistan.
| |
Collapse
|
2
|
Ma B, Hong Z, Zhang L, Ma L, Duan J, Gao Y, Wang M, Zhang Y. Reclassifying a Novel POMT1 Variant by Integrating Functional Analysis and Bioinformatics: Implications for Preimplantation Genetic Testing. Reprod Sci 2025; 32:1612-1625. [PMID: 39739288 DOI: 10.1007/s43032-024-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
The advancement of next-generation sequencing has spurred the growing adoption of whole-exome sequencing (WES) for genetic screening. Preimplantation genetic testing for monogenic disorders (PGT-M) can effectively prevent the transmission of pathogenic variants. However, interpreting vast data volumes and ensuring precise genetic counseling, especially with variants of uncertain significance (VUS), remains challenging. In this study, we investigated a family with recurrent fetal malformations detected by prenatal ultrasound. WES identified compound heterozygous POMT1 variants, c.1052 + 1G > A and c.1483G > A in the proband; the latter was initially categorized as a VUS. Then our bioinformatics analysis revealed that c.1483G > A variant was located in a highly conserved domain essential for POMT1's enzymatic activity, potentially altering the protein's 3D structure. In vitro studies using HEK293T cells showed that the variant led to aberrant POMT1 mRNA and protein accumulation, impaired cell viability, and abnormal protein localization in the cytoplasm, indicating disruption of normal glycosylation processes. Combining bioinformatics analysis with in vitro experiments, we reclassified the c.1483G > A variant as likely pathogenic. Subsequently, the couple opted for PGT-M, culminating in the birth of a healthy child. Our findings underscore the pivotal role of genetic testing in recurrent fetal malformations and expand the spectrum of POMT1 variants. The successful reclassification of the variant by integrating in vitro experiments with bioinformatics provides substantial evidence for clinicians implementing PGT-M, offering a feasible strategy for counseling with VUS detected by WES.
Collapse
Affiliation(s)
- Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Li Zhang
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Jie Duan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
3
|
Kanesada G, Tsunedomi R, Nakagami Y, Matsui H, Shindo Y, Tomochika S, Akita H, Ioka T, Takahashi H, Nagano H. The C11orf24 Gene as a Useful Biomarker for Predicting Severe Neutropenia in Modified FOLFIRINOX for Pancreatic Cancer. Cancer Sci 2025. [PMID: 40285634 DOI: 10.1111/cas.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal tumor with a poor prognosis. FOLFIRINOX improves the prognosis of patients with PC; however, despite UGT1A1 screening, adverse events, such as severe neutropenia, occur frequently. This study aimed to identify the novel biomarkers of severe neutropenia in patients treated with modified FOLFIRINOX (mFFX) for PC. In this study, patients with PC treated with mFFX (n = 71) and gemcitabine plus nab-paclitaxel (GnP) (n = 92) and patients with colorectal cancer treated with FOLFOXIRI (n = 50) were included. Genome-wide screening using whole-exome sequencing was performed during the screening phase. Validation analysis was performed using polymerase chain reaction genotyping, the Cochran-Armitage trend test, and multivariate analysis. The diagnostic performance of combined risk factors for severe neutropenia was examined using logistic regression with leave-one-out cross-validation. Three gene polymorphisms were selected from the screening phase and subjected to the validation phase. In the validation phase, a single nucleotide polymorphism in C11orf24 (c.448C>T, rs901827) was significantly correlated with ≥ Grade 3 neutropenia in mFFX and FOLFOXIRI but not in GnP. Multivariate analysis showed C11orf24 and baseline neutrophil count as independent risk factors for ≥ Grade 3 neutropenia. The diagnostic performance of the neutropenia prediction model showed areas under the curve of 0.754 (sensitivity = 0.605, specificity = 0.848) and 0.856 (sensitivity = 0.800, specificity = 0.893) for ≥ Grade 3 and 4 neutropenia, respectively. The C11orf24 gene and baseline neutrophil count may be useful biomarkers for predicting severe neutropenia following irinotecan-containing triplet chemotherapy.
Collapse
Affiliation(s)
- Gen Kanesada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Data Science Laboratory, Faculty of Data Science, Shimonoseki City University, Shimonoseki, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hirofumi Akita
- Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
4
|
Ali S, Qadri YA, Ahmad K, Lin Z, Leung MF, Kim SW, Vasilakos AV, Zhou T. Large Language Models in Genomics-A Perspective on Personalized Medicine. Bioengineering (Basel) 2025; 12:440. [PMID: 40428059 PMCID: PMC12108693 DOI: 10.3390/bioengineering12050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Integrating artificial intelligence (AI), particularly large language models (LLMs), into the healthcare industry is revolutionizing the field of medicine. LLMs possess the capability to analyze the scientific literature and genomic data by comprehending and producing human-like text. This enhances the accuracy, precision, and efficiency of extensive genomic analyses through contextualization. LLMs have made significant advancements in their ability to understand complex genetic terminology and accurately predict medical outcomes. These capabilities allow for a more thorough understanding of genetic influences on health issues and the creation of more effective therapies. This review emphasizes LLMs' significant impact on healthcare, evaluates their triumphs and limitations in genomic data processing, and makes recommendations for addressing these limitations in order to enhance the healthcare system. It explores the latest advancements in LLMs for genomic analysis, focusing on enhancing disease diagnosis and treatment accuracy by taking into account an individual's genetic composition. It also anticipates a future in which AI-driven genomic analysis is commonplace in clinical practice, suggesting potential research areas. To effectively leverage LLMs' potential in personalized medicine, it is vital to actively support innovation across multiple sectors, ensuring that AI developments directly contribute to healthcare solutions tailored to individual patients.
Collapse
Affiliation(s)
- Shahid Ali
- School of Cyberspace Security, Hainan University, Haikou 570228, China; (S.A.); (Z.L.)
| | - Yazdan Ahmad Qadri
- School of Computer Science and Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea; (Y.A.Q.); (S.W.K.)
| | - Khurshid Ahmad
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Zhizhe Lin
- School of Cyberspace Security, Hainan University, Haikou 570228, China; (S.A.); (Z.L.)
| | - Man-Fai Leung
- School of Computing and Information Science, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Sung Won Kim
- School of Computer Science and Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea; (Y.A.Q.); (S.W.K.)
| | - Athanasios V. Vasilakos
- Department of Information and Communication Technology, University of Agder, 4879 Grimstad, Norway
| | - Teng Zhou
- School of Cyberspace Security, Hainan University, Haikou 570228, China; (S.A.); (Z.L.)
| |
Collapse
|
5
|
Zeng Z, Zhang L, Zhou Y, Zhang X, Yi H, Li H, Liu Y, Li J, Chen Q, Chen Y, Yu G, Yi J, Zhang Y, Zhang H, Dong Y. Clinical utility of trio whole exome sequencing in fetuses with ultrasound anomalies. Hum Genomics 2025; 19:37. [PMID: 40188065 PMCID: PMC11972492 DOI: 10.1186/s40246-025-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
INTRODUCTION Ultrasound scanning anomalies in fetuses are a cause for concern and often necessitate further diagnostic procedures. This retrospective study evaluated the utility of trio whole exome sequencing (trio-WES) in the diagnosis of fetuses with ultrasound anomalies. METHODS We included fetuses diagnosed with fetal ultrasound anomalies referred to the First Affiliated Hospital of Chongqing Medical University between November 2018 and July 2023. Fetal anomalies were classified into structural anomalies, dynamic anomalies, and soft markers. Karyotype analysis, chromosomal microarray analysis (CMA) or copy number variation sequencing (CNV-seq) and trio-WES were performed for the eligible cases. Perinatal outcomes were recorded and evaluated at postnatal follow-up. RESULTS A total of 316 fetuses were included for the analysis, including 199 (63.0%) cases with structural abnormalities, 63 (19.9%) cases with dynamic abnormalities, and 54 (17.1%) fetuses with ultrasonic soft markers. The diagnostic yield of karyotyping and CMA/CNV-seq was 4.1% (13/316), and Trio-WES achieved an additional diagnosis rate of 15.8% (50/316). Pathogenic or likely pathogenic alleles (P/LP) variants of 132 genes were identified in 125 (39.6%, 125/316) cases, and variant of uncertain significance (VUS) was detected in 81 samples (25.6%, 81/316). Ten cases (3.2%, 10/316,) were found to have pathogenic karyotype or CNVs in supplementary analysis of WES. Fetuses presenting musculoskeletal anomalies and multiple anomalies demonstrated highest diagnostic rates at 36.4% (8/22) and 36.1% (13/36), respectively. The diagnostic rate of fetuses with short femur was 20% (8/40), significantly higher than other ultrasonic soft markers. The modes of inheritance observed in patients with molecular diagnoses were autosomal dominant (AD) in 66.0% cases (33/50), autosomal recessive (AR) in 26.0% cases (13/50), and X-linked (XL) in 8.0% cases (4/50). CONCLUSION The integration of CMA/CNV-seq with trio-WES, alongside prenatal ultrasound scanning, holds the promise of significantly enriching our ability to decipher fetal phenotypes. This tripartite approach stands to revolutionize the diagnostic process, offering a more comprehensive and nuanced understanding of the underlying genetic architecture that underpins prenatal anomalies.
