1
|
Demchenko A, Belova L, Balyasin M, Kochergin-Nikitsky K, Kondrateva E, Voronina E, Pozhitnova V, Tabakov V, Salikhova D, Bukharova T, Goldshtein D, Kondratyeva E, Kyian T, Amelina E, Zubkova O, Popova O, Ozharovskaia T, Lavrov A, Smirnikhina S. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol 2024; 12:1336392. [PMID: 38737127 PMCID: PMC11082282 DOI: 10.3389/fcell.2024.1336392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs, expressing basal cell markers (NGFR, KRT5, and TP63), could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs, potentially applicable for gene therapy research.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Lyubava Belova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Moscow, Russia
| | | | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina Voronina
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Victoria Pozhitnova
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moscow, Russia
| | - Diana Salikhova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Bukharova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Kondratyeva
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Kyian
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russia
| | - Olga Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Popova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Ozharovskaia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Cooney AL, Brommel CM, Traore S, Newby GA, Liu DR, McCray PB, Sinn PL. Reciprocal mutations of lung-tropic AAV capsids lead to improved transduction properties. Front Genome Ed 2023; 5:1271813. [PMID: 38077224 PMCID: PMC10702583 DOI: 10.3389/fgeed.2023.1271813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023] Open
Abstract
Considerable effort has been devoted to developing adeno-associated virus (AAV)-based vectors for gene therapy in cystic fibrosis (CF). As a result of directed evolution and capsid shuffling technology, AAV capsids are available with widespread tropism for airway epithelial cells. For example, AAV2.5T and AAV6.2 are two evolved capsids with improved airway epithelial cell transduction properties over their parental serotypes. However, limited research has been focused on identifying their specific cellular tropism. Restoring cystic fibrosis transmembrane conductance regulator (CFTR) expression in surface columnar epithelial cells is necessary for the correction of the CF airway phenotype. Basal cells are a progenitor population of the conducting airways responsible for replenishing surface epithelial cells (including secretory cells and ionocytes), making correction of this cell population vital for a long-lived gene therapy strategy. In this study, we investigate the tropism of AAV capsids for three cell types in primary cultures of well-differentiated human airway epithelial (HAE) cells and primary human airway basal cells. We observed that AAV2.5T transduced surface epithelial cells better than AAV6.2, while AAV6.2 transduced airway basal cells better than AAV2.5T. We also investigated a recently developed capsid, AAV6.2FF, which has two surface tyrosines converted to phenylalanines. Next, we incorporated reciprocal mutations to create AAV capsids with further improved surface and basal cell transduction characteristics. Lastly, we successfully employed a split-intein approach using AAV to deliver an adenine base editor (ABE) to repair the CFTR R553X mutation. Our results suggest that rational incorporation of AAV capsid mutations improves AAV transduction of the airway surface and progenitor cells and may ultimately lead to improved pulmonary function in people with CF.
Collapse
Affiliation(s)
- Ashley L. Cooney
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Christian M. Brommel
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Soumba Traore
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
| | - Paul B. McCray
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Patrick L. Sinn
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
HEHR: Homing Endonuclease-Mediated Homologous Recombination for Efficient Adenovirus Genome Engineering. Genes (Basel) 2022; 13:genes13112129. [DOI: 10.3390/genes13112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses are non-enveloped linear double-stranded DNA viruses with over 100 types in humans. Adenovirus vectors have gained tremendous attention as gene delivery vehicles, as vaccine vectors and as oncolytic viruses. Although various methods have been used to generate adenoviral vectors, the vector-producing process remains technically challenging regarding efficacious genome modification. Based on our previously reported adenoviral genome modification streamline via linear–circular homologous recombination, we further develop an HEHR (combining Homing Endonucleases and Homologous Recombination) method to engineer adenoviral genomes more efficiently. I-PpoI, a rare endonuclease encoded by a group I intron, was introduced into the previously described ccdB counter-selection marker. We found that the I-PpoI pre-treatment of counter-selection containing parental plasmid increased the homologous recombination efficiency up to 100%. The flanking of the counter-selection marker with either single or double I-PpoI sites showed enhanced efficacy. In addition, we constructed a third counter-selection marker flanked by an alternative restriction enzyme: AbsI, which could be applied in case the I-PpoI site already existed in the transgene cassette that was previously inserted in the adenovirus genome. Together, HEHR can be applied for seamless sequence replacements, deletions and insertions. The advantages of HEHR in seamless mutagenesis will facilitate rational design of adenoviral vectors for diverse purposes.
