1
|
Liu Y, Sun Q, Guo J, Yan L, Yan Y, Gong Y, Lin J, Yuan H, Jin J, Wang B, Chen H, Zhang L, Zhang W, Luan X. Dual ferroptosis induction in N2-TANs and TNBC cells via FTH1 targeting: A therapeutic strategy for triple-negative breast cancer. Cell Rep Med 2025; 6:101915. [PMID: 39809268 PMCID: PMC11866498 DOI: 10.1016/j.xcrm.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Tumor-associated neutrophils (TANs) play a critical role in the progression and prognosis of triple-negative breast cancer (TNBC), with N2-type TANs known for their pro-tumor characteristics. This study introduces CT-1, a derivative of cryptotanshinone that effectively suppresses TNBC growth while selectively reducing the proportion of N2-type TANs within tumor tissue. Notably, CT-1 induces simultaneous ferroptosis in both N2-type TANs and TNBC cells, a dual mechanism that enhances its therapeutic efficacy. The study identifies ferritin heavy chain 1 (FTH1), a key protein in iron metabolism, as the direct target of CT-1. By targeting FTH1, CT-1 facilitates the interaction between NCOA4 and ferritin, triggering ferritinophagy-mediated ferroptosis. These findings position CT-1 as a promising therapeutic agent, offering a strategy to combat TNBC by inducing ferroptosis in both N2-type TANs and cancer cells. This approach underscores the potential of FTH1 as a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Yichen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyan Sun
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Jingwen Guo
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Li Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yue Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hu Yuan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ, Zhou F. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology 2024; 22:72. [PMID: 38374072 PMCID: PMC10877765 DOI: 10.1186/s12951-024-02336-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Zhikai Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Qiuyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Jiong Jiong Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Kenny J, Mullin BH, Tomlinson W, Robertson B, Yuan J, Chen W, Zhao J, Pavlos NJ, Walsh JP, Wilson SG, Tickner J, Morahan G, Xu J. Age-dependent genetic regulation of osteoarthritis: independent effects of immune system genes. Arthritis Res Ther 2023; 25:232. [PMID: 38041181 PMCID: PMC10691153 DOI: 10.1186/s13075-023-03216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is a joint disease with a heritable component. Genetic loci identified via genome-wide association studies (GWAS) account for an estimated 26.3% of the disease trait variance in humans. Currently, there is no method for predicting the onset or progression of OA. We describe the first use of the Collaborative Cross (CC), a powerful genetic resource, to investigate knee OA in mice, with follow-up targeted multi-omics analysis of homologous regions of the human genome. METHODS We histologically screened 275 mice for knee OA and conducted quantitative trait locus (QTL) mapping in the complete cohort (> 8 months) and the younger onset sub-cohort (8-12 months). Multi-omic analysis of human genetic datasets was conducted to investigate significant loci. RESULTS We observed a range of OA phenotypes. QTL mapping identified a genome-wide significant locus on mouse chromosome 19 containing Glis3, the human equivalent of which has been identified as associated with OA in recent GWAS. Mapping the younger onset sub-cohort identified a genome-wide significant locus on chromosome 17. Multi-omic analysis of the homologous region of the human genome (6p21.32) indicated the presence of pleiotropic effects on the expression of the HLA - DPB2 gene and knee OA development risk, potentially mediated through the effects on DNA methylation. CONCLUSIONS The significant associations at the 6p21.32 locus in human datasets highlight the value of the CC model of spontaneous OA that we have developed and lend support for an immune role in the disease. Our results in mice also add to the accumulating evidence of a role for Glis3 in OA.
