1
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
2
|
Engelken JA, Butelmann T, Tribukait-Riemenschneider F, Shastri VP. Towards a 3D-Printed Millifluidic Device for Investigating Cellular Processes. MICROMACHINES 2024; 15:1348. [PMID: 39597157 PMCID: PMC11596629 DOI: 10.3390/mi15111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Microfluidic devices (µFDs) have been explored extensively in drug screening and studying cellular processes such as migration and metastasis. However, the fabrication and implementation of microfluidic devices pose cost and logistical challenges that limit wider-spread adoption. Despite these challenges, light-based 3D printing offers a potential alternative to device fabrication. This study reports on the development of millifluidic devices (MiFDs) for disease modeling and elucidates the methods and implications of the design, production, and testing of 3D-printed MiFDs. It further details how such millifluidic devices can be cost-efficiently and effortlessly produced. The MiFD was developed through an iterative process with analytical tests (flow tests, leak tests, cytotoxicity assays, and microscopic analyses), driving design evolution and determination of the suitability of the devices for disease modeling and cancer research. The design evolution also considered flow within tissues and replicates interstitial flow between the main flow path and the modules designed to house and support organ-mimicking cancer cell spheroids. Although the primary stereolithographic (SLA) resin used in this study showed cytotoxic potential despite its biocompatibility certifications, the MiFDs possessed essential attributes for cell culturing. In summary, SLA 3D printing enables the production of MiFDs as a cost-effective, rapid prototyping alternative to standard µFD fabrication for investigating disease-related processes.
Collapse
Affiliation(s)
- Jared A. Engelken
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
| | - Tobias Butelmann
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
| | | | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (J.A.E.); (F.T.-R.)
- BIOSS Centre of Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Graham A, Thompson C, Flynn D, Elchos H, Gibson J, Priddy LB, Priddy MW. Design and construction of a low-cost compressive loading and perfusion flow bioreactor. HARDWAREX 2024; 19:e00565. [PMID: 39687305 PMCID: PMC11647964 DOI: 10.1016/j.ohx.2024.e00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024]
Abstract
This article reports the design and construction of an open-source compressive loading and perfusion flow bioreactor for under $4000, as well as validation of the device and an example use-application. The bioreactor is capable of recording applied force and displacement as well as regulating media flow rate. This bioreactor was built to be user friendly, widely adaptable for modular changes, and made of readily available materials.
Collapse
Affiliation(s)
- Alexis Graham
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Charlotte Thompson
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Darrock Flynn
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Honor Elchos
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Jaydon Gibson
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Matthew W. Priddy
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America
| |
Collapse
|
4
|
Gustin P, Prasad A. EnduroBone: A 3D printed bioreactor for extended bone tissue culture. HARDWAREX 2024; 18:e00535. [PMID: 38690152 PMCID: PMC11059325 DOI: 10.1016/j.ohx.2024.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
Collapse
Affiliation(s)
- Paula Gustin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Biologcial Science Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
A Cataño J, Farthing S, Mascarenhas Z, Lake N, Yarlagadda PKDV, Li Z, Toh YC. A User-Centric 3D-Printed Modular Peristaltic Pump for Microfluidic Perfusion Applications. MICROMACHINES 2023; 14:mi14050930. [PMID: 37241553 DOI: 10.3390/mi14050930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
Microfluidic organ-on-a-chip (OoC) technology has enabled studies on dynamic physiological conditions as well as being deployed in drug testing applications. A microfluidic pump is an essential component to perform perfusion cell culture in OoC devices. However, it is challenging to have a single pump that can fulfil both the customization function needed to mimic a myriad of physiological flow rates and profiles found in vivo and multiplexing requirements (i.e., low cost, small footprint) for drug testing operations. The advent of 3D printing technology and open-source programmable electronic controllers presents an opportunity to democratize the fabrication of mini-peristaltic pumps suitable for microfluidic applications at a fraction of the cost of commercial microfluidic pumps. However, existing 3D-printed peristaltic pumps have mainly focused on demonstrating the feasibility of using 3D printing to fabricate the structural components of the pump and neglected user experience and customization capability. Here, we present a user-centric programmable 3D-printed mini-peristaltic pump with a compact design and low manufacturing cost (~USD 175) suitable for perfusion OoC culture applications. The pump consists of a user-friendly, wired electronic module that controls the operation of a peristaltic pump module. The peristaltic pump module comprises an air-sealed stepper motor connected to a 3D-printed peristaltic assembly, which can withstand the high-humidity environment of a cell culture incubator. We demonstrated that this pump allows users to either program the electronic module or use different-sized tubing to deliver a wide range of flow rates and flow profiles. The pump also has multiplexing capability as it can accommodate multiple tubing. The performance and user-friendliness of this low-cost, compact pump can be easily deployed for various OoC applications.
