1
|
Zhang Y, Ni J, Gao Y. RF-SVM: Identification of DNA-binding proteins based on comprehensive feature representation methods and support vector machine. Proteins 2021; 90:395-404. [PMID: 34455627 DOI: 10.1002/prot.26229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023]
Abstract
Protein-DNA interactions play an important role in biological progress, such as DNA replication, repair, and modification processes. In order to have a better understanding of its functions, the one of the most important steps is the identification of DNA-binding proteins. We propose a DNA-binding protein predictor, namely, RF-SVM, which contains four types features, that is, pseudo amino acid composition (PseAAC), amino acid distribution (AAD), adjacent amino acid composition frequency (ACF) and Local-DPP. Random Forest algorithm is utilized for selecting top 174 features, which are established the predictor model with the support vector machine (SVM) on training dataset UniSwiss-Tr. Finally, RF-SVM method is compared with other existing methods on test dataset UniSwiss-Tst. The experimental results demonstrated that RF-SVM has accuracy of 84.25%. Meanwhile, we discover that the physicochemical properties of amino acids for OOBM770101(H), CIDH920104(H), MIYS990104(H), NISK860101(H), VINM940103(H), and SNEP660101(A) have contribution to predict DNA-binding proteins. The main code and datasets can gain in https://github.com/NiJianWei996/RF-SVM.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| | - Jianwei Ni
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| | - Ya Gao
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| |
Collapse
|
2
|
Yang Y, Lee JE, Jeong HY, Shim JY, Baek MJ, Son MJ, Kim YJ, Noh H, Lim KI. Alteration of gammaretroviral vector integration patterns by insertion of histone and leucine zipper into integrase. Biotechnol Bioeng 2020; 117:3924-3937. [PMID: 32816306 DOI: 10.1002/bit.27540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.
Collapse
Affiliation(s)
- Yeji Yang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Division of Analytical Science Research, Research Center for Biocenvergence Analysis, Korea Basic Science Institute, Chungcheongbukdo, Korea
| | - Ji-Eun Lee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Health and Environment Research Institute of Gwangju, Gwangju, Korea
| | - Hye-Young Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Ji-Yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Min-Jeong Baek
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, Goyang, Korea
| | - Min-Jeong Son
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Yeon-Ju Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Hohsuk Noh
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
3
|
Shin JE, Lee H, Jung K, Kim M, Hwang K, Han J, Lim J, Kim IS, Lim KI, Park KI. Cellular Response of Ventricular-Subventricular Neural Progenitor/Stem Cells to Neonatal Hypoxic-Ischemic Brain Injury and Their Enhanced Neurogenesis. Yonsei Med J 2020; 61:492-505. [PMID: 32469173 PMCID: PMC7256006 DOI: 10.3349/ymj.2020.61.6.492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To elucidate the brain's intrinsic response to injury, we tracked the response of neural stem/progenitor cells (NSPCs) located in ventricular-subventricular zone (V-SVZ) to hypoxic-ischemic brain injury (HI). We also evaluated whether transduction of V-SVZ NSPCs with neurogenic factor NeuroD1 could enhance their neurogenesis in HI. MATERIALS AND METHODS Unilateral HI was induced in ICR neonatal mice. To label proliferative V-SVZ NSPCs in response to HI, bromodeoxyuridine (BrdU) and retroviral particles encoding LacZ or NeuroD1/GFP were injected. The cellular responses of NSPCs were analyzed by immunohistochemistry. RESULTS Unilateral HI increased the number of BrdU+ newly-born cells in the V-SVZ ipsilateral to the lesion while injury reduced the number of newly-born cells reaching the ipsilateral olfactory bulb, which is the programmed destination of migratory V-SVZ NSPCs in the intact brain. These newly-born cells were directed from this pathway towards the lesions. HI significantly increased the number of newly-born cells in the cortex and striatum by the altered migration of V-SVZ cells. Many of these newly-born cells differentiated into active neurons and glia. LacZ-expressing V-SVZ NSPCs also showed extensive migration towards the non-neurogenic regions ipsilateral to the lesion, and expressed the neuronal marker NeuN. NeuroD1+/GFP+ V-SVZ NSPCs almost differentiated into neurons in the peri-infarct regions. CONCLUSION HI promotes the establishment of a substantial number of new neurons in non-neurogenic regions, suggesting intrinsic repair mechanisms of the brain, by controlling the behavior of endogenous NSPCs. The activation of NeuroD1 expression may improve the therapeutic potential of endogenous NSPCs by increasing their neuronal differentiation in HI.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Haejin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangsoo Jung
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jungho Han
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Joohee Lim
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Il Sun Kim
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Kook In Park
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Loyola L, Achuthan V, Gilroy K, Borland G, Kilbey A, Mackay N, Bell M, Hay J, Aiyer S, Fingerman D, Villanueva RA, Cameron E, Kozak CA, Engelman AN, Neil J, Roth MJ. Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathog 2019; 15:e1008154. [PMID: 31815961 PMCID: PMC6974304 DOI: 10.1371/journal.ppat.1008154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/21/2020] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Murine leukemia virus (MLV) integrase (IN) lacking the C-terminal tail peptide (TP) loses its interaction with the host bromodomain and extraterminal (BET) proteins and displays decreased integration at promoter/enhancers and transcriptional start sites/CpG islands. MLV lacking the IN TP via an altered open reading frame was used to infect tumorigenesis mouse model (MYC/Runx2) animals to observe integration patterns and phenotypic effects, but viral passage resulted in the restoration of the IN TP through small deletions. Mice subsequently infected with an MLV IN lacking the TP coding sequence (TP-) showed an improved median survival by 15 days compared to wild type (WT) MLV infection. Recombination with polytropic endogenous retrovirus (ERV), Pmv20, was identified in seven mice displaying both fast and slow tumorigenesis, highlighting the strong selection within the mouse to maintain the full-length IN protein. Mapping the genomic locations of MLV in tumors from an infected mouse with no observed recombination with ERVs, TP-16, showed fewer integrations at TSS and CpG islands, compared to integrations observed in WT tumors. However, this mouse succumbed to the tumor in relatively rapid fashion (34 days). Analysis of the top copy number integrants in the TP-16 tumor revealed their proximity to known MLV common insertion site genes while maintaining the MLV IN TP- genotype. Furthermore, integration mapping in K562 cells revealed an insertion preference of MLV IN TP- within chromatin profile states associated with weakly transcribed heterochromatin with fewer integrations at histone marks associated with BET proteins (H3K4me1/2/3, and H3K27Ac). While MLV IN TP- showed a decreased overall rate of tumorigenesis compared to WT virus in the MYC/Runx2 model, MLV integration still occurred at regions associated with oncogenic driver genes independently from the influence of BET proteins, either stochastically or through trans-complementation by functional endogenous Gag-Pol protein.
Collapse
Affiliation(s)
- Lorenz Loyola
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - Kathryn Gilroy
- Beatson Institute for Cancer Research, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | - Jodie Hay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sriram Aiyer
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Dylan Fingerman
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Rodrigo A. Villanueva
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Ewan Cameron
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - James Neil
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica J. Roth
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| |
Collapse
|