Collapse
Affiliation(s)
- Jacob Kenny
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - William Tomlinson
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett Robertson
- Australian Institute of Robotic Orthopaedics, Crawley, WA, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Weiwei Chen
- Research Centre for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Scott G Wilson
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute for Medical Research, Nedlands, WA, Australia.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
6
|
Wells LM, Roberts HC, Luyten FP, Roberts SJ. Identifying Fibroblast Growth Factor Receptor 3 as a Mediator of Periosteal Osteochondral Differentiation through the Construction of microRNA-Based Interaction Networks. BIOLOGY 2023; 12:1381. [PMID: 37997980 PMCID: PMC10669632 DOI: 10.3390/biology12111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Human periosteum-derived progenitor cells (hPDCs) have the ability to differentiate towards both the chondrogenic and osteogenic lineages. This coordinated and complex osteochondrogenic differentiation process permits endochondral ossification and is essential in bone development and repair. We have previously shown that humanised cultures of hPDCs enhance their osteochondrogenic potentials in vitro and in vivo; however, the underlying mechanisms are largely unknown. This study aimed to identify novel regulators of hPDC osteochondrogenic differentiation through the construction of miRNA-mRNA regulatory networks derived from hPDCs cultured in human serum or foetal bovine serum as an alternative in silico strategy to serum characterisation. Sixteen differentially expressed miRNAs (DEMis) were identified in the humanised culture. In silico analysis of the DEMis with TargetScan allowed for the identification of 1503 potential miRNA target genes. Upon comparison with a paired RNAseq dataset, a 4.5% overlap was observed (122 genes). A protein-protein interaction network created with STRING interestingly identified FGFR3 as a key network node, which was further predicted using multiple pathway analyses. Functional analysis revealed that hPDCs with the activating mutation FGFR3N540K displayed increased expressions of chondrogenic gene markers when cultured under chondrogenic conditions in vitro and displayed enhanced endochondral bone formation in vivo. A further histological analysis uncovered known downstream mediators involved in FGFR3 signalling and endochondral ossification to be upregulated in hPDC FGFR3N540K-seeded implants. This combinational approach of miRNA-mRNA-protein network analysis with in vitro and in vivo characterisation has permitted the identification of FGFR3 as a novel mediator of hPDC biology. Furthermore, this miRNA-based workflow may also allow for the identification of drug targets, which may be of relevance in instances of delayed fracture repair.
Collapse
Affiliation(s)
- Leah M. Wells
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| | - Helen C. Roberts
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK;
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Centre (SBE), KU Leuven, 3000 Leuven, Belgium;
| | - Scott J. Roberts
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK;
| |
Collapse
|
7
|
Jin L, Ma J, Chen Z, Wang F, Li Z, Shang Z, Dong J. Osteoarthritis related epigenetic variations in miRNA expression and DNA methylation. BMC Med Genomics 2023; 16:163. [PMID: 37434153 PMCID: PMC10337191 DOI: 10.1186/s12920-023-01597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Osteoarthritis (OA) is chronic arthritis characterized by articular cartilage degradation. However, a comprehensive regulatory network for OA-related microRNAs and DNA methylation modifications has yet to be established. Thus, we aimed to identify epigenetic changes in microRNAs and DNA methylation and establish the regulatory network between miRNAs and DNA methylation. The mRNA, miRNA, and DNA methylation expression profiles of healthy or osteoarthritis articular cartilage samples were downloaded from Gene Expression Omnibus (GEO) database, including GSE169077, GSE175961, and GSE162484. The differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs), and differentially methylated genes (DMGs) were analyzed by the online tool GEO2R. DAVID and STRING databases were applied for functional enrichment analysis and protein-protein interaction (PPI) network. Potential therapeutic compounds for the treatment of OA were identified by Connectivity map (CMap) analysis. A total of 1424 up-regulated DEGs, 1558 down-regulated DEGs, 5 DEMs with high expression, 6 DEMs with low expression, 1436 hypermethylated genes, and 455 hypomethylated genes were selected. A total of 136 up-regulated and 65 downregulated genes were identified by overlapping DEGs and DEMs predicted target genes which were enriched in apoptosis and circadian rhythm. A total of 39 hypomethylated and 117 hypermethylated genes were obtained by overlapping DEGs and DMGs, which were associated with ECM receptor interactions and cellular metabolic processes, cell connectivity, and transcription. Moreover, The PPI network showed COL5A1, COL6A1, LAMA4, T3GAL6A, and TP53 were the most connective proteins. After overlapping of DEGs, DMGs and DEMs predicted targeted genes, 4 up-regulated genes and 11 down-regulated genes were enriched in the Axon guidance pathway. The top ten genes ranked by PPI network connectivity degree in the up-regulated and downregulated overlapping genes of DEGs and DMGs were further analyzed by the CMap database, and nine chemicals were predicted as potential drugs for the treatment of OA. In conclusion, TP53, COL5A1, COL6A1, LAMA4, and ST3GAL6 may play important roles in OA genesis and development.
