1
|
Honarpisheh M, Lei Y, Follenzi A, Cucci A, Olgasi C, Berishvili E, Lebreton F, Bellofatto K, Piemonti L, Citro A, Campo F, Pignatelli C, Thaunat O, Kemter E, Kraetzl M, Wolf E, Seissler J, Wolf-van Buerck L. Spheroids Composed of Reaggregated Neonatal Porcine Islets and Human Endothelial Cells Accelerate Development of Normoglycemia in Diabetic Mice. Cells 2025; 14:366. [PMID: 40072094 PMCID: PMC11898817 DOI: 10.3390/cells14050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted NPIs. Dispersed NPIs and human BOECs were reaggregated on microwell cell culture plates and tested for their anti-apoptotic and pro-angiogenic capacity by qRT-PCR and immunohistochemistry. The in vivo functionality was analyzed after transplantation into diabetic NOD-SCID IL2rγ-/- (NSG) mice. The spheroids, which contained reaggregated neonatal porcine islet cells (REPIs) and BOECs, exhibited enhanced viability and a significantly elevated gene expression of VEGFA, angiopoetin-1, heme oxygenase-1, and TNFAIP3 (A20) in vitro. The development of normoglycemia was significantly faster in animals transplanted with spheroids in comparison to the only REPI group (median 51.5 days versus 60 days) (p < 0.05). Furthermore, intragraft vascular density was substantially increased (p < 0.01). The co-transplantation of prevascularized REPI-BOEC spheroids resulted in superior angiogenesis and accelerated in vivo function. These findings may provide a novel tool to enhance the efficacy of porcine islet xenotransplantation.
Collapse
Affiliation(s)
- Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany; (M.H.); (Y.L.); (J.S.)
| | - Yutian Lei
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany; (M.H.); (Y.L.); (J.S.)
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.F.); (A.C.)
| | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.F.); (A.C.)
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Ekaterine Berishvili
- Tissue Engineering and Organ Regeneration Lab, University of Geneva, Department of Surgery, CH-1211 Geneva, Switzerland; (E.B.); (F.L.); (K.B.)
| | - Fanny Lebreton
- Tissue Engineering and Organ Regeneration Lab, University of Geneva, Department of Surgery, CH-1211 Geneva, Switzerland; (E.B.); (F.L.); (K.B.)
| | - Kevin Bellofatto
- Tissue Engineering and Organ Regeneration Lab, University of Geneva, Department of Surgery, CH-1211 Geneva, Switzerland; (E.B.); (F.L.); (K.B.)
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (A.C.); (C.P.)
- Department of Endocrinology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (A.C.); (C.P.)
| | - Francesco Campo
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (A.C.); (C.P.)
- Department of Endocrinology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Cataldo Pignatelli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (A.C.); (C.P.)
| | - Olivier Thaunat
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon I, 69364 Lyon, France;
- Department of Nephrology Transplantation and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003 Lyon, France
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (E.K.); (E.W.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Martin Kraetzl
- Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (E.K.); (E.W.)
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (E.K.); (E.W.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany; (M.H.); (Y.L.); (J.S.)
| | - Lelia Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany; (M.H.); (Y.L.); (J.S.)