Collapse
Affiliation(s)
- Jorge A Cataño
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
| | - Steven Farthing
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Zeus Mascarenhas
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Nathaniel Lake
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
- School of Engineering, University of Southern Queensland, Springfield Central 4300, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove 4059, Australia
- Centre for Microbiome Research, Queensland University of Technology, Woolloongabba 4102, Australia
| |
Collapse
|
6
|
Closed-loop Control Systems for Pumps used in Portable Analytical Systems. J Chromatogr A 2023; 1695:463931. [PMID: 37011525 DOI: 10.1016/j.chroma.2023.463931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The demand for accurate control of the flowrate/pressure in chemical analytical systems has given rise to the adoption of mechatronic approaches in analytical instruments. A mechatronic device is a synergistic system which combines mechanical, electronic, computer and control components. In the development of portable analytical devices, considering the instrument as a mechatronic system can be useful to mitigate compromises made to decrease space, weight, or power consumption. Fluid handling is important for reliability, however, commonly utilized platforms such as syringe and peristaltic pumps are typically characterized by flow/pressure fluctuations and slow responses. Closed loop control systems have been used effectively to decrease the difference between desired and realized fluidic output. This review discusses the way control systems have been implemented for enhanced fluidic control, categorized by pump type. Advanced control strategies used to enhance the transient and the steady state responses are discussed, along with examples of their implementation in portable analytical systems. The review is concluded with the outlook that the challenge in adequately expressing the complexity and dynamics of the fluidic network as a mathematical model has yielded a trend towards the adoption of experimentally informed models and machine learning approaches.
Collapse
|
7
|
You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, Guan J, Yao E, Tang M, Zhong Z, Ma X, Wangpraseurt D, Sun Y, Lu TY, Chen S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. SCIENCE ADVANCES 2023; 9:eade7923. [PMID: 36812321 PMCID: PMC9946358 DOI: 10.1126/sciadv.ade7923] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting techniques have emerged as the most popular methods to fabricate 3D-engineered tissues; however, there are challenges in simultaneously satisfying the requirements of high cell density (HCD), high cell viability, and fine fabrication resolution. In particular, bioprinting resolution of digital light processing-based 3D bioprinting suffers with increasing bioink cell density due to light scattering. We developed a novel approach to mitigate this scattering-induced deterioration of bioprinting resolution. The inclusion of iodixanol in the bioink enables a 10-fold reduction in light scattering and a substantial improvement in fabrication resolution for bioinks with an HCD. Fifty-micrometer fabrication resolution was achieved for a bioink with 0.1 billion per milliliter cell density. To showcase the potential application in tissue/organ 3D bioprinting, HCD thick tissues with fine vascular networks were fabricated. The tissues were viable in a perfusion culture system, with endothelialization and angiogenesis observed after 14 days of culture.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David B. Berry
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Ma
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting-yu Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Menkara A, Faryami A, Viar D, Harris C. Applications of a novel reciprocating positive displacement pump in the simulation of pulsatile arterial blood flow. PLoS One 2022; 17:e0270780. [PMID: 36512622 PMCID: PMC9746965 DOI: 10.1371/journal.pone.0270780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pulsatile arterial blood flow plays an important role in vascular system mechanobiology, especially in the study of mechanisms of pathology. Limitations in cost, time, sample size, and control across current in-vitro and in-vivo methods limit future exploration of novel treatments. Presented is the verification of a novel reciprocating positive displacement pump aimed at resolving these issues through the simulation of human ocular, human fingertip and skin surface, human cerebral, and rodent spleen organ systems. A range of pulsatile amplitudes, frequencies, and flow rates were simulated using pumps made of 3D printed parts incorporating a tubing system, check valve and proprietary software. Volumetric analysis of 430 total readings across a flow range of 0.025ml/min to 16ml/min determined that the pump had a mean absolute error and mean relative error of 0.041 ml/min and 1.385%, respectively. Linear regression analysis compared to expected flow rate across the full flow range yielded an R2 of 0.9996. Waveform analysis indicated that the pump could recreate accurate beat frequency for flow ranges above 0.06ml/min at 70BPM. The verification of accurate pump output opens avenues for the development of novel long-term in-vitro benchtop models capable of looking at fluid flow scenarios previously unfeasible, including low volume-high shear rate pulsatile flow.