Collapse
Affiliation(s)
- Ziye Zeng
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lan Zhang
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuqin Zhou
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue Zhang
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong Yi
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - He Li
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuqi Liu
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jian Li
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Chen
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yulin Chen
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guiming Yu
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Yi
- Clin Lab, BGI Genomics, Guizhou, 550000, China
| | - Yana Zhang
- Clin Lab, BGI Genomics, Chongqing, 400000, China
| | - Hua Zhang
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yanling Dong
- Department of Obstetrics and Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
6
|
Long S, Schofield D, Kraindler J, Vink R, Ross K, Hart N, Evans H, Wilson A, Hyett J, Wakefield CE, Kelada L, Scott H, Lunke S, Wall M, Buckley MF, Fernihough G, McGillivray G, Roscioli T. The PreGen Research Program: Implementing Prenatal Genomic Testing in Australia-A Commentary. Aust N Z J Obstet Gynaecol 2025. [PMID: 40123302 DOI: 10.1111/ajo.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/05/2025] [Indexed: 03/25/2025]
Abstract
Prenatal genomic sequencing, which can provide a significantly increased diagnostic rate for fetal structural anomaly (FSA) compared with karyotype and microarray, is not available uniformly across Australia. PreGen, a 5-year translational research program, has identified significant barriers to implementation including access to funding, the availability of genomic testing, access to termination of pregnancy services and the availability of specialist genomic centres. A federal item number for prenatal genomic testing would increase equitable test availability and reduce delays to diagnoses by making them in pregnancy whilst removing the need for low-yield diagnostic interventions and enabling personalised patient management and family support.
Collapse
Affiliation(s)
- Sarah Long
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Deborah Schofield
- GenIMPACT: Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Josh Kraindler
- GenIMPACT: Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Rebecca Vink
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Kate Ross
- Genetics and Molecular Pathology, Centre of Cancer Biology, South Australia Pathology, Adelaide, South Australia, Australia
| | - Natalie Hart
- GenIMPACT: Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Holly Evans
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alyssa Wilson
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Jon Hyett
- Feto-Maternal Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Obstetrics and Gynaecology, Western Sydney University, Sydney, New South Wales, Australia
| | - Claire E Wakefield
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lauren Kelada
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, Discipline of Paediatrics, UNSW Sydney, Sydney, New South Wales, Australia
| | - Hamish Scott
- Genetics and Molecular Pathology, Centre of Cancer Biology, South Australia Pathology, Adelaide, South Australia, Australia
| | - Sebastian Lunke
- Royal Women's Hospital and Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Meaghan Wall
- Royal Women's Hospital and Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Michael F Buckley
- New South Wales Health Pathology Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Gemma Fernihough
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - George McGillivray
- Royal Women's Hospital and Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- New South Wales Health Pathology Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
7
|
Tricoli L, Sase S, Hacker JL, Pham V, Chappell M, Breda L, Hurwitz SN, Tanaka N, Castruccio Castracani C, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Hogenauer M, Roche A, Everett J, Bushman F, Kurre P, Ahrens-Nicklas R, Adang LA, Vanderver AL, Rivella S. Effective gene therapy for metachromatic leukodystrophy achieved with minimal lentiviral genomic integrations. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102464. [PMID: 40171445 PMCID: PMC11960508 DOI: 10.1016/j.omtn.2025.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplantion (HSCT) with lentiviral (LV)-based gene therapy has great potential to treat MLD. Achieving the optimal balance between high enzyme production for therapeutic efficacy and maintaining a low vector copy number (VCN) is crucial. Insufficient enzyme levels can lead to the progression of motor symptoms, undermining treatment goals. Conversely, elevated VCN increases the risk of genotoxicity, which poses safety concerns, and contributes to higher production costs, making the therapy less accessible. Striking this balance is essential to maximize clinical benefit while minimizing risks and costs. To address this need, we increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human hematopoietic stem cells (HSCs) with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4× more ARSA activity than the currently US and European Union (EU)-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa-knockout (KO) MLD mice transplanted with Arsa-KO bone marrow (BM) cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching wild-type (WT) mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating MLD patients.
Collapse
Affiliation(s)
- Lucas Tricoli
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sunetra Sase
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia L. Hacker
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vi Pham
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell Chappell
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Breda
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie N. Hurwitz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, CHOP, Philadelphia, PA, USA
| | - Naoto Tanaka
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhongqi Hou
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lars Schlotawa
- University Medical Centre Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine – Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| | | | - Matthew Hogenauer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aoife Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Kurre
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, CHOP, Philadelphia, PA, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Adang
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline L. Vanderver
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- RNA Institute, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP, Philadelphia, PA, USA
| |
Collapse
|
8
|
Fortin O, Mulkey SB, Fraser JL. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res 2025; 97:1269-1279. [PMID: 38937640 DOI: 10.1038/s41390-024-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
Collapse
Affiliation(s)
- Olivier Fortin
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology and Rehabilitation Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jamie L Fraser
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Peter M, Hill M, Fisher J, Daniel M, McInnes-Dean H, Mellis R, Walton H, Lafarge C, Leeson-Beevers K, Peet S, Tapon D, Wynn SL, Chitty LS, Parker M. Equity and timeliness as factors in the effectiveness of an ethical prenatal sequencing service: reflections from parents and professionals. Eur J Hum Genet 2025; 33:360-367. [PMID: 39362995 PMCID: PMC11894143 DOI: 10.1038/s41431-024-01700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Prenatal sequencing tests are being introduced into clinical practice in many developed countries. In part due to its greater ability to detect genetic variation, offering prenatal sequencing can present ethical challenges. Here we review ethical issues arising following the implementation of prenatal sequencing in the English National Health Service (NHS). We analysed semi structured interviews conducted with 48 parents offered prenatal sequencing and 63 health professionals involved in delivering the service to identify the ethical issues raised. Two main themes were identified: (1) Equity of access (including issues around eligibility criteria, laboratory analytical processes, awareness and education of clinicians, fear of litigation, geography, parental travel costs, and access to private healthcare), and (2) Timeliness and its impact on parental decision-making in pregnancy (in the context of the law around termination of pregnancy, decision-making in the absence of prenatal sequencing results, and the "importance" of prenatal sequencing results). Recognising both the practical and systemic ethical issues that arise out of delivering a national prenatal sequencing service is crucial. Although specific to the English context, many of the issues we identified are applicable to prenatal sequencing services more broadly. Education of health professionals and parents will help to mitigate some of these ethical issues.
Collapse
Affiliation(s)
- Michelle Peter
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Morgan Daniel
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hannah McInnes-Dean
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Antenatal Results and Choices, London, UK
| | - Rhiannon Mellis
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Holly Walton
- Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Caroline Lafarge
- School of Human and Social Sciences, University of West London, London, UK
| | | | | | - Dagmar Tapon
- Queen Charlotte's & Chelsea Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sarah L Wynn
- Unique - Rare Chromosome Disorder Support Group, Oxted, UK
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Parker
- The Ethox Centre, Nuffield Department of Population Health and Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Alexandrou A, Salameh N, Evangelidou P, Tomazou M, Mavrides A, Fasouliotis S, Anastasiou G, Stavroulis A, Agathokleous N, Agathokleous M, Tsangarides S, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Athanasiou E, Ourani S, Anastasiadou VC, Tanteles G, Kousoulidou L, Sismani C. Fetal genetic factors in pregnancy loss: Insights from a meta-analysis and effectiveness of whole exome sequencing. PLoS One 2025; 20:e0319052. [PMID: 39999070 PMCID: PMC11856309 DOI: 10.1371/journal.pone.0319052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Spontaneous pregnancy loss commonly occurs during the first trimester and can be caused by various factors including chromosomal abnormalities and submicroscopic aberrations. After the first trimester, the etiology of most pregnancy losses remains undetermined. This study aims to fill this gap by an in-depth investigation of the fetal genome and its effect on pregnancy outcome. Data from 1016 spontaneously aborted fetuses previously referred for genetic testing (2017-2023) were used for meta-analysis. Fetuses were categorized based on gestational age and genetic test result. Additionally, 35 second-third trimester fetuses, that were spontaneously aborted, terminated or died neonatally, with abnormal ultrasounds and unrevealing routine genetic testing were collected. Trio-based whole-exome sequencing was performed for identification of fetal variants that may have caused the pregnancy loss. The meta-analysis revealed that 822 of 1016 fetuses (80.91%) were aborted during the first trimester, with 569 of 822 (69.22%) successfully diagnosed using conventional genetic testing. The remaining 194 fetuses (19.09%) were aborted during the second-third trimester. Of the 194 second-third trimester aborted fetuses, 163 (84.02%) lacked genetic diagnosis using conventional testing (karyotype and array-CGH). Aneuploidies were the leading cause of spontaneous pregnancy loss in both first and second-third trimester fetuses followed by polyploidies. Thus, the meta-analysis demonstrated that undiagnosed second-third trimester pregnancy losses are more likely to benefit from further genetic investigation. Application of whole exome sequencing on second-third trimester pregnancy losses, revealed causative variants in 6 of 33 families (18.18%), in genes linked to Mendelian disorders associated with the phenotypes of interest. Pathogenic findings were identified in two additional families in heterozygosity in genes following autosomal recessive inheritance. Accurate identification of variants in such genes creates new genotype-in utero phenotype associations, with the prospect of new additions in preconception/prenatal diagnostic panels. This study highlights the importance of whole exome sequencing in resolving undiagnosed pregnancy losses.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Marios Tomazou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, Nicosia, Cyprus
| | | | | | - Sofia Ourani
- Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | - George Tanteles
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| |
Collapse
|
11
|
Fan BL, Chen LH, Chen LL, Guo H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int J Mol Sci 2025; 26:1466. [PMID: 40003933 PMCID: PMC11855028 DOI: 10.3390/ijms26041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of multi-omics tools has revolutionized the study of complex biological systems, providing comprehensive insights into the molecular mechanisms underlying critical traits across various organisms. By integrating data from genomics, transcriptomics, metabolomics, and other omics platforms, researchers can systematically identify and characterize biological elements that contribute to phenotypic traits. This review delves into recent progress in applying multi-omics approaches to elucidate the genetic, epigenetic, and metabolic networks associated with key traits in plants. We emphasize the potential of these integrative strategies to enhance crop improvement, optimize agricultural practices, and promote sustainable environmental management. Furthermore, we explore future prospects in the field, underscoring the importance of cutting-edge technological advancements and the need for interdisciplinary collaboration to address ongoing challenges. By bridging various omics platforms, this review aims to provide a holistic framework for advancing research in plant biology and agriculture.