| | | |
Collapse
|
2
|
Sgromo C, Cucci A, Venturin G, Follenzi A, Olgasi C. Bridging the Gap: Endothelial Dysfunction and the Role of iPSC-Derived Endothelial Cells in Disease Modeling. Int J Mol Sci 2024; 25:13275. [PMID: 39769040 PMCID: PMC11678083 DOI: 10.3390/ijms252413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Endothelial cells (ECs) are crucial for vascular health, regulating blood flow, nutrient exchange, and modulating immune responses and inflammation. The impairment of these processes causes the endothelial dysfunction (ED) characterized by oxidative stress, inflammation, vascular permeability, and extracellular matrix remodeling. While primary ECs have been widely used to study ED in vitro, their limitations-such as short lifespan and donor variability-pose challenges. In this context, induced iECs derived from induced pluripotent stem cells offer an innovative solution, providing an unlimited source of ECs to explore disease-specific features of ED. Recent advancements in 3D models and microfluidic systems have enhanced the physiological relevance of iEC-based models by better mimicking the vascular microenvironment. These innovations bridge the gap between understanding ED mechanisms and drug developing and screening to prevent or treat ED. This review highlights the current state of iEC technology as a model to study ED in vascular and non-vascular disorders, including diabetes, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Sgromo
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Giorgia Venturin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Cristina Olgasi
- Department of Translational Medicine, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
3
|
Olgasi C, Cucci A, Molineris I, Assanelli S, Anselmi F, Borsotti C, Sgromo C, Lauria A, Merlin S, Walker GE, Oliviero S, Follenzi A. Factor VIII promotes angiogenesis and vessel stability regulating extracellular matrix proteins. Haematologica 2024; 109:3391-3397. [PMID: 38841804 PMCID: PMC11443395 DOI: 10.3324/haematol.2024.285089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 06/07/2024] Open
Affiliation(s)
- Cristina Olgasi
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara
| | - Alessia Cucci
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Ivan Molineris
- Università degli Studi di Torino, Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo
| | - Simone Assanelli
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Francesca Anselmi
- Università degli Studi di Torino, Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo
| | - Chiara Borsotti
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Chiara Sgromo
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Andrea Lauria
- Università degli Studi di Torino, Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo
| | - Simone Merlin
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Gillian E Walker
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara
| | - Salvatore Oliviero
- Università degli Studi di Torino, Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Candiolo.
| | - Antonia Follenzi
- Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy; Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria.
| |
Collapse
|
4
|
Tonetto E, Cucci A, Follenzi A, Bernardi F, Pinotti M, Balestra D. DNA base editing corrects common hemophilia A mutations and restores factor VIII expression in in vitro and ex vivo models. J Thromb Haemost 2024; 22:2171-2183. [PMID: 38718928 DOI: 10.1016/j.jtha.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Replacement and nonreplacement therapies effectively control bleeding in hemophilia A (HA) but imply lifelong interventions. Authorized gene addition therapy could provide a cure but still poses questions on durability. FVIIIgene correction would definitively restore factor (F)VIII production, as shown in animal models through nuclease-mediated homologous recombination (HR). However, low efficiency and potential off-target double-strand break still limit HR translatability. OBJECTIVES To correct common model single point mutations leading to severe HA through the recently developed double-strand break/HR-independent base editing (BE) and prime editing (PE) approaches. METHODS Screening for efficacy of BE/PE systems in HEK293T cells transiently expressing FVIII variants and validation at DNA (sequencing) and protein (enzyme-linked immunosorbent assay; activated partial thromboplastin time) level in stable clones. Evaluation of rescue in engineered blood outgrowth endothelial cells by lentiviral-mediated delivery of BE. RESULTS Transient assays identified the best-performing BE/PE systems for each variant, with the highest rescue of FVIII expression (up to 25% of wild-type recombinant FVIII) for the p.R2166∗ and p.R2228Q mutations. In stable clones, we demonstrated that the mutation reversion on DNA (∼24%) was consistent with the rescue of FVIII secretion and activity of 20% to 30%. The lentiviral-mediated delivery of the selected BE systems was attempted in engineered blood outgrowth endothelial cells harboring the p.R2166∗ and p.R2228Q variants, which led to an appreciable and dose-dependent rescue of secreted functional FVIII. CONCLUSION Overall data provide the first proof-of-concept for effective BE/PE-mediated correction of HA-causing mutations, which encourage studies in mouse models to develop a personalized cure for large cohorts of patients through a single intervention.