Collapse
Affiliation(s)
- Adam Menkara
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Ahmad Faryami
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel Viar
- Department of Computer Science and Engineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carolyn Harris
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jo B, Morimoto Y, Takeuchi S. 3D-Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis. Adv Healthc Mater 2022; 11:e2200593. [PMID: 35608243 DOI: 10.1002/adhm.202200593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Indexed: 01/28/2023]
Abstract
In recent years, microfluidic systems have been extensively utilized for biological analysis. The integration of pumps in microfluidic systems requires precise control of liquids and effort-intensive set-ups for multiplexed experiments. In this study, a 3D-printed centrifugal pump driven by magnetic force is presented for microfluidics and biological analysis. The permanent magnets implemented in the centrifugal pump synchronized the rotation of the driving and operating parts. Precise control of the flow rate and a wide range and variety of flow profiles are achieved by controlling the rotational speed of the motor in the driving part. The compact size and contactless driving part allow simple set-ups within commercially available culture dishes and tubes. It is demonstrated that the fabricated 3D-printed centrifugal pump can induce laminar flow in a microfluidic device, perfusion culture of in vitro tissues, and alignment of cells under shear stress. This device has a high potential for applications in microfluidic devices and perfusion culture of cells.
Collapse
Affiliation(s)
- Byeongwook Jo
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuya Morimoto
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shoji Takeuchi
- Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,International Research for Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Keesey R, LeSuer R, Schrier J. Sidekick: A Low-Cost Open-Source 3D-printed liquid dispensing robot. HARDWAREX 2022; 12:e00319. [PMID: 35677813 PMCID: PMC9168727 DOI: 10.1016/j.ohx.2022.e00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The Sidekick is a desktop liquid dispenser, compatible with standard SBS microplates and designed for accessible laboratory automation. It features an armature-based motion system and a fully 3D-printed chassis to reduce overall mechanical complexity and accommodate user modification. Liquid dispensing is achieved with four commercially available solenoid driven positive displacement pumps that deliver liquid in 10 µL increments. A Raspberry Pi Pico RP2040 processor programmed in MicroPython is used for control, and exposes a USB serial interface for users to submit commands using either a simple vocabulary of commands or a subset of G-Code. At a total cost of $710 USD, the Sidekick offers laboratories an easy to build, easily maintained, open-source liquid dispensing system for both research and pedagogical introductions to lab automation.
Collapse
Affiliation(s)
- Rodolfo Keesey
- Department of Chemistry, Fordham University, 441 E. Fordham Road, The Bronx, NY 10458, USA
| | - Robert LeSuer
- Department of Chemistry and Biochemistry, SUNY Brockport, 350 New Campus Drive, Brockport, NY 14420, USA
| | - Joshua Schrier
- Department of Chemistry, Fordham University, 441 E. Fordham Road, The Bronx, NY 10458, USA
| |
Collapse
|
11
|
Eleney CM, Bradley M, Alves S, Crudden DM. Development of a low-cost semi-automated robotic orthophosphate system for batch analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3444-3450. [PMID: 35993850 DOI: 10.1039/d2ay00906d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring the level of nutrients in soil and their availability for crops can be time-consuming or require expensive instrumentation. This work describes a low-cost (<€500) portable, semi-automated colourimetric orthophosphate (PO43-) analyser supplemented with 3D printed parts. Colour development was based on the phosphomolybdenum blue formation coupled with spectrophotometric detection using a low-cost LED-photodiode assembly. The batch analysis technique required only minimal autonomous additions of reagents to the reaction vessel. In addition, the reaction time was reduced with vigorous automated stirring of the small quantity of reactants. Continuous monitoring of the absorbance throughout the reaction also decreased contact time, eliminating the prerequisite of a blank and warm-up time, customarily associated with colourimetric measurements. The semi-automated Robotic Orthophosphate System (saROS) has a linear dynamic range between 10-750 μg L-1 P-PO43-, and a limit of detection of 3 μg L-1 P-PO43- with good repeatability (RSD of 2.4%). In addition to portability and low cost, the prototype is an accurate and reproducible device for measuring phosphorus in aquatic ecosystems and soil extracts.