Collapse
Affiliation(s)
- Lingpeng Jin
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zhen Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Fei Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Zhikuan Li
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Ziqi Shang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
8
|
Feng F, Yang J, Wang G, Huang P, Li Y, Zhou B. Circ_0068087 Promotes High Glucose-Induced Human Renal Tubular Cell Injury through Regulating miR-106a-5p/ROCK2 Pathway. Nephron Clin Pract 2022; 147:212-222. [PMID: 35871508 DOI: 10.1159/000525440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Many studies have confirmed that circular RNA (circRNA) is an important target for regulating human disease progression. This study aimed to explore the role of circ_0068087 in diabetic nephropathy (DN) progression. <b><i>Methods:</i></b> High glucose (HG)-induced renal tubular cells (HK2) were used to mimic DN cell models in vitro. The expression levels of circ_0068087, microRNA (miR)-106a-5p, and Rho-associated coiled-coil-containing kinase 2 (ROCK2) were detected by quantitative real-time PCR. Cell proliferation and apoptosis were examined by cell counting kit-8 assay, 5-ethynyl-2′-deoxyuridine assay, colony formation assay, and flow cytometry. The protein levels were examined by Western blot analysis. Cell oxidative stress was assessed by measuring MDA level and SOD activity, and cell inflammation was evaluated by detecting the concentrations of inflammatory factors. RNA interaction was verified by dual-luciferase reporter assay and RNA pull-down assay. <b><i>Results:</i></b> The present study showed that circ_0068087 was highly expressed in the serum of DN patients and HG-induced HK2 cells. Interference of circ_0068087 alleviated HG-induced apoptosis, oxidative stress, inflammation, and fibrosis in HK2 cells, while accelerated cell proliferation. miR-106a-5p could be sponged by circ_0068087, and its inhibitor eliminated the regulation of circ_0068087 knockdown on HG-induced HK2 cell injury. ROCK2 was a target of miR-106a-5p, and its expression was suppressed by circ_0068087 knockdown. miR-106a-5p overexpression suppressed HG-induced HK2 cell injury, and this effect was reversed by ROCK2 upregulation. <b><i>Conclusion:</i></b> Our data indicated that circ_0068087 downregulation mitigated HG-induced HK2 cell injury through the miR-106a-5p/ROCK2 axis, providing a potential circRNA-targeted therapy for DN.