Collapse
Affiliation(s)
| | | | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| |
Collapse
|
12
|
Shi J, Zhu X, Yang JB. Advances and challenges in molecular understanding, early detection, and targeted treatment of liver cancer. World J Hepatol 2025; 17:102273. [PMID: 39871899 PMCID: PMC11736488 DOI: 10.4254/wjh.v17.i1.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
In this review, we explore the application of next-generation sequencing in liver cancer research, highlighting its potential in modern oncology. Liver cancer, particularly hepatocellular carcinoma, is driven by a complex interplay of genetic, epigenetic, and environmental factors. Key genetic alterations, such as mutations in TERT, TP53, and CTNNB1, alongside epigenetic modifications such as DNA methylation and histone remodeling, disrupt regulatory pathways and promote tumorigenesis. Environmental factors, including viral infections, alcohol consumption, and metabolic disorders such as nonalcoholic fatty liver disease, enhance hepatocarcinogenesis. The tumor microenvironment plays a pivotal role in liver cancer progression and therapy resistance, with immune cell infiltration, fibrosis, and angiogenesis supporting cancer cell survival. Advances in immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies have shown potential, but the unique immunosuppressive milieu in liver cancer presents challenges. Dysregulation in pathways such as Wnt/β-catenin underscores the need for targeted therapeutic strategies. Next-generation sequencing is accelerating the identification of genetic and epigenetic alterations, enabling more precise diagnosis and personalized treatment plans. A deeper understanding of these molecular mechanisms is essential for advancing early detection and developing effective therapies against liver cancer.
Collapse
Affiliation(s)
- Ji Shi
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Xu Zhu
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Jun-Bo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, Guangdong Province, China.
| |
Collapse
|
13
|
Zheng J, Wang T, Sun H, Guan Y, Yang F, Wu J, Ying F, Fu Y, Li M, Liu J. Genetic correlation between fetal nuchal translucency thickening and cystic hygroma and exploration of pregnancy outcome. Sci Rep 2024; 14:27191. [PMID: 39516223 PMCID: PMC11549315 DOI: 10.1038/s41598-024-76628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Chromosome microarray analysis (CMA) and whole exome sequencing (WES) are increasingly utilized in prenatal diagnosis of abnormal ultrasound findings, but studies on correlation between pathogenic copy number variations (pCNVs) and single-gene mutations in fetuses with nuchal translucency (NT) thickening/cystic hygroma (CH), and pregnancy outcomes, are rare. This study aimed to investigate clinical value of CMA and WES for NT thickening/CH in fetuses, explore genetic correlation between fetal NT thickening and CH, and analyze pregnancy outcomes. We retrospectively selected 215 pregnant women diagnosed with fetal NT thickening (NT > 95th)/CH who underwent invasive prenatal diagnosis at our hospital from January 2020 to June 2022. With negative chromosomal karyotype analysis (KA) and CMA results, patients voluntarily underwent WES. Patients were grouped by NT thickening/CH, and application value of KA, CMA, and WES examined. Ultrasound findings, pregnancy outcomes, and fetal growth post-birth were followed during mid/late pregnancy and post-delivery. Abnormalities in chromosomal number were detected in 28 of 215 samples, with a detection rate of 13.0%, and pCNVs were detected in 12 cases, with a detection rate of 5.6%. The most common abnormality in fetuses from both groups suggested by CMA was 22q11.21 microdeletion-microduplication syndrome. 35 patients with negative KA and CMA results underwent WES, and single gene variants were detected in 12 fetuses, with an abnormality rate of 34.3%. The incidence of adverse pregnancy outcomes was 28.2% in the NT thickening group and 82.9% in the CH group (P < 0.05). Overall, fetal NT thickening/CH was associated with genetic abnormalities, WES further improved the diagnosis of abnormal fetuses after negative KA and CMA results in both groups, and the incidence of adverse pregnancy outcomes was lower in the NT thickening group than in the CH group. The management of pregnancy outcomes could guide clinical genetic counselling.
Collapse
Affiliation(s)
- Jianli Zheng
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China.
| | - Tiantian Wang
- Department of Reproductive Health, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Huilin Sun
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Yongjuan Guan
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Fangfang Yang
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Jing Wu
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Feifei Ying
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Yadong Fu
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Min Li
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China
| | - Jianbing Liu
- Center of Medical Genetics, The Affiliated Yancheng Maternity and Child Health Hospital of Yangzhou University, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
14
|
Liao Y, Peng X, Yang Y, Zhou G, Chen L, Yang Y, Li H, Chen X, Guo S, Zuo Q, Zou J. Exploring ABHD5 as a Lipid-Related Biomarker in Idiopathic Pulmonary Fibrosis: Integrating Machine Learning, Bioinformatics, and In Vitro Experiments. Inflammation 2024:10.1007/s10753-024-02107-1. [PMID: 39046603 DOI: 10.1007/s10753-024-02107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Recent studies increasingly suggest a connection between lipids and idiopathic pulmonary fibrosis (IPF). This study was aimed at exploring potential lipid-related biomarkers for IPF and uncovering the mechanisms underlying pulmonary fibrosis. IPF-related datasets were retrieved from the GEO database, and the ComBat algorithm was used to merge multiple datasets and eliminate batch effects. Weighted gene co-expression network analysis (WGCNA) was utilized to identify modules and genes associated with IPF. Potential hub genes were determined by intersecting these genes with lipid-related genes from the GeneCards database. A machine learning-based integrative approach was developed to construct diagnostic and prognostic signatures, which were validated across several datasets. Additionally, single-cell sequencing data was used to validate the expression differences of core IPF-related genes across various cell types. The effect of ABHD5 on fibroblasts was assessed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and cell scratch assays. The expression levels of fibrotic factors were measured using real-time quantitative polymerase chain reaction and western blot analysis. WGCNA identified a red module potentially related to IPF, and the intersection with lipid-related genes yielded 51 hub genes. These genes were used to build diagnostic and prognostic models that demonstrated robust validation capabilities across multiple datasets. Single-cell sequencing analysis revealed low expression of ABHD5 in the lung tissues of IPF patients, with a higher proportion of fibroblasts exhibiting low ABHD5 expression. Cell experiments showed that under the influence of TGF-β1, knockdown of ABHD5 slightly promoted fibroblast proliferation. Additionally, fibroblasts with low ABHD5 expression exhibited enhanced migratory capabilities and secreted more fibrotic factors. Lipid-related diagnostic and prognostic models for IPF were developed, and ABHD5 may serve as a potential biomarker. Low ABHD5 expression could potentially accelerate the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Liao
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaying Peng
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guanghong Zhou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyan Li
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianxia Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Guo
- Department of Health Management &, Institute of Health Management, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiunan Zuo
- Department of Geriatric Respiratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Omidiran O, Patel A, Usman S, Mhatre I, Abdelhalim H, DeGroat W, Narayanan R, Singh K, Mendhe D, Ahmed Z. GWAS advancements to investigate disease associations and biological mechanisms. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4:e296. [PMID: 38737752 PMCID: PMC11086745 DOI: 10.1002/ctd2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Genome-wide association studies (GWAS) have been instrumental in elucidating the genetic architecture of various traits and diseases. Despite the success of GWAS, inherent limitations such as identifying rare and ultra-rare variants, the potential for spurious associations, and in pinpointing causative agents can undermine diagnostic capabilities. This review provides an overview of GWAS and highlights recent advances in genetics that employ a range of methodologies, including Whole Genome Sequencing (WGS), Mendelian Randomization (MR), the Pangenome's high-quality T2T-CHM13 panel, and the Human BioMolecular Atlas Program (HuBMAP), as potential enablers of current and future GWAS research. State of the literature demonstrate the capabilities of these techniques in enhancing the statistical power of GWAS. WGS, with its comprehensive approach, captures the entire genome, surpassing the capabilities of the traditional GWAS technique focused on predefined Single Nucleotide Polymorphism (SNP) sites. The Pangenome's T2T-CHM13 panel, with its holistic approach, aids in the analysis of regions with high sequence identity, such as segmental duplications (SDs). Mendelian Randomization has advanced causative inference, improving clinical diagnostics and facilitating definitive conclusions. Furthermore, spatial biology techniques like HuBMAP, enable 3D molecular mapping of tissues at single-cell resolution, offering insights into pathology of complex traits. This study aims to elucidate and advocate for the increased application of these technologies, highlighting their potential to shape the future of GWAS research.
Collapse
Affiliation(s)
- Oluwaferanmi Omidiran
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Aashna Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Sarah Usman
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Ishani Mhatre
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - William DeGroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Rishabh Narayanan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Kritika Singh
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Dinesh Mendhe
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Huang Q, Wang Z, Teng Y, Zhang W, Wen J, Zhu H, Liang D, Wu L, Li Z. Application of whole exome sequencing in carrier screening for high-risk families without probands. Front Genet 2024; 15:1415811. [PMID: 38978874 PMCID: PMC11228263 DOI: 10.3389/fgene.2024.1415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose This study aimed to screen the genetic etiology for the high-risk families including those with an adverse pregnancy history, a history of consanguineous marriages, or a history of genetic diseases, but lack of proband via whole exome sequencing (WES). Methods 128 individuals from high-risk family were tested by WES. The candidate variants were analyzed according to the ACMG criteria to screen the potential carriers. At-risk couples (ARCs) who harbored the same causative gene were provided with precise fertility guidance to avoid the birth of children with birth defects. Results The total detection rate was 36.72%, with pathogenic/likely pathogenic (P/LP) variants found in 47 individuals, and variants of uncertain significance (VUS) were found in 34. Among couples with adverse pregnancy history: P/LP variants were found in 38 individuals, and VUS were found in 26, for a detection rate of 34.55%; among members of family history of genetic disease or consanguineous marriages: P/LP variants were found in nine individuals, and VUS were found in 8, for a detection rate of 50.00%. Otherwise, we detected 19 ARCs who both carried P/LP variants in the same gene, with a theoretical offspring prevalence of up to 7.42%. Conclusion In the absence of probands, carrier screening using WES can provide an efficient tool for screening the molecular etiology of high-risk families.