Collapse
Affiliation(s)
- Christopher Mc Eleney
- Department of Life & Physical Sciences, Atlantic Technological University Donegal, Letterkenny, County Donegal, F92 FC93, Ireland.
| | - Martin Bradley
- Faculty of Engineering and Technology, Atlantic Technological University Donegal, Letterkenny, County Donegal, F92 FC93, Ireland
| | - Sheila Alves
- Teagasc, Crops Research Centre, Oak Park, Carlow R93 XE12, Ireland
| | - Denis Mc Crudden
- Department of Life & Physical Sciences, Atlantic Technological University Donegal, Letterkenny, County Donegal, F92 FC93, Ireland.
| |
Collapse
|
12
|
Dhall A, Ramjee R, Oh MJ, Tao K, Hwang G. A 3D-Printed Customizable Platform for Multiplex Dynamic Biofilm Studies. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2200138. [PMID: 35935146 PMCID: PMC9347831 DOI: 10.1002/admt.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 05/03/2023]
Abstract
Biofilms are communities of microbes that colonize surfaces. While several biofilm experimental models exist, they often have limited replications of spatiotemporal dynamics surrounding biofilms. For a better understanding dynamic and complex biofilm development, this manuscript presents a customizable platform compatible with off-the-shelf well plates that can monitor microbial adhesion, growth, and associated parameters under various relevant scenarios by taking advantage of 3D printing. The system i) holds any substrate in a stable, vertical position, ii) subjects samples to flow at different angles, iii) switches between static and dynamic modes during an experiment, and iv) allows multiplexing and real-time monitoring of biofilm parameters. Simulated fluid dynamics is employed to estimate flow patterns around discs and shear stresses at disc surfaces. A 3D printed peristaltic pump and a customized pH measurement system for real-time tracking of spent biofilm culture media are equipped with a graphical user interface that grants control over all experimental parameters. The system is tested under static and dynamic conditions with Streptococcus mutans using different carbon sources. By monitoring the effluent pH and characterizing biochemical, microbiological, and morphological properties of cultured biofilms, distinct properties are demonstrated. This novel platform liberates designing experimental strategies for investigations of biofilms under various conditions.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravikiran Ramjee
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Jun Oh
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Tao
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Del Rosario M, Heil HS, Mendes A, Saggiomo V, Henriques R. The Field Guide to 3D Printing in Optical Microscopy for Life Sciences. Adv Biol (Weinh) 2022; 6:e2100994. [PMID: 34693666 DOI: 10.1002/adbi.202100994] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Indexed: 01/27/2023]
Abstract
The maker movement has reached the optics labs, empowering researchers to create and modify microscope designs and imaging accessories. 3D printing has a disruptive impact on the field, improving accessibility to fabrication technologies in additive manufacturing. This approach is particularly useful for rapid, low-cost prototyping, allowing unprecedented levels of productivity and accessibility. From inexpensive microscopes for education such as the FlyPi to the highly complex robotic microscope OpenFlexure, 3D printing is paving the way for the democratization of technology, promoting collaborative environments between researchers, as 3D designs are easily shared. This holds the unique possibility of extending the open-access concept from knowledge to technology, allowing researchers everywhere to use and extend model structures. Here, it is presented a review of additive manufacturing applications in optical microscopy for life sciences, guiding the user through this new and exciting technology and providing a starting point to anyone willing to employ this versatile and powerful new tool.
Collapse
Affiliation(s)
- Mario Del Rosario
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Hannah S Heil
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Afonso Mendes
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University and Research, Wageningen, 6708WG, The Netherlands
| | - Ricardo Henriques
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
- Quantitative Imaging and Nanobiophysics, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
14
|
Vázquez M, Anfossi L, Ben-Yoav H, Diéguez L, Karopka T, Della Ventura B, Abalde-Cela S, Minopoli A, Di Nardo F, Shukla VK, Teixeira A, Tvarijonaviciute A, Franco-Martínez L. Use of some cost-effective technologies for a routine clinical pathology laboratory. LAB ON A CHIP 2021; 21:4330-4351. [PMID: 34664599 DOI: 10.1039/d1lc00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.