Collapse
Affiliation(s)
- Elena Tonetto
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Milani M, Canepari C, Assanelli S, Merlin S, Borroni E, Starinieri F, Biffi M, Russo F, Fabiano A, Zambroni D, Annoni A, Naldini L, Follenzi A, Cantore A. GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice. EMBO Mol Med 2024; 16:1427-1450. [PMID: 38684862 PMCID: PMC11178766 DOI: 10.1038/s44321-024-00072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Assanelli
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Onodera Y, Kobayashi J, Mitani S, Hosoda C, Banno K, Horie K, Okano T, Shimizu T, Shima M, Tatsumi K. Terminus-Selective Covalent Immobilization of Heparin on a Thermoresponsive Surface Using Click Chemistry for Efficient Binding of Basic Fibroblast Growth Factor. Macromol Biosci 2024; 24:e2300307. [PMID: 37774391 DOI: 10.1002/mabi.202300307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Cell therapy using endothelial cells (ECs) has great potential for the treatment of congenital disorders, such as hemophilia A. Cell sheet technology utilizing a thermoresponsive culture dish is a promising approach to efficiently transplant donor cells. In this study, a new method to prepare terminus-selective heparin-immobilized thermoresponsive culture surfaces is developed to facilitate the preparation of EC sheets. Alkynes are introduced to the reducing terminus of heparin via reductive amination. Cu-catalyzed azide-alkyne cycloaddition (CuAAC) facilitates efficient immobilization of the terminus of heparin on a thermoresponsive surface, resulting in a higher amount of immobilized heparin while preserving its function. Heparin-immobilized thermoresponsive surfaces prepared using CuAAC exhibit good adhesion to human endothelial colony-forming cells (ECFCs). In addition, upon further binding to basic fibroblast growth factor (bFGF) on heparin-immobilized surfaces, increased proliferation of ECFCs on the surface is observed. The confluent ECFC monolayer cultured on bFGF-bound heparin-immobilized thermoresponsive surfaces exhibits relatively high fibronectin accumulation and cell number and detaches at 22 °C while maintaining the sheet-like structure. Because heparin has an affinity for several types of bioactive molecules, the proposed method can be applied to facilitate efficient cultures and sheet formations of various cell types.
Collapse
Affiliation(s)
- Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kimihiko Banno
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Midori Shima
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
7
|
Wang Y, Shao W. Innate Immune Response to Viral Vectors in Gene Therapy. Viruses 2023; 15:1801. [PMID: 37766208 PMCID: PMC10536768 DOI: 10.3390/v15091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Viral vectors play a pivotal role in the field of gene therapy, with several related drugs having already gained clinical approval from the EMA and FDA. However, numerous viral gene therapy vectors are currently undergoing pre-clinical research or participating in clinical trials. Despite advancements, the innate response remains a significant barrier impeding the clinical development of viral gene therapy. The innate immune response to viral gene therapy vectors and transgenes is still an important reason hindering its clinical development. Extensive studies have demonstrated that different DNA and RNA sensors can detect adenoviruses, adeno-associated viruses, and lentiviruses, thereby activating various innate immune pathways such as Toll-like receptor (TLR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), and retinoic acid-inducible gene I-mitochondrial antiviral signaling protein (RLR-MAVS). This review focuses on elucidating the mechanisms underlying the innate immune response induced by three widely utilized viral vectors: adenovirus, adeno-associated virus, and lentivirus, as well as the strategies employed to circumvent innate immunity.
Collapse
Affiliation(s)
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
8
|
Mannarino MR, Bianconi V, Scalisi G, Franceschini L, Manni G, Cucci A, Bagaglia F, Mencarelli G, Giglioni F, Ricciuti D, Figorilli F, Pieroni B, Cosentini E, Padiglioni E, Colangelo C, Fuchs D, Puccetti P, Follenzi A, Pirro M, Gargaro M, Fallarino F. A tryptophan metabolite prevents depletion of circulating endothelial progenitor cells in systemic low-grade inflammation. Front Immunol 2023; 14:964660. [PMID: 37081894 PMCID: PMC10110845 DOI: 10.3389/fimmu.2023.964660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundChronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated.MethodsIn this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation.ResultsRepeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity.InterpretationOverall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.