Collapse
Affiliation(s)
- Qinlin Huang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Tricoli L, Sase S, Hacker J, Pham V, Smith S, Chappell M, Breda L, Hurwitz S, Tanaka N, Castracani CC, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Kurre P, Ahrens-Nicklas R, Adang L, Vanderver A, Rivella S. Effective Gene Therapy for Metachromatic Leukodystrophy Achieved with Minimal Lentiviral Genomic Integrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584404. [PMID: 38559013 PMCID: PMC10979988 DOI: 10.1101/2024.03.14.584404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.
Collapse
|
18
|
Szalai R, Till A, Gyenesei A, Bene J, Hadzsiev K. Importance and application of WES in fetal genetic diagnostics: Identification of novel ASPM mutation in a fetus with microcephaly. Mol Genet Metab Rep 2024; 38:101056. [PMID: 38469100 PMCID: PMC10926227 DOI: 10.1016/j.ymgmr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Background Prenatal whole exome sequencing (WES) approaches can provide genetic diagnosis with rapid turnaround time and high diagnostic rate when conventional tests are negative. Here we report a family with multiple pregnancy loss and with repeated occurrence of fetal microcephaly. Methods and results Because of positive family history and recurrent structural abnormality during the pregnancies that may lead postnatal neurodevelopmental consequences, WES analysis was indicated. Umbilical cord blood sampling was carried out and WES was performed using Twist Human Core Exome Kit and Illumina sequencing technology. The presence of pathogenic variants was confirmed by Sanger sequencing. WES analysis revealed a known pathogenic c.8506_8507delCA (p.Gln2836Glufs*35, rs587783280) and a novel pathogenic c.3134_3135delTC (p.Leu1045Glnfs*17) ASPM mutations in the fetus in compound heterozygous state. The c.3134_3135delTC has never been reported in the literature. Conclusions Our findings serve additional evidence that WES can be an efficient and relevant tool to diagnose certain genetic disorders with appropriate indication and to assess the recurrence risk of a disease. With the application of WES in combination with pre-implantation genetic tests, we can avoid the transmission of pathogenic mutations and we can achieve a decreased abortion rate in obstetric care.
Collapse
Affiliation(s)
- Renata Szalai
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Agnes Till
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Judit Bene
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| | - Kinga Hadzsiev
- University of Pecs, Medical School, Department of Medical Genetics, Pecs, Hungary
| |
Collapse
|
19
|
Abdallah W, Spaggiari E, Brisset S, Dard R, Attié Bitach T, Bault JP, Quibel T. Prenatal Diagnosis of Primrose Syndrome. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:411-414. [PMID: 37929614 DOI: 10.1002/jum.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Primrose syndrome is a very rare congenital malformation. Symptoms of this disorder may appear during childhood, but the diagnosis is identified in adulthood in the majority of cases. The prenatal diagnosis of Primrose syndrome is not developed in the literature. We present herein a case series of 3 cases with characteristic sonographic features. A dysmorphic metopic suture, downslanting palpebral fissures, a wide forehead, and agenesis of corpus callosum are the main signs. A missense mutation in ZBTB20 identified in whole exome sequencing can confirm the prenatal diagnosis of Primrose syndrome.
Collapse
Affiliation(s)
- Wael Abdallah
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Emmanuel Spaggiari
- Department of Obstetrics and Maternal-Fetal Medicine, Necker-Enfants Malades Hospital, Paris, France
| | - Sophie Brisset
- Service de génétique, Centre hospitalier de Versailles, Paris, France
| | - Rodolphe Dard
- Genetics Department, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Tania Attié Bitach
- Médecine génomique des Maladies rares, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jean Philippe Bault
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| | - Thibault Quibel
- Department of Obstetrics and Maternal-Fetal Medicine, CHI Poissy St Germain-en-Laye, Poissy, France
| |
Collapse
|
20
|
Li J, Ni H, Wang X, Cheng W, Li L, Cheng Y, Liu C, Li Y, Deng A. Association of a novel frameshift variant and a known deleterious variant in MMR genes with Lynch syndrome in Chinese families. World J Surg Oncol 2024; 22:36. [PMID: 38280988 PMCID: PMC10821544 DOI: 10.1186/s12957-024-03309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This condition is characterized by germline variants in DNA mismatch repair (MMR) genes, including MLH1, MSH2, MSH6, and PMS2. In this study, we analyzed the molecular defects and clinical manifestations of two families affected with CRC and proposed appropriate individual preventive strategies for all carriers of the variant. METHODS We recruited two families diagnosed with CRC and combined their family history and immunohistochemical results to analyze the variants of probands and those of other family members by using whole exome sequencing. Subsequently, gene variants in each family were screened by comparing them with the variants available in the public database. Sanger sequencing was performed to verify the variant sites. An online platform ( https://www.uniprot.org ) was used to analyze the functional domains of mutant proteins. RESULTS A novel frameshift variant (NM_001281492, c.1129_1130del, p.R377fs) in MSH6 and a known deleterious variant (NM_000249.4:c.1731G > A, p.S577S) in MLH1 were identified in the two families with CRC. Using bioinformatics tools, we noted that the frameshift variant reduced the number of amino acids in the MSH6 protein from 1230 to 383, thereby leading to no MSH6 protein expression. The silent variant caused splicing defects and was strongly associated with LS. 5-Fluorouracil-based adjuvant chemotherapy is not recommended for patients with LS. CONCLUSIONS The novel frameshift variant (MSH6, c.1129_1130del, p.R377fs) is likely pathogenic to LS, and the variant (MLH1, c.1731G > A, p.S577S) has been further confirmed to be pathogenic to LS. Our findings underscore the significance of genetic testing for LS and recommend that genetic consultation and regular follow-ups be conducted to guide individualized treatment for cancer-afflicted families, especially those with a deficiency in MMR expression.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Haichun Ni
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Yuanyuan Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Evangelidou P, Alexandrou A, Salameh N, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Kousoulidou L, Anastasiadou VC, Sismani C. Sodium Channel Gene Variants in Fetuses with Abnormal Sonographic Findings: Expanding the Prenatal Phenotypic Spectrum of Sodium Channelopathies. Genes (Basel) 2024; 15:119. [PMID: 38255008 PMCID: PMC10815715 DOI: 10.3390/genes15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, 1065 Nicosia, Cyprus
| | | | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| |
Collapse
|
22
|
Annicchiarico-López W, Peña-Pardo LX, Miranda-Quintero JE. Prenatal diagnosis of Freeman-Sheldon syndrome using ultrasound and genetic testing. Case report. REVISTA COLOMBIANA DE OBSTETRICIA Y GINECOLOGIA 2023; 74:310-316. [PMID: 38421226 PMCID: PMC10911420 DOI: 10.18597/rcog.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
Objectives To describe a case of prenatal diagnosis of Freeman-Sheldon syndrome based on ultrasound findings and complete fetal exome sequencing. Materials and methods A 33-year-old patient currently on treatment for hypothyroidism in whom a 19-week detailed anatomical ultrasound scan showed fetal deformities in more than two body areas (upper and lower limbs), suggesting a diagnosis of arthrogryposis. Genetic counseling was provided and amniocentesis was performed at 20 weeks for fluorescence in situ hybridization (FISH) analysis and complete fetal exome sequencing, with the latter allowing the identification of a heterozygous pathogenic variant of the MYH3 gene which is associated with type 2A distal arthrogryposis. Conclusions Complete fetal exome sequencing was a key factor in identifying the MYH3 gene mutation and confirmed that the deformities seen on ultrasound were associated with type 2A distal arthrogryposis. It is important to perform complete fetal exome sequencing in cases of joint malformations seen on prenatal ultrasound.
Collapse
|
23
|
Mierzwa M, Blaska M, Hamm M, Czarniecka A, Krajewska J, Taczanowska-Niemczuk A, Zachurzok A. A 4-Year-Old Boy with an Accidentally Detected Mutation in the RET Proto-Oncogene and Mutation in the Gene Encoding the Ryanodine Receptor1 (RyR1)-Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1916. [PMID: 38136118 PMCID: PMC10741967 DOI: 10.3390/children10121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Multiple endocrine neoplasia 2B (MEN2B) is a rare syndrome with prevalence estimated at approximately 0.2 per 100,000; it is caused by mutation of the RET proto-oncogene. MEN2B is characterized by early-onset medullary thyroid carcinoma (MTC), ganglioneuromatosis of the aerodigestive tract, marfanoid habitus, ophthalmologic abnormalities, and pheochromocytoma in adulthood. Mutations in the RyR1 gene manifest clinically in congenital myopathies and/or malignant hyperthermia susceptibility. We present a case of a 4-year-old boy with an accidentally detected RET and RyR1 mutations in the course of diagnostic approach of short stature and delayed motor development. Due to a poor and blurred clinical picture of MEN2B syndrome, accompanied by RyR1 mutation symptoms, the diagnostic path was extended. Our patient had no family history of MTC. In the imaging studies of the thyroid gland, no abnormalities were found, whereas the serum level of calcitonin was elevated to 34 pg/mL (N < 5.0). The patient qualified for total thyroidectomy, and the histopathological examination confirmed the diagnosis of MTC. The postoperative serum calcitonin level dropped to normal ranges. This case shows how new genetic diagnostic procedures could be crucial in accidentally diagnosing rare endocrine disease with atypical symptoms, giving an opportunity for relatively early intervention.