Collapse
Affiliation(s)
- Mercedes Vázquez
- National Centre For Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | | | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Sara Abalde-Cela
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Vikas Kumar Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexandra Teixeira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
15
|
Pazdzior R, Kubicek S. PlateFlo - A software-controllable plate-scale perfusion system for culture of adherent cells. HARDWAREX 2021; 10:e00222. [PMID: 35607664 PMCID: PMC9123465 DOI: 10.1016/j.ohx.2021.e00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 06/15/2023]
Abstract
Here we present a versatile system for milliliter-scale perfusion culture of adherent cells that can be built using basic tools, based on a readily available one-well culture plate (84 cm2 culture area). Media composition and flow paths can be programmatically controlled via USB serial interface using the FETbox hardware controller and associated PlateFlo Python package. The FETbox can control up to five high current 12 V devices such as common pinch valves, solenoids, and DC motor peristaltic pumps. It was designed to be easily customized with built-in accommodation for additional electronic components (e.g. analog sensors and input), use of the ubiquitous Arduino Nano platform, and easily expanded serial communication protocol. Multiple FETboxes can be used in parallel for additional devices. Applications of the PlateFlo system include perfusion culture of laboratory experiments requiring large cell numbers including genome-scale genetic screens and proteomics, as well as novel perfusion schemes including dynamic media conditions and sequential cell culture.
Collapse
Key Words
- Adherent
- Automation
- BOM, bill of materials
- CFD, computational fluid dynamics
- Cell culture
- DMEM, Dulbecco’s modified Eagle’s medium
- EUR, Euro
- FDM, fused deposition modelling
- MCU, microcontroller unit
- MOSFET, metal oxide semiconductor field effect transistor
- Microplate
- Millifluidic
- PBS, phosphate-buffered saline
- PCB, printed circuit board
- PWM, pulse width modulation
- Perfusion
- hIPSC, human induced pluripotent stem cell
Collapse
|
16
|
Baas S, Saggiomo V. Ender3 3D printer kit transformed into open, programmable syringe pump set. HARDWAREX 2021; 10:e00219. [PMID: 35607679 PMCID: PMC9123459 DOI: 10.1016/j.ohx.2021.e00219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
A cheap, open source 3D printer (Creality Ender 3) is transformed into an Open Hardware, programmable syringe pump set. Only 3 parts need to be purchased outside of the printer kit. All other parts are either in the Ender 3 kit, or can be 3D printed. No prior knowledge in electronics or programming languages is required. The pumps are controlled by the 3D printer firmware and motherboard and programmed in simple G-code text files. The total cost of a three pumps setup is ∼€170. The pumps are capable of reaching stable flows down to 5 µL/min using cheap, disposable 10 mL syringes. Higher flow speeds are also achievable, in the order of mL/min.
Collapse
Affiliation(s)
- Sander Baas
- Laboratory of BioNanoTechnology, Bornse Weilanden 9, Wageningen University and Research, Wageningen, The Netherlands
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Bornse Weilanden 9, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
McCarthy DT, Shi B, Wang M, Catsamas S. BoSL FAL pump: A small, low-cost, easily constructed, 3D-printed peristaltic pump for sampling of waters. HARDWAREX 2021; 10:e00214. [PMID: 35607656 PMCID: PMC9123421 DOI: 10.1016/j.ohx.2021.e00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/01/2023]
Abstract
Water sampling is an essential undertaking for water utilities and agencies to protect and enhance our natural resources. The high variability in water quality, however, often necessitates a spatially distributed sampling program which is impeded by high-cost and large sampling devices. This paper presents the BoSL FAL Pump - a low-cost, easily constructed, 3D-printed peristaltic pump which can be made from commonly available components and is sized to suit even the most space constrained installations. The pump is 38 mm in height and 28 mm in diameter, its components cost $19 AUD and the construction time is just 12 min (excluding 3D printing times). The pump is driven by a direct current motor which is commonly available, cheap and allows for flexibility in the energy supply (5-12 V). Optionally, the pump has a Hall effect sensor and magnet to detect rotation rates and pumping volumes to improve the accuracy of pumping rates/volumes. The pump can be easily controlled by commonly available microcontrollers, as demonstrated by this paper which implements the ATmega328P on the Arduino Uno R3. This paper validates the pump for long-term deployments at flow rates of up to 13 mL per minute in 0.14 mL volume increments at accuracy levels of greater than 99%. The pump itself is scalable, allowing for a wider range of pumping rates when, for example, large volume samples are required for pathogen and micropollutant detection.