Collapse
Affiliation(s)
- Fen Feng
- School of Pharmacy, Shaoyang University, Shaoyang, China
| | - Jie Yang
- Department of Endocrinology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Gang Wang
- Department of Endocrinology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Ping Huang
- Department of Endocrinology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Yongjie Li
- School of Pharmacy, Shaoyang University, Shaoyang, China
| | - Bin Zhou
- Department of Endocrinology, The Central Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
9
|
Liu Y, Zeng Y, Si HB, Tang L, Xie HQ, Shen B. Exosomes Derived From Human Urine-Derived Stem Cells Overexpressing miR-140-5p Alleviate Knee Osteoarthritis Through Downregulation of VEGFA in a Rat Model. Am J Sports Med 2022; 50:1088-1105. [PMID: 35179989 DOI: 10.1177/03635465221073991] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common chronic musculoskeletal disorders worldwide, for which exosomes derived from stem cells may provide an effective treatment. PURPOSE To assess the effect of exosomes derived from human urine-derived stem cells (hUSCs) overexpressing miR-140-5p (miR means microRNA) on KOA in an in vitro interleukin 1β (IL-1β)-induced osteoarthritis (OA) model and an in vivo rat KOA model. STUDY DESIGN Controlled laboratory study. METHODS Exosomes derived from hUSCs (hUSC-Exos) were isolated and validated. The hUSCs were transfected with miR-140s using lentivirus, and exosomes secreted from such cells (hUSC-140-Exos) were collected. The roles of hUSC-Exos and hUSC-140-Exos in protecting chondrocytes against IL-1β treatment were compared by analyzing the proliferation, migration, apoptosis, and secretion of extracellular matrix (ECM) in chondrocytes. After vascular endothelial growth factor A (VEGFA) was identified as a target of miR-140, the mechanism by which VEGFA can mediate the beneficial effect of miR-140 on OA was investigated using small interfering RNA transfection or chemical drugs. The expression of VEGFA in cartilage and synovial fluid from patients with KOA was measured and compared with that of healthy controls. Surgery for anterior cruciate ligament transection and destabilization of the medial meniscus were performed on the knee joints of Sprague-Dawley rats to establish an animal model of OA, and intra-articular (IA) injection of hUSC-Exos or hUSC-140-Exos was conducted at 4 to 8 weeks after the surgery. Cartilage regeneration and subchondral bone remodeling were evaluated through histological staining and micro-computed tomography analysis. RESULTS Proliferation and migration ability were enhanced and apoptosis was inhibited in chondrocytes treated with IL-1β via hUSC-Exos, with the side effect of decreased ECM secretion. hUSC-140-Exos not only retained the advantages of hUSC-Exos but also increased the secretion of ECM by targeting VEGFA, including collagen II and aggrecan. Increased expression of VEGFA during the progression of KOA was also confirmed in cartilage and synovial fluid samples obtained from patients with OA. In the rat OA model, IA injection of hUSC-140-Exos enhanced cartilage regeneration and subchondral bone remodeling. CONCLUSION Our results demonstrated the superiority of hUSC-Exos overexpressing miR-140-5p for treating OA compared with the hUSC-Exos. The effect of hUSC-140-Exos for suppressing the progression of KOA is in part mediated by VEGFA. CLINICAL RELEVANCE Exosomes derived from stem cells may provide a promising treatment for KOA, and our study can advance the related basic research.
Collapse
Affiliation(s)
- Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zeng
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Bo Si
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tang
- Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shen
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang SB, Kim JH. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53:1689-1696. [PMID: 34848838 PMCID: PMC8640059 DOI: 10.1038/s12276-021-00710-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Yongsik Cho
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Sumin Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Department of Business Administration, Business School, Seoul National University, Seoul, 08826 South Korea
| | - Hyeonkyeong Kim
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Donghyun Kang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Jeeyeon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul, 07061, South Korea.
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021; 10:cells10102627. [PMID: 34685605 PMCID: PMC8534315 DOI: 10.3390/cells10102627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an erosive polyarthritis that can lead to severe joint destruction and painful disability if left untreated. Angiogenesis, a critical pathogenic mechanism in RA, attracts inflammatory leukocytes into the synovium, which promotes production of proinflammatory cytokines and destructive proteases. Adipokines, inflammatory mediators secreted by adipose tissue, also contribute to the pathophysiology of RA. The most abundant serum adipokine is adiponectin, which demonstrates proinflammatory effects in RA, although the mechanisms linking adiponectin and angiogenic manifestations of RA are not well understood. Our investigations with the human MH7A synovial cell line have revealed that adiponectin dose- and time-dependently increases vascular endothelial growth factor (VEGF) expression, stimulating endothelial progenitor cell (EPC) tube formation and migration. These adiponectin-induced angiogenic activities were facilitated by MEK/ERK signaling. In vivo experiments confirmed adiponectin-induced downregulation of microRNA-106a-5p (miR-106a-5p). Inhibiting adiponectin reduced joint swelling, bone destruction, and angiogenic marker expression in collagen-induced arthritis (CIA) mice. Our evidence suggests that targeting adiponectin has therapeutic potential for patients with RA. Clinical investigations are needed.