Collapse
Affiliation(s)
- Magdalena Mierzwa
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| | - Małgorzata Blaska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| | - Marek Hamm
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.H.); (J.K.)
| | - Agnieszka Czarniecka
- 3rd Department of Oncological Surgery, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland;
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.H.); (J.K.)
| | - Anna Taczanowska-Niemczuk
- Department of Pediatric Surgery, Institute of Pediatrics, Jagiellonian University Medical College, 31-531 Kraków, Poland;
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland; (M.B.); (A.Z.)
| |
Collapse
|
24
|
Qin Y, Yao Y, Liu N, Wang B, Liu L, Li H, Gao T, Xu R, Wang X, Zhang F, Song J. Prenatal whole-exome sequencing for fetal structural anomalies: a retrospective analysis of 145 Chinese cases. BMC Med Genomics 2023; 16:262. [PMID: 37880672 PMCID: PMC10601195 DOI: 10.1186/s12920-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) significantly improves the diagnosis of the etiology of fetal structural anomalies. This study aims to evaluate the diagnostic value of prenatal WES and to investigate the pathogenic variants in structurally abnormal fetuses. METHODS We recruited 144 fetuses with structural anomalies between 14 and 2020 and 15 December 2021 in the study. Genetic screening was performed by WES combined with karyotyping and chromosomal microarray analysis. The molecular diagnostic yield of prenatal WES for each type of fetal structural anomaly and the identified pathogenic genes and mutations were reported. RESULTS In this study, we retrospectively analyzed the clinical and genetic data of 145 structurally anomalous fetuses. These cases were classified into 9 phenotypic classes based on antenatal ultrasound findings. Thirty-eight pathogenic variants in 24 genes were identified in 35 of the 145 cases, including 14 novel variants in 13 genes (EP300, MYH3, TSC2, MMP9, CPLANE1, INVS, COL1A1, EYA1, TTC21B, MKS1, COL11A2, PDHA1 and L1CAM). Five additional pathogenic variants were classified as incidental findings. Our study showed that the overall diagnosis rate of WES was 28.1% (27/96) in the parent-fetus trio cases and 16.3% (8/49) in the proband-only cases. Fetuses with musculoskeletal anomalies had the highest diagnostic yield (51.4%, 19/37). In addition, FGFR3 and COL1A1 were the most common pathogenic genes. CONCLUSIONS Our work expands the mutation spectrum of the genes associated with fetal structural anomalies and provides valuable information for future parental genetic counselling and pregnancy management of the structurally anomalous fetuses.
Collapse
Affiliation(s)
- Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Nian Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Lijun Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Hui Li
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Tangxinzi Gao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Runhong Xu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Xiaoyan Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Fanglian Zhang
- Honghu Hospital of Traditional Chinese Medicine, Jingzhou, 433200, Hubei Province, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
25
|
Wang W, Liu R, Liao W, Ji L, Mei J, Su D. NOTCH2 gene mutation and gamma-secretase inhibitor in mediating the malignancy of ovarian cancer. Aging (Albany NY) 2023; 15:9743-9758. [PMID: 37728427 PMCID: PMC10564443 DOI: 10.18632/aging.205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The carcinogenic mechanisms by which serous ovarian cancer (OC) occurs remain to be explored. Currently, we have conducted whole-exome sequencing (WES) and targeted deep sequencing to validate new molecular markers, including NOTCH2, that impede the progression of cell malignancy in ovarian cancer (OC). Following NOTCH2 P2113S mutation and NOTCH signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment, the cell proliferation, migration, and invasion of A2780 and SKOV3 OC cells were examined in vitro. WES identified the P2113S point mutation in NOTCH2. The NOTCH2 mutation rate was 26.67 % among the 75 OC cases. The NOTCH2 P2113S mutation and DAPT treatment downregulated Notch-2 protein levels in the two OC cells. Functionally, interfering with NOTCH2 expression promoted the migrative, proliferative, and invasive capacities of OC cells. Western blotting further confirmed that NOTCH2-mediated tumorigenesis lies in reducing apoptosis through dysregulation of Bax/Bcl2, affecting repair of DNA damage through reducing DNA-PK and blocking the transcription factor Hes1 along with increasing immune regulator p65. Furthermore, the NOTCH2-mediated tumorigenesis was mostly reversed after NF-κB inhibitor Bay11-7082 treatment. These findings identified the NOTCH2 P2113S mutation in ovarian carcinogenesis, and NOTCH2 P2113S is a potential target in treating OC.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ruiqian Liu
- Deyang People’s Hospital, Deyang 618099, Sichuan, China
| | - Wei Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Landie Ji
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Mei
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| | - Dan Su
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| |
Collapse
|
26
|
Abstract
OBJECTIVES Many serious or life-threatening neurologic conditions are first diagnosed during the fetal period, often following a routine ultrasound or sonographic evaluation after an abnormal aneuploidy screen. Such conditions represent a worrisome or unexpected finding for expectant parents, making the perinatal period a critical time point to engage and empower families encountering complex neurologic clinical scenarios. This review covers the role of perinatal palliative care in these settings. STUDY DESIGN This study is a topical review RESULTS: The prenatal identification of structural abnormalities of the brain or spinal cord, radiographic signs of hemorrhage or ischemic injury, or evidence of genetic or metabolic conditions should prompt involvement of a fetal palliative care team. The inherent prognostic uncertainty is challenging for prenatally diagnosed neurologic conditions which have difficult to predict short and long-term outcomes. While many of these conditions lead to the birth of an infant with neurodevelopmental challenges, few result in in utero demise. Palliative care beginning in the perinatal period provides an additional layer of support for families navigating complex decision-making during their pregnancy and provides continuity of care into the newborn period. Palliative care principles can help guide discussions around genetic and other diagnostic testing, fetal surgery, and birth planning. A multidisciplinary team can help support families with decision-making and through bereavement care in the setting of fetal or neonatal death. CONCLUSION Early palliative care team involvement can provide a more holistic approach to counseling, facilitate planning, and ensure that a family's goals and wishes are acknowledged throughout an infant's care trajectory. KEY POINTS · Many serious or life-threatening neurologic conditions are diagnosed during the fetal period.. · Palliative care principles should be incorporated in the fetal period for affected patients.. · Palliative care clinicians can aid parents and clinicians in shared decision-making.. · Palliative care principles should be employed by all care providers in relevant cases..
Collapse
Affiliation(s)
- Sharla Rent
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Monica E. Lemmon
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sarah Ellestad
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Margarita Bidegain
- Division of Neonatology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
27
|
Zhao H, Du C, Yang G, Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis Res 2023; 12:148-160. [PMID: 37662624 PMCID: PMC10468410 DOI: 10.5582/irdr.2023.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Gynecology and Obstetrics, Shandong Provincial Third Hospital, Shandong University, Ji'nan, China
| | - Chen Du
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| |
Collapse
|
28
|
Yang S, Xie BL, Dong XP, Wang LX, Zhu GH, Wang T, Wu WJ, Lai RS, Tao R, Guan MX, Chen FY, Tan DH, Deng Z, Xie HP, Zeng Y, Xiao ZA, Xie DH. cdh23 affects congenital hearing loss through regulating purine metabolism. Front Mol Neurosci 2023; 16:1079529. [PMID: 37575969 PMCID: PMC10416109 DOI: 10.3389/fnmol.2023.1079529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.
Collapse
Affiliation(s)
- Shu Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bing-Lin Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Xiao-ping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ling-xiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Gang-hua Zhu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Wang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei-jing Wu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruo-sha Lai
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min-xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Fang-yi Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong-hui Tan
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Zhong Deng
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Hua-ping Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Zi-an Xiao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding-hua Xie
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Bian X, Yang X, Shi X, Zeng W, Deng D, Chen S, Qiao F, Feng L, Wu Y. Whole-exome sequencing applications in prenatal diagnosis of fetal bowel dilatation. Open Life Sci 2023; 18:20220598. [PMID: 37215495 PMCID: PMC10199320 DOI: 10.1515/biol-2022-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023] Open
Abstract
This study introduced whole-exome sequencing (WES) in prenatal diagnosis of fetal bowel dilatation to improve the detection outcome when karyotype analysis and copy number variation sequencing (CNV-seq) were uninformative in detecting pathogenic variants. The work reviewed 28 cases diagnosed with fetal bowel dilatation and analyzed the results of karyotype analysis, CNV-seq, and WES. Among the 28 cases, the detection rate in cases with low risk of aneuploidy was 11.54% (3/26), which is lower than 100% (2/2) in cases with high risk of aneuploidy. Ten low-risk aneuploidy cases with isolated fetal bowel dilatation had normal genetic testing results, while the remaining 16 cases with other ultrasound abnormalities were detected for genetic variants at a rate of 18.75% (3/16). The detection rate of gene variation was 3.85% (1/26) by CNV-seq and 7.69% (2/26) by WES. This study suggested that WES could reveal more genetic risk in prenatal diagnosis of fetal bowel dilatation and has value in prenatal diagnosis to reduce birth defects.