Collapse
|
18
|
Ching T, Vasudevan J, Tan HY, Lim CT, Fernandez J, Toh YC, Hashimoto M. Highly-customizable 3D-printed peristaltic pump kit. HARDWAREX 2021; 10:e00202. [PMID: 35607675 PMCID: PMC9123372 DOI: 10.1016/j.ohx.2021.e00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Commercially available peristaltic pumps for microfluidics are usually bulky, expensive, and not customizable. Herein, we developed a cost-effective kit to build a micro-peristaltic pump (~ 50 USD) consisting of 3D-printed and off-the-shelf components. We demonstrated fabricating two variants of pumps with different sizes and operating flowrates using the developed kit. The assembled pumps offered a flowrate of 0.02 ~ 727.3 μL/min, and the smallest pump assembled with this kit was 20 × 50 × 28 mm. This kit was designed with modular components (i.e., each component followed a standardized unit) to achieve (1) customizability (users can easily reconfigure various components to comply with their experiments), (2) forward compatibility (new parts with the standardized unit can be designed and easily interfaced to the current kit), and (3) easy replacement of the parts experiencing wear and tear. To demonstrate the forward compatibility, we developed a flowrate calibration tool that was readily interfaced with the developed pump system. The pumps exhibited good repeatability in flowrates and functioned inside a cell incubator (at 37 °C and 95 % humidity) for seven days without noticeable issues in the performance. This cost-effective, highly customizable pump kit should find use in lab-on-a-chip, organs-on-a-chip, and point-of-care microfluidic applications.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
| | - Jyothsna Vasudevan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Hsih Yin Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Javier Fernandez
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore
| |
Collapse
|
19
|
Toppi A, Busk LL, Hu H, Dogan AA, Jönsson A, Taboryski RJ, Dufva M. Photolithographic Patterning of FluorAcryl for Biphilic Microwell-Based Digital Bioassays and Selection of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43914-43924. [PMID: 34491739 DOI: 10.1021/acsami.1c10096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
FluorAcryl 3298 (FA) is a UV-curable fluoroacrylate polymer commonly employed as a chemically resistant, hydrophobic, and oleophobic coating. Here, FA was used in a cleanroom-based microstructuring process to fabricate hydrophilic-in-hydrophobic (HiH) micropatterned surfaces containing femtoliter-sized well arrays. A short protocol involving direct UV photopatterning, an etching step, and final recovery of the hydrophobic properties of the polymer produced patterned substrates with micrometer resolution. Specifically, HiH microwell arrays were obtained with a well diameter of 10 μm and various well depths ranging from 300 nm to 1 μm with high reproducibility. The 300 nm deep microdroplet array (MDA) substrates were used for digital immunoassays, which presented a limit of detection in the attomolar range. This demonstrated the chemical functionality of the hydrophilic and hydrophobic surfaces. Furthermore, the 1 μm deep wells could efficiently capture particles such as bacteria, whereas the 300 nm deep substrates or other types of flat HiH molecular monolayers could not. Capturing a mixture of bacteria expressing red- and green-fluorescent proteins, respectively, served as a model for screening and selection of specific phenotypes using FA-MDAs. Here, green-fluorescent bacteria were specifically selected by overlaying a solution of gelatin methacryloyl (GelMA) mixed with a photoinitiator and using a high-magnification objective, together with custom pinholes, in a common fluorescence microscope to cross-link the hydrogel around the bacteria of interest. In conclusion, due to the straightforward processing, versatility, and low-price, FA is an advantageous alternative to more commonly used fluorinated materials, such as CYTOP or Teflon-AF, for the fabrication of HiH microwell arrays and other biphilic microstructures.
Collapse
Affiliation(s)
- Arianna Toppi
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Louise L Busk
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Hongxia Hu
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Asli A Dogan
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alexander Jönsson
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rafael J Taboryski
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|