1
|
Matuszek Z, Brown BL, Yrigollen CM, Keiser MS, Davidson BL. Current trends in gene therapy to treat inherited disorders of the brain. Mol Ther 2025; 33:1988-2014. [PMID: 40181540 DOI: 10.1016/j.ymthe.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Gene therapy development, re-engineering, and application to patients hold promise to revolutionize medicine, including therapies for disorders of the brain. Advances in delivery modalities, expression regulation, and improving safety profiles are of critical importance. Additionally, each inherited disorder has its own unique characteristics as to regions and cell types impacted and the temporal dynamics of that impact that are essential for the design of therapeutic design strategies. Here, we review the current state of the art in gene therapies for inherited brain disorders, summarizing key considerations for vector delivery, gene addition, gene silencing, gene editing, and epigenetic editing. We provide examples from animal models, human cell lines, and, where possible, clinical trials. This review also highlights the various tools available to researchers for basic research questions and discusses our views on the current limitations in the field.
Collapse
Affiliation(s)
- Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandon L Brown
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn M Yrigollen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Epilepsy and Neurodevelopmental Disorders (ENDD), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Jain N, Roy AA, Madhusoodanan G, Preman NK, Pokale R, Pisay M, Mukharya A, Pandey A, Mutalik S. Unlocking the future: Precision oligonucleotide therapy for targeted treatment of neurodegenerative disorders. Int J Biol Macromol 2025; 310:143515. [PMID: 40288719 DOI: 10.1016/j.ijbiomac.2025.143515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Neurodegenerative disorders are complex and devastating conditions of the central nervous system that profoundly impact quality of life. Given the limited treatment options available, there is a pressing need to develop novel therapeutic strategies. Oligonucleotides have emerged as key players in precision medicine for these disorders, but their potential is hindered by poor translocation across the blood-brain barrier. This review focuses on neurodegenerative disorders other than Alzheimer's and Parkinson's, which are widely reported in the literature, and aims to address the significant hurdles in oligonucleotide delivery for neurodegenerative diseases. It highlights recent advancements in CNS-targeting approaches, such as chemical conjugation, antibody-oligonucleotide conjugates, focused ultrasound, and viral and nanocarrier-based delivery systems. Each strategy's strengths and limitations are discussed, with potential solutions proposed for more effective treatments. Additionally, the review offers valuable insights into regulatory requirements and prospects for clinical translation, which are crucial for shaping the future of neurodegenerative therapies. By exploring these innovative approaches, the goal is to surmount challenges posed by the blood-brain barrier and develop more effective treatments, thereby enhancing the quality of life of the patients suffering from these debilitating conditions.
Collapse
Affiliation(s)
- Naitik Jain
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Geethu Madhusoodanan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namitha K Preman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rahul Pokale
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anoushka Mukharya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Novartis Healthcare Private Ltd, Novartis Knowledge Center, Hyderabad 500081, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
de Sousa-Lourenço J, Silva AC, Pereira de Almeida L, Nobre RJ. Molecular therapy for polyQ disorders: from bench to clinical trials. Trends Mol Med 2024; 30:804-808. [PMID: 38839514 DOI: 10.1016/j.molmed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Polyglutamine (polyQ) disorders are monogenic neurodegenerative disorders. Currently, no therapies are available for this complex group of disorders. Here, we aim to provide an overview of recent promising preclinical studies and the ongoing clinical trials focusing on molecular therapies for polyQ disorders.
Collapse
Affiliation(s)
- João de Sousa-Lourenço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana C Silva
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
| | - Rui J Nobre
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal; ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Hwang HY, Gim D, Yi H, Jung H, Lee J, Kim D. Precise editing of pathogenic nucleotide repeat expansions in iPSCs using paired prime editor. Nucleic Acids Res 2024; 52:5792-5803. [PMID: 38661210 PMCID: PMC11162781 DOI: 10.1093/nar/gkae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Nucleotide repeat expansion disorders, a group of genetic diseases characterized by the expansion of specific DNA sequences, pose significant challenges to treatment and therapy development. Here, we present a precise and programmable method called prime editor-mediated correction of nucleotide repeat expansion (PE-CORE) for correcting pathogenic nucleotide repeat expansion. PE-CORE leverages a prime editor and paired pegRNAs to achieve targeted correction of repeat sequences. We demonstrate the effectiveness of PE-CORE in HEK293T cells and patient-derived induced pluripotent stem cells (iPSCs). Specifically, we focus on spinal and bulbar muscular atrophy and spinocerebellar ataxia type, two diseases associated with nucleotide repeat expansion. Our results demonstrate the successful correction of pathogenic expansions in iPSCs and subsequent differentiation into motor neurons. Specifically, we detect distinct downshifts in the size of both the mRNA and protein, confirming the functional correction of the iPSC-derived motor neurons. These findings highlight PE-CORE as a precision tool for addressing the intricate challenges of nucleotide repeat expansion disorders, paving the way for targeted therapies and potential clinical applications.
Collapse
Affiliation(s)
- Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Dongmin Gim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwalin Yi
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyewon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Cui ZT, Mao ZT, Yang R, Li JJ, Jia SS, Zhao JL, Zhong FT, Yu P, Dong M. Spinocerebellar ataxias: from pathogenesis to recent therapeutic advances. Front Neurosci 2024; 18:1422442. [PMID: 38894941 PMCID: PMC11185097 DOI: 10.3389/fnins.2024.1422442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.
Collapse
Affiliation(s)
- Zi-Ting Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zong-Tao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Jia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Jia
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jian-Li Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fang-Tian Zhong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
8
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
10
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Klockgether T. [Gene Therapy for Ataxias]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:147-152. [PMID: 36806180 DOI: 10.1055/a-2015-3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ataxias are progressive diseases that are usually the result of cerebellar degeneration. Ataxias are divided into genetic, sporadic degenerative and acquired (secondary) forms. While there are established therapies for acquired (secondary) ataxias, genetic and sporadic degenerative ataxias are currently not medically treatable. For these ataxias, the development of somatic gene therapies is a promising avenue. The goals of gene therapies for genetic ataxias are to inactivate deleterious genes by gene silencing or to replace or correct a non-functional gene. Another option, which may also be considered for sporadic degenerative ataxias, are therapies that involve transferring new or modified genes. Gene therapies are being actively developed for the more common ataxias, such as Friedreich's ataxia, certain spinocerebellar ataxias, and multiple system atrphy, and initial phase I trials are underway.
Collapse
Affiliation(s)
- Thomas Klockgether
- Klinik für Neurologie, Universitätsklinikum Bonn und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn
| |
Collapse
|