Collapse
Affiliation(s)
- Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan430030, Hubei, China
| |
Collapse
|
30
|
Srivastava P, Bamba C, Chopra S, Rohilla M, Chaudhry C, Kaur A, Panigrahi I, Mandal K. Identification of genetic alterations in couples and their products of conceptions from recurrent pregnancy loss in North Indian population. Front Genet 2023; 14:1155211. [PMID: 37260775 PMCID: PMC10227573 DOI: 10.3389/fgene.2023.1155211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background: Recurrent pregnancy loss (RPL) is one of the most common pregnancy-related complications, which can be stressful and emotionally draining for a couple. Genetic alterations, which are responsible for RPL, can be present in either of the three genomes: mother, father, or their fetuses. In addition, environmental factors interacting with these three genomes can affect germline cells. With this aim, the present study was conducted to understand the underlying etiology of RPL using Next-generation sequencing (NGS; couple exome and TRIO exomes) in combination with cytogenetic tests [karyotyping and chromosomal microarray (CMA)]. Material & Methods: In present study we recruited 61 couples with RPL (history of ≥ 2 abortions) and 31 products of conceptions (POCs). For all couples karyotyping was done at the time of recruitment, followed by collection of POC samples and parental blood samples. Before processing POC samples for CMA, they were checked for maternal cell contamination (MCC) by QF-PCR. In POC samples with no pathogenic variant, TRIO exome sequencing was done. Further, in case of unavailability of POC sample, couple exome sequencing was done for RPL couples. Results: In six individuals out of 61 couples (5%), abnormality in karyotypes was detected. Among 116 normal karyotypes, there were 11 heteromorphisms (9.5%), for which the couples had to be counselled and reassured. Out of the 31 POCs, 10 were excluded because of MCC (around 30%) and one had major aneuploidy. CMA in POCs identified pathogenic copy number variations (CNVs) in 25% of cases (5/20) and variant of unknown significance (VUS) in 20% of cases (4/20). Autosomal trisomy was the most frequent chromosomal abnormality diagnosed. NGS was performed to establish single-gene causes of RPL. Couple exome sequencing was performed in 20 couples, and 14 were found to be carriers for autosomal recessive conditions. A total of 50 potential disease-causing variants in 40 genes were identified in 33 of 40 individuals (82.5%). Putative causative variants were identified in 37.5% of the TRIO cases (3/8). Mutations in few important genes (SRP54, ERBB4, NEB, ALMS, ALAD, MTHFR, F5, and APOE), which are involved in vital pathways, early embryonic development, and fetal demise, were identified in the POCs. Conclusion: It enhances our understanding of prenatal phenotypes of many Mendelian disorders. These mutated genes may play an auxiliary role in the development of treatment strategies for RPL. There was no correlation of the number of abortions with etiological yield of any technique to detect the cause of RPL. This study shows the utilization of combination of techniques in improving our understanding of the cause of early embryonic lethality in humans.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chitra Bamba
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chopra
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Minakshi Rohilla
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
31
|
Bet BB, Snoep MC, van Leeuwen E, Linskens IH, Haak MC, Rozendaal L, Knobbe I, van Schuppen J, Hoekstra CEL, Koolbergen DR, Clur SA, Pajkrt E. Short-term outcome after the prenatal diagnosis of right aortic arch. Prenat Diagn 2023; 43:629-638. [PMID: 36738444 DOI: 10.1002/pd.6326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the proportion of children that require surgery in the first year of life and thereafter in order to improve the counseling of parents with a fetus with a right aortic arch (RAA). METHODS Fetuses diagnosed with isolated RAA, defined as the absence of intra- or extracardiac anomalies, between 2007 and 2021 were extracted from the prospective registry PRECOR. RESULTS In total, 110 fetuses were included, 92 with a prenatal diagnosis of RAA and 18 with double aortic arch (DAA). The prevalence of 22q11 deletion syndrome was 5.5%. Six pregnancies were terminated and five cases were false-positive; therefore, the follow-up consisted of 99 neonates. Surgery was performed in 10 infants (10%) in the first year of life. In total, 25 (25%) children had surgery at a mean age of 17 months. Eight of these 25 (32%) had a DAA. Only one child, with a DAA, required surgery in the first week of life due to obstructive stridor. CONCLUSIONS Children with a prenatally diagnosed RAA are at a low risk of acute respiratory postnatal problems. Delivery in a hospital with neonatal intensive care and pediatric cardiothoracic facilities seems only indicated in cases with suspected DAA. Expectant parents should be informed that presently 25% of the children need elective surgery and only incidentally due to acute respiratory distress.
Collapse
Affiliation(s)
- Bo B Bet
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Maartje C Snoep
- Department of Obstetrics and Fetal Medicine, LUMC, Leiden University, Leiden, The Netherlands
| | - Elisabeth van Leeuwen
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Ingeborg H Linskens
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, LUMC, Leiden University, Leiden, The Netherlands
| | - Lieke Rozendaal
- Department of Pediatric Cardiology, LUMC, Leiden University, Leiden, The Netherlands
| | - Ingmar Knobbe
- Department of Pediatric Cardiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Joost van Schuppen
- Department of Radiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Carlijn E L Hoekstra
- Department of Otorhinolaryngology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - David R Koolbergen
- Department of Cardiothoracic Surgery, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Sally-Ann Clur
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynecology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
32
|
He J, Meng M, Zhou X, Gao R, Wang H. Isolation of single cells from human hepatoblastoma tissues for whole-exome sequencing. STAR Protoc 2023; 4:102052. [PMID: 36853859 PMCID: PMC9876968 DOI: 10.1016/j.xpro.2023.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
By combining single-cell processing with whole-exome sequencing, we have developed single-cell whole-exome sequencing to investigate the mechanisms of hepatoblastoma development and to provide potential targets and therapeutic approaches for clinical treatment. In the following protocol, we outline the steps involved in single-cell sorting, whole-genome amplification, amplification uniformity estimation, and whole-exome library construction. In addition to the cells we use, this protocol is also suitable for other cell lines and cell types.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianchao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Gao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
33
|
Najib B, Quibel T, Tessier A, Mortreux J, Bouvagnet P, Cohen C, Vialard F, Dard R. Prenatal diagnosis of recurrent hypoplastic left heart syndrome associated with MYH6 variants: a case report. BMC Cardiovasc Disord 2023; 23:116. [PMID: 36890431 PMCID: PMC9993643 DOI: 10.1186/s12872-023-03169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is a rare but genetically complex and clinically and anatomically severe form of congenital heart disease (CHD). CASE PRESENTATION Here, we report on the use of rapid prenatal whole-exome sequencing for the prenatal diagnosis of a severe case of neonatal recurrent HLHS caused by heterozygous compound variants in the MYH6 gene inherited from the (healthy) parents. MYH6 is known to be highly polymorphic; a large number of rare and common variants have variable effects on protein levels. We postulated that two hypomorphic variants led to severe CHD when associated in trans; this was consistent with the autosomal recessive pattern of inheritance. In the literature, dominant transmission of MYH6-related CHD is more frequent and is probably linked to synergistic heterozygosity or the specific combination of a single, pathogenic variant with common MYH6 variants. CONCLUSIONS The present report illustrates the major contribution of whole-exome sequencing (WES) in the characterization of an unusually recurrent fetal disorder and considered the role of WES in the prenatal diagnosis of disorders that do not usually have a genetic etiology.
Collapse
Affiliation(s)
- B Najib
- Department of Obstetrics and Gynecology, Saint Joseph University, Beirut, 0000, Lebanon
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - T Quibel
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - A Tessier
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - J Mortreux
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - P Bouvagnet
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - C Cohen
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - F Vialard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France
| | - R Dard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France.
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France.
| |
Collapse
|
34
|
Parisi MA, Caggana M, Cohen JL, Gold NB, Morris JA, Orsini JJ, Urv TK, Wasserstein MP. When is the best time to screen and evaluate for treatable genetic disorders?: A lifespan perspective. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:44-55. [PMID: 36876995 PMCID: PMC10475244 DOI: 10.1002/ajmg.c.32036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.
Collapse
Affiliation(s)
- Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Division of Genetics, Albany, New York, USA
| | | | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Tiina K Urv
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa P Wasserstein
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
35
|
Wen J, Ping H, Kong X, Chai W. Developmental dysplasia of the hip: A systematic review of susceptibility genes and epigenetics. Gene 2023; 853:147067. [PMID: 36435507 DOI: 10.1016/j.gene.2022.147067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex developmental deformity whose pathogenesis and susceptibility-related genes have yet to be elucidated. This systematic review summarizes the current literature on DDH-related gene mutations, animal model experiments, and epigenetic changes in DDH. METHODS We performed a comprehensive search of relevant documents in the Medline, Scopus, Cochrane, and ScienceDirect databases covering the period from October 1991 to October 2021. We analyzed basic information on the included studies and summarized the DDH-related mutation sites, animal model experiments, and epigenetic changes associated with DDH. RESULTS A total of 63 studies were included in the analysis, of which 54 dealt with the detection of gene mutations, 7 presented details of animal experiments, and 6 were epigenetic studies. No genetic mutations were clearly related to the pathogenesis of DDH, including the most frequently studied genes on chromosomes 1, 17, and 20. Most gene-related studies were performed in Han Chinese or North American populations, and the quality of these studies was medium or low. GDF5 was examined in the greatest number of studies, and mutation sites with odds ratios > 10 were located on chromosomes 3, 9, and 13. Six mutations were found in animal experiments (i.e., CX3CR1, GDF5, PAPPA2, TENM3, UFSP2, and WISP3). Epigenetics research on DDH has focused on GDF5 promoter methylation, three microRNAs (miRNAs), and long noncoding RNAs. In addition, there was also a genetic test for miRNA and mRNA sequencing. CONCLUSIONS DDH is a complex joint deformity with a considerable genetic component whose early diagnosis is significant for preventing disease. At present, no genes clearly involved in the pathogenesis of DDH have been identified. Research on mutations associated with this condition is progressing in the direction of in vivo experiments in animal models to identify DDH susceptibility genes and epigenetics analyses to provide novel insights into its pathogenesis. In the future, genetic profiling may improve matters.