Collapse
Affiliation(s)
| | - Vanessa Bianconi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Franceschini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Bagaglia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Giglioni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Figorilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Benedetta Pieroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cosentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cecilia Colangelo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Matteo Pirro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Vanessa Bianconi, ; Marco Gargaro, ; Francesca Fallarino,
| |
Collapse
|
9
|
CD14+/CD31+ monocytes expanded by UM171 correct hemophilia A in zebrafish upon lentiviral gene transfer of factor VIII. Blood Adv 2023; 7:697-711. [PMID: 36477543 PMCID: PMC9984962 DOI: 10.1182/bloodadvances.2022009014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging gene therapy clinical trials test the correction of hemophilia A (HA) by replacing factor VIII (FVIII) in autologous hematopoietic stem cells (HSCs). Although it is known that platelets, monocyte/macrophages, and mesenchymal stromal cells can secrete transgenic FVIII, a systematic examination of blood lineages as extrahepatic sources of FVIII, to our knowledge, has not yet been performed. In this study, we sought to provide a comprehensive map of native and lentivirus-based transgenic FVIII production from HSC stage to mature blood cells, through a flow cytometry analysis. In addition, we generated a model of transient HA in zebrafish based on antisense RNA, to assess the corrective potential of the FVIII-transduced HSCs. We discovered that FVIII production begins at the CD34+ progenitor stage after cytokine stimulation in culture. Among all mature white blood cells, monocytes are the largest producers of native FVIII and can maintain protein overexpression during differentiation from HSCs when transduced by a FVIII lentiviral vector. Moreover, the addition of the HSC self-renewal agonist UM171 to CD34+ cells during transduction expanded a subpopulation of CD14+/CD31+ monocytes with excellent ability to carry the FVIII transgene, allowing the correction of HA phenotype in zebrafish. Finally, the HA zebrafish model showed that f8 RNA is predominantly localized in the hematopoietic system at the larval stage, which indicates a potential contributory role of FVIII in hematopoiesis that warrants further investigation. We believe that this study may be of broad interest to hematologists and researchers striving to advance knowledge and permanent treatments for patients with HA.
Collapse
|
10
|
Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat Commun 2023; 14:878. [PMID: 36797282 PMCID: PMC9935529 DOI: 10.1038/s41467-023-36582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Intrahepatic islet transplantation is the standard cell therapy for β cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for β cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.
Collapse
|
11
|
Castaman G, Di Minno G, De Cristofaro R, Peyvandi F. The Arrival of Gene Therapy for Patients with Hemophilia A. Int J Mol Sci 2022; 23:10228. [PMID: 36142153 PMCID: PMC9499514 DOI: 10.3390/ijms231810228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Historically, the standard of care for hemophilia A has been intravenous administration of exogenous factor VIII (FVIII), either as prophylaxis or episodically. The development of emicizumab, a humanized bispecific monoclonal antibody mimicking activated FVIII, was a subsequent advance in treatment. However, both exogenous FVIII and emicizumab require repeated and lifelong administration, negatively impacting patient quality of life. A recent breakthrough has been the development of gene therapy. This allows a single intravenous treatment that could result in long-term expression of FVIII, maintenance of steady-state plasma concentrations, and minimization (or possibly elimination) of bleeding episodes for the recipient's lifetime. Several gene therapies have been assessed in clinical trials, with positive outcomes. Valoctocogene roxaparvovec (an adeno-associated viral 5-based therapy encoding human B domain-deleted FVIII) is expected to be the first approved gene therapy in European countries, including Italy, in 2022. Some novel challenges exist including refining patient selection criteria, managing patient expectations, further elucidation of the durability and variability of transgene expression and long-term safety, and the development of standardized 'hub and spoke' centers to optimize and monitor this innovative treatment. Gene therapy represents a paradigm shift, and may become a new reference standard for treating patients with hemophilia A.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Via S. Pansini 5, 80131 Naples, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitraio “A. Gemelli” IRCCS, Università Cattolica S. Cuore Roma, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122 Milan, Italy
| |
Collapse
|
12
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
13
|
Gage BK, Merlin S, Olgasi C, Follenzi A, Keller GM. Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors. Cell Rep 2022; 39:110621. [PMID: 35385743 DOI: 10.1016/j.celrep.2022.110621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDR+CD235a/b+ mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDR+CD235a/b- mesoderm. When transplanted into immunocompromised hemophilia A mice (NSG-HA), these VECs engraft the liver, proliferate, and mature to functional LSECs that secrete bioactive FVIII capable of correcting the bleeding phenotype. Together, these findings highlight the importance of appropriate mesoderm induction for generating hPSC-derived LSECs capable of functioning in a preclinical model of hemophilia A.
Collapse
Affiliation(s)
- Blair K Gage
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada.
| | - Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|