Collapse
|
4
|
Cooney AL, Thurman AL, McCray PB, Pezzulo AA, Sinn PL. Lentiviral vectors transduce lung stem cells without disrupting plasticity. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:293-301. [PMID: 34458011 PMCID: PMC8379527 DOI: 10.1016/j.omtn.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Thurman
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Aydin M, Schellhorn S, Wirth S, Zhang W, Ehrhardt A. Human Species D Adenoviruses Isolated from Diarrheal Feces Show Low Infection Rates in Primary Nasal Epithelial Cells. CHILDREN (BASEL, SWITZERLAND) 2021; 8:563. [PMID: 34208817 PMCID: PMC8307086 DOI: 10.3390/children8070563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023]
Abstract
The importance of adenovirus (Ad) research is significantly increasing with respect to virotherapy for vaccine development, tumor, and gene therapy. Due to the different species and subtypes of this virus, the characterization of the biological significance of especially rare Ad is necessary. Previously, rare Ad types 70, 73, and 74 were originally isolated from fecal samples of immunocompromised patients and they represent recombinants of other Ad types. Here we investigated transduction experiments of these reporter gene tagged Ad types in primary cells exemplified by subject-derived primary nasal epithelial cells (NAEPCs). To analyze the transduction rates, we performed flow cytometry, quantitative polymerase chain reaction (PCR), and cytokine analyses 25 h post-infection. We found that, in contrast to Ad type 5 (as a positive control), the transduction rates of NAEPCs with Ad types 70, 73, and 74 were interestingly low. The major Ad receptor (coxsackievirus-adenovirus receptor and CD46) expression levels showed no significant change after infection with Ad types 70, 73 and 74. Moreover, Interleukin 6 (IL-6) was not released after in vitro Ad transduction. Due to the high risk of developing life-threatening complications in immunocompromised patients by these human species D Ads, even more attention needs to be investigated into the development of diagnostic and therapeutic concepts to prevent and treat those opportunistic infections in susceptible patients.
Collapse
Affiliation(s)
- Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (S.S.); (W.Z.); (A.E.)
| |
Collapse
|
6
|
Brommel CM, Cooney AL, Sinn PL. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum Gene Ther 2020; 31:985-995. [PMID: 32718227 PMCID: PMC7495917 DOI: 10.1089/hum.2020.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.
Collapse
Affiliation(s)
| | - Ashley L. Cooney
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Lakshmi Narayan PK, Kajon AE. Human mastadenovirus-B (HAdV-B)-specific E3-CR1β and E3-CR1γ glycoproteins interact with each other and localize at the plasma membrane of non-polarized airway epithelial cells. Virology 2020; 546:67-78. [PMID: 32452418 PMCID: PMC7158847 DOI: 10.1016/j.virol.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
Abstract
The E3 region of all simian and human types classified within species Human mastadenovirus B (HAdV-B) encodes two unique highly conserved ORFs of unknown function designated E3-CR1β and E3-CR1γ. We generated a HAdV-3 mutant encoding small epitope tags at the N-termini of both E3-CR1β and E3-CR1γ (HAdV-3 N-tag wt) and a double knock out (HAdV-3 N-tag DKO) mutant virus that does not express either protein. Our studies show that HAdV-3 E3-CR1β and E3-CR1γ are type I transmembrane proteins that are produced predominantly at late times post infection, are glycosylated, co-localize at the plasma membrane of non-polarized epithelial cells, and interact with each other. At their extreme C-termini HAdV-B E3-CR1β and E3-CR1γ possess a conserved di-leucine motif followed by a class II PDZ domain binding motif (PBM). HAdV-3 E3-CR1β and E3-CR1γ are dispensable for virus growth, progeny release, spread, and plaque formation in A549 cells. HAdV-B E3-CR1β and E3-CR1γ are type I transmembrane proteins. HAdV-B E3-CR1β and E3-CR1γ possess a C-terminal class II PDZ binding motif. HAdV-3 E3-CR1β and E3-CR1γ interact and co-localize at the plasma membrane. HAdV-3 E3-CR1β and E3-CR1γ are dispensable for virus progeny release and spread.
Collapse
Affiliation(s)
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Singh BK, Cooney AL, Krishnamurthy S, Sinn PL. Extracellular Vesicle-Mediated siRNA Delivery, Protein Delivery, and CFTR Complementation in Well-Differentiated Human Airway Epithelial Cells. Genes (Basel) 2020; 11:genes11040351. [PMID: 32224868 PMCID: PMC7230663 DOI: 10.3390/genes11040351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl− channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.
Collapse
|