Collapse
Affiliation(s)
- Jiaxin Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | | | - Wei Chai
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
36
|
van Bever Y, Groenenberg IAL, Knapen MFCM, Dessens AB, Hannema SE, Wolffenbuttel KP, Diderich KEM, Hoefsloot LH, Srebniak MI, Bruggenwirth HT. Prenatal ultrasound finding of atypical genitalia: Counseling, genetic testing and outcomes. Prenat Diagn 2023; 43:162-182. [PMID: 35808910 DOI: 10.1002/pd.6205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To report uptake of genetic counseling (GC) and prenatal genetic testing after the finding of atypical genitalia on prenatal ultrasound (US) and the clinical and genetic findings of these pregnancies. METHODS A retrospective cohort study (2017-2019) of atypical fetal genitalia in a large expert center for disorders/differences of sex development. We describe counseling aspects, invasive prenatal testing, genetic and clinical outcome of fetuses apparently without [group 1, n = 22 (38%)] or with [group 2, n = 36 (62%)] additional anomalies on US. RESULTS In group 1, 86% of parents opted for GC versus 72% in group 2, and respectively 58% and 15% of these parents refrained from invasive testing. Atypical genitalia were postnatally confirmed in 91% (group 1) and 64% (group 2), indicating a high rate of false positive US diagnosis of ambiguous genitalia. Four genetic diagnoses were established in group 1 (18%) and 10 in group 2 (28%). The total genetic diagnostic yield was 24%. No terminations of pregnancy occurred in group 1. CONCLUSIONS For optimal care, referral for an expert fetal US scan, GC and invasive diagnostics including broad testing should be offered after prenatal detection of isolated atypical genitalia.
Collapse
Affiliation(s)
- Yolande van Bever
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irene A L Groenenberg
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arianne B Dessens
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Sabine E Hannema
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Pediatric Endocrinology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Paediatric Endocrinology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Katja P Wolffenbuttel
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Urology and Pediatric Urology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hennie T Bruggenwirth
- DSD-Expert Center, Erasmus MC, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Kanesada K, Tsunedomi R, Hazama S, Ogihara H, Hamamoto Y, Shindo Y, Matsui H, Tokumitsu Y, Yoshida S, Iida M, Suzuki N, Takeda S, Ioka T, Nagano H. Association between a single nucleotide polymorphism in the R3HCC1 gene and irinotecan toxicity. Cancer Med 2023; 12:4294-4305. [PMID: 36308049 PMCID: PMC9972014 DOI: 10.1002/cam4.5299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Irinotecan is a useful anticancer drug for colorectal cancer treatment. UGT1A1*28 and *6 gene polymorphisms are known risk factors for irinotecan-associated toxicity. However, severe adverse effects due to irinotecan have been observed even in patients who do not harbor UGT1A1*28 or *6. We investigated gene polymorphisms in the whole exome to identify useful biomarkers for irinotecan toxicity other than UGT1A. METHODS A total of 178 patients with metastatic colorectal cancer (mCRC) and 87 patients with pancreatic cancer were treated with FOLFIRI, FOLFOX, FOLFOXIRI, modified FOLFIRINOX, or gemcitabine plus nab-paclitaxel. Genome-wide screening was performed using whole-exome sequencing (WES), and validation analysis was performed using qPCR with a hydrolysis probe. RESULTS Using WES after a doublet chemotherapy regimen comprising irinotecan and 5-fluorouracil (n = 15), seven single nucleotide polymorphisms (SNPs) were identified as candidate biomarkers for irinotecan-associated toxicity of neutropenia. Among the seven SNPs, an SNP in R3H domain and coiled-coil containing 1 (R3HCC1; c.919G > A, rs2272761) showed a significant association with neutropenia (>grade 3) after doublet chemotherapy. Patients receiving irinotecan including triplet chemotherapy, FOLFOXIRI for mCRC (n = 23) or modified FOLFIRINOX for pancreatic cancer (n = 40), also showed significant linear trends between R3HCC1 polymorphism and neutropenia (p = 0.017 and 0.046, respectively). No significant association was observed in patients treated with irinotecan-free regimens, FOLFOX for mCRC (n = 66), and gemcitabine plus nab-paclitaxel for pancreatic cancer (n = 47). CONCLUSION Thus, an SNP in the R3HCC1 gene may be a useful biomarker for the toxicity of irinotecan-containing chemotherapy for mCRC and pancreatic cancer.
Collapse
Affiliation(s)
- Kou Kanesada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroyuki Ogihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yoshihiko Hamamoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
38
|
Sparks TN, Dugoff L. How to choose a test for prenatal genetic diagnosis: a practical overview. Am J Obstet Gynecol 2023; 228:178-186. [PMID: 36029833 PMCID: PMC9877133 DOI: 10.1016/j.ajog.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Establishing the diagnosis of a fetal genetic disease in utero expands decision-making opportunities for individuals during pregnancy and enables providers to tailor prenatal care and surveillance to disease-specific risks. The selection of prenatal genetic tests is guided by key details from fetal imaging, family and obstetrical history, suspected diagnoses and mechanisms of disease, an accurate understanding of what abnormalities each test is designed to detect, and, at times, the gestational age at which testing is initiated. Pre- and posttest counseling, by or in conjunction with providers trained in genetics, ensure an accurate understanding of genetic tests, their potential results and limitations, estimated turnaround time for results, and the clinical implications of their findings. As prenatal diagnosis and testing options continue to expand rapidly, it is increasingly important for obstetrical providers to understand how to choose appropriate genetic testing and contextualize the clinical implications of their results.
Collapse
Affiliation(s)
- Teresa N Sparks
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA.
| | - Lorraine Dugoff
- Divisions of Reproductive Genetics and Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Vora NL, Norton ME. Prenatal exome and genome sequencing for fetal structural abnormalities. Am J Obstet Gynecol 2023; 228:140-149. [PMID: 36027950 PMCID: PMC9877148 DOI: 10.1016/j.ajog.2022.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
As prenatal exome sequencing becomes integrated into clinical care, it is critical that providers caring for women with fetal anomalies recognize not only the benefits, but also the challenges and considerations related to this technology. This overview of prenatal sequencing includes information about indications for sequencing, methods, diagnostic yield, clinical utility, variant interpretation, ethical considerations and dilemmas, practical considerations (ie, turnaround time and cost), pre- and posttest counseling points, and psychological impact of testing on families.
Collapse
Affiliation(s)
- Neeta L Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Mei JY, Dayani L, Platt LD. The new frontier: a case for whole exome sequencing with multiple fetal anomalies. CASE REPORTS IN PERINATAL MEDICINE 2023; 12:20220032. [PMID: 40041274 PMCID: PMC11616545 DOI: 10.1515/crpm-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 03/06/2025]
Abstract
Objectives Standard genetic testing can fail to identify an underlying genetic etiology in pregnancies affected by multiple fetal abnormalities. Recently, whole exome sequencing (WES) studies have shown promise in recognizing genetic diagnoses where standard genetic testing does not yield answers. Case presentation A 35-year-old G1P0 healthy female found at anatomy scan to have multiple fetal anomalies, including severe bilateral ventriculomegaly, renal pyelectasis, and short long bones. Karyotype and microarray were normal. Whole exome sequencing showed the fetus was compound heterozygous for likely pathogenic variants in the ROBO1 gene. Conclusions In the presence of multiple fetal anomalies with normal karyotype and microarray, whole exome sequencing should be considered to not only provide answers for the affected parents, but also aid in future pregnancy planning.
Collapse
Affiliation(s)
- Jenny Y. Mei
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
| | - Lila Dayani
- Laboratory Corporation of America, Monrovia, CA, USA
| | - Lawrence D. Platt
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
- Center for Fetal Medicine and Women’s Ultrasound, Los Angeles, CA, USA
| |
Collapse
|
41
|
Scelsa B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics (Basel) 2022; 12:diagnostics12123083. [PMID: 36553090 PMCID: PMC9776544 DOI: 10.3390/diagnostics12123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Brain abnormalities detected in fetal life are being increasingly recognized. Child neurologists are often involved in fetal consultations, and specific fetal neurology training has been implemented in many countries. Pediatric neurologists are asked to examine the data available and to contribute to the definition of the long-term outcomes. Ventriculomegaly, posterior fossa malformations, and agenesis/dysgenesis of corpus callosum are among the most common reasons for antenatal neurological consultations. Fetuses with central nervous system and extra-CNS anomalies should ideally be managed in secondary/tertiary hospitals where obstetricians who are experts in fetal medicine and pediatric specialists are available. Obstetricians play a critical role in screening, performing detailed neurosonography, and referring to other specialists for additional investigations. Clinical geneticists are frequently asked to propose diagnostic tests and counsel complex fetal malformations whose phenotypes may differ from those during postnatal life. Advances in fetal MRI and genetic investigations can support the specialists involved in counseling. Nevertheless, data interpretation can be challenging, and it requires a high level of expertise in a multidisciplinary setting. Postnatally, child neurologists should be part of an integrated multidisciplinary follow-up, together with neonatologists and pediatricians. The neurodevelopmental outcomes should be assessed at least up to school age. Children should be evaluated with formal tests of their gross motor, cognitive, language, fine motor/visuo-perceptual skills, and their behavior. In this perspective, fetal neurology can be regarded as the beginning of a long journey which continues with a prolonged, structured follow-up, support to the families, and transition to adult life. A review of the most common conditions is presented, along with the long-term outcomes and a proposal of the neurodevelopmental follow-up of children with CNS malformation which are diagnosed in uterus.
Collapse
Affiliation(s)
- Barbara Scelsa
- Department of Pediatric Neurology and Psychiatry, V. Buzzi Children's Hospital, ASST-FBF-Sacco, via Castelvetro 32, 20154 Milan, Italy
| |
Collapse
|
42
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
43
|
van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics 2022; 14:1373-1388. [PMID: 36537268 DOI: 10.2217/epi-2022-0287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Kathleen Rooney
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Tessa Ma Trooster
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Marcel Mam Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
44
|
Advantages of current fetal neuroimaging and genomic technologies in prenatal diagnosis: A clinical case. Eur J Med Genet 2022; 66:104652. [PMID: 36374791 DOI: 10.1016/j.ejmg.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
The diagnosis of prenatal microcephaly, as well as the possibility of underlining a genetic cause, is becoming more frequent thanks to advances in prenatal imaging and parallel massive sequencing. One case of primary microcephaly in three sibs demonstrates how complementary diagnostic exams can help to diagnose and establish the etiology.
Collapse
|
45
|
Desbrest B, Couderc B. Les demandes d’analyses des caractéristiques génétiques par séquençage dans les recherches cliniques : considérations juridiques et éthiques. Therapie 2022; 78:247-257. [DOI: 10.1016/j.therap.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 10/16/2022]
|
46
|
Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:59-67. [PMID: 35229910 PMCID: PMC9328397 DOI: 10.1002/uog.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Prenatally detected central nervous system (CNS) anomalies present a diagnostic challenge. In this study, we compared the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) in fetuses with a major CNS anomaly. METHODS This was a retrospective study of 114 cases referred for genetic evaluation following termination of pregnancy (TOP) due to a major CNS anomaly detected on prenatal ultrasound. All fetuses were first analyzed by CMA. All CMA-negative cases were offered ES. CMA-positive cases were reanalyzed using ES to assess its ability to detect copy-number variants (CNVs). RESULTS CMA identified a pathogenic or likely pathogenic (P/LP) CNV in 11/114 (10%) cases. Eighty-six CMA-negative cases were analyzed using ES, which detected P/LP sequence variants in 38/86 (44%). Among recurrent cases (i.e. cases with a previously affected pregnancy), the incidence of P/LP sequence variants was non-significantly higher compared with non-recurrent ones (12/19 (63%) vs 26/67 (39%); P = 0.06). Among the 38 cases with an ES diagnosis, 20 (53%) were inherited and carried a significant risk of recurrence. Reanalysis of 10 CMA-positive cases by ES demonstrated that the bioinformatics pipeline used for sequence variant analysis also detected all P/LP CNVs, as well as three previously known non-causative CNVs. CONCLUSIONS In our study, ES provided a high diagnostic yield (> 50%) in fetuses with severe CNS structural anomalies, which may have been partly due to the highly selected case series that included post-TOP cases from a specialist referral center. These data suggest that ES may be considered as a first-tier test for the prenatal diagnosis of major fetal CNS anomalies, detecting both P/LP sequence variants and CNVs. This is of particular importance given the time constraints of an ongoing pregnancy and the risk of recurrence in future pregnancies. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Yaron
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - V. Ofen Glassner
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Mory
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - N. Zunz Henig
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Kurolap
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Bar Shira
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Brabbing Goldstein
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Marom
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - L. Ben Sira
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Radiology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - H. Baris Feldman
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - G. Malinger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - K. Krajden Haratz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Reches
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
47
|
Evans MI, Britt DW, Evans SM, Devoe LD. Changing Perspectives of Electronic Fetal Monitoring. Reprod Sci 2022; 29:1874-1894. [PMID: 34664218 PMCID: PMC8522858 DOI: 10.1007/s43032-021-00749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
The delivery of healthy babies is the primary goal of obstetric care. Many technologies have been developed to reduce both maternal and fetal risks for poor outcomes. For 50 years, electronic fetal monitoring (EFM) has been used extensively in labor attempting to prevent a large proportion of neonatal encephalopathy and cerebral palsy. However, even key opinion leaders admit that EFM has mostly failed to achieve this goal. We believe this situation emanates from a fundamental misunderstanding of differences between screening and diagnostic tests, considerable subjectivity and inter-observer variability in EFM interpretation, failure to address the pathophysiology of fetal compromise, and a tunnel vision focus. To address these suboptimal results, several iterations of increasingly sophisticated analyses have intended to improve the situation. We believe that part of the continuing problem is that the focus of EFM has been too narrow ignoring important contextual issues such as maternal, fetal, and obstetrical risk factors, and increased uterine contraction frequency. All of these can significantly impact the application of EFM to intrapartum care. We have recently developed a new clinical approach, the Fetal Reserve Index (FRI), contextualizing EFM interpretation. Our data suggest the FRI is capable of providing higher accuracy and earlier detection of emerging fetal compromise. Over time, artificial intelligence/machine learning approaches will likely improve measurements and interpretation of FHR characteristics and other relevant variables. Such future developments will allow us to develop more comprehensive models that increase the interpretability and utility of interfaces for clinical decision making during the intrapartum period.
Collapse
Affiliation(s)
- Mark I Evans
- Fetal Medicine Foundation of America, New York, NY, USA.
- Comprehensive Genetics, PLLC, New York, NY, USA.
- Department of Obstetrics & Gynecology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| | - David W Britt
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Shara M Evans
- Department of Maternal Child Health, Gillings School of Public Health, University of North Carolina, Chapel Hill, USA
| | - Lawrence D Devoe
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
48
|
Li R, Gao X, Sun H, Sun L, Hu X. Expression characteristics of long non-coding RNA in colon adenocarcinoma and its potential value for judging the survival and prognosis of patients: bioinformatics analysis based on The Cancer Genome Atlas database. J Gastrointest Oncol 2022; 13:1178-1187. [PMID: 35837189 DOI: 10.21037/jgo-22-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the expression characteristics of long non-coding RNA (lncRNA) in colon adenocarcinoma (COAD) and its potential value in predicting the prognosis of patient survival. Methods We downloaded COAD-related RNA sequencing (RNA-seq) data and patient survival data from The Cancer Genome Atlas (TCGA). The data were analyzed for lncRNA expression differences, subjected to Cox regression analysis for survival rate, and Kaplan-Meier (KM) survival curves were plotted to analyze the role of the key genes related to prognostic survival by pathway enrichment analysis. Results The data of 494 COAD clinical samples from TCGA were analyzed; 204 lncRNAs were differentially expressed, 156 were up-regulated, and 48 were down-regulated. The 10 genes with the most significant expression differences were Linc02418, Blacat1, ELFN1-AS1, CRNDE, AC002384.1, AL353801.1, LINC01645, AC073283.2, AC087379.1, and LINC00484. Cox regression analysis of 204 lncRNA genes showed that 23 lncRNA genes with significant effects on the prognosis and survival rate of COAD patients were obtained when P<0.05 was used as the threshold. With P≤0.001 as the threshold, the KM curves of 4 genes (Linc02257, Linc02474, Ac010789.1, Ac083967.1) were statistically significant (P<0.05). The gene Linc02257 was selected for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and it was revealed that the inheritance of Linc02257-regulated gene expression was closely related to tumor development, such as collagen-containing extracellular matrix, organogenesis, activity of membrane protein receptors, and ion channel activity. The signaling pathways regulated by Linc02257 were also closely related to tumors, such as neuroactive ligand-receptor interaction, the PI3K-AKT signaling pathway, calcium signaling pathway, and protein digestion and absorption. Conclusions In COAD, lncRNA is differentially expressed and plays an important role in the disease regulation. It has potential application value in the diagnosis, targeted therapy, and prognosis of COAD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xu Gao
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Lixin Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xiaojian Hu
- Department of Urology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| |
Collapse
|
49
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
50
|
Brown JEH, Zamora AN, Outram S, Sparks TN, Lianoglou BR, Norstad M, Sahin Hodoglugil NN, Norton ME, Ackerman SL. “Let’s Just Wait Until She’s Born”: Temporal Factors That Shape Decision-Making for Prenatal Genomic Sequencing Amongst Families Underrepresented in Genomic Research. Front Genet 2022; 13:882703. [PMID: 35669190 PMCID: PMC9164104 DOI: 10.3389/fgene.2022.882703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Genomic sequencing has been increasingly utilized for prenatal diagnosis in recent years and this trend is likely to continue. However, decision-making for parents in the prenatal period is particularly fraught, and prenatal sequencing would significantly expand the complexity of managing health risk information, reproductive options, and healthcare access. This qualitative study investigates decision-making processes amongst parents who enrolled or declined to enroll in the prenatal arm of the California-based Program in Prenatal and Pediatric Genome Sequencing (P3EGS), a study in the Clinical Sequencing Evidence-Generating Research (CSER) consortium that offered whole exome sequencing for fetal anomalies with a focus on underrepresented groups in genomic research. Drawing on the views of 18 prenatal families who agreed to be interviewed after enrolling (n = 15) or declining to enroll (n = 3) in P3EGS, we observed that the timing of sequencing, coupled with unique considerations around experiences of time during pregnancy and prenatal testing, intersect with structural supports beyond the clinic to produce preferences for and against prenatal sequencing and to contain the threat of unwelcome, uncertain knowledge. Particularly for those without structural supports, finding out consequential information may be more palatable after the birth, when the first stage of the uncertain future has been revealed. Future research should examine the role of temporality in decision-making around prenatal genomic sequencing across diverse population cohorts, in order to observe more precisely the role that structural barriers play in patient preferences.
Collapse
Affiliation(s)
- Julia E. H. Brown
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
- *Correspondence: Julia E. H. Brown,
| | - Astrid N. Zamora
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Simon Outram
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
- Department of Social and Behavioral Sciences, UCSF, San Francisco, CA, United States
| | - Teresa N. Sparks
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, CA, United States
- Institute for Human Genetics, UCSF, San Francisco, CA, United States
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
| | - Billie R. Lianoglou
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
- Department of Surgery, UCSF, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| | - Matthew Norstad
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Institute for Health and Aging, UCSF, San Francisco, CA, United States
| | | | - Mary E. Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, CA, United States
- Institute for Human Genetics, UCSF, San Francisco, CA, United States
- Center for Maternal Fetal Precision Medicine, UCSF, San Francisco, CA, United States
| | - Sara L. Ackerman
- Program in Bioethics, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Social and Behavioral Sciences, UCSF, San Francisco, CA, United States
| |
Collapse
|