Collapse
|
13
|
Nuclear Magnetic Resonance Therapy Modulates the miRNA Profile in Human Primary OA Chondrocytes and Antagonizes Inflammation in Tc28/2a Cells. Int J Mol Sci 2021; 22:ijms22115959. [PMID: 34073090 PMCID: PMC8198628 DOI: 10.3390/ijms22115959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear magnetic resonance therapy (NMRT) is discussed as a participant in repair processes regarding cartilage and as an influence in pain signaling. To substantiate the application of NMRT, the underlying mechanisms at the cellular level were studied. In this study microRNA (miR) was extracted from human primary healthy and osteoarthritis (OA) chondrocytes after NMR treatment and was sequenced by the Ion PI Hi-Q™ Sequencing 200 system. In addition, T/C-28a2 chondrocytes grown under hypoxic conditions were studied for IL-1β induced changes in expression on RNA and protein level. HDAC activity an NAD(+)/NADH was measured by luminescence detection. In OA chondrocytes miR-106a, miR-27a, miR-34b, miR-365a and miR-424 were downregulated. This downregulation was reversed by NMRT. miR-365a-5p is known to directly target HDAC and NF-ĸB, and a decrease in HDAC activity by NMRT was detected. NAD+/NADH was reduced by NMR treatment in OA chondrocytes. Under hypoxic conditions NMRT changed the expression profile of HIF1, HIF2, IGF2, MMP3, MMP13, and RUNX1. We conclude that NMRT changes the miR profile and modulates the HDAC and the NAD(+)/NADH signaling in human chondrocytes. These findings underline once more that NMRT counteracts IL-1β induced changes by reducing catabolic effects, thereby decreasing inflammatory mechanisms under OA by changing NF-ĸB signaling.
Collapse
|
14
|
Yue S, Su X, Teng J, Wang J, Guo M. Cryptotanshinone interferes with chondrocyte apoptosis in osteoarthritis by inhibiting the expression of miR‑574‑5p. Mol Med Rep 2021; 23:424. [PMID: 33878859 PMCID: PMC8047883 DOI: 10.3892/mmr.2021.12063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chondrocyte apoptosis is an important factor in the development and progression of osteoarthritis (OA). Cryptotanshinone (CTS) can inhibit chondrocyte apoptosis, but the specific mechanism remains unknown. The aim of the present study was to explore how CTS may affect chondrocyte apoptosis. Reverse transcription-quantitative PCR and western blotting were used to validate microRNA (miR)-574-5p, YY1-associated factor 2 (YAF2), Bcl-2 and Bax expression levels. H&E, Safranin O and TUNEL staining assays were used to evaluate the apoptosis of arthritic chondrocytes in vivo. A Cell Counting Kit-8 assay and flow cytometry were performed to detect cell proliferation and apoptosis of chondrocytes in vitro. The methylation level of the miR-574-5p promoter was measured via methylation specific PCR. The degree of chondrocyte apoptosis and the expression levels of YAF2 and Bcl-2 were decreased in the mice with OA, and were increased in the OA + CTS mice, while the expression levels of miR-574-5p and Bax showed opposite changes. Furthermore, the degree of chondrocyte apoptosis and the expression levels of the aforementioned key factors in chondrocytes were consistent with those observed in vivo. The methylation degree of the miR-574-5p promoter was increased by the addition of CTS, and was reduced after the addition of a methylation inhibitor, 5-aza-CdR, indicating that CTS could regulate the methylation of miR-574-5p promoter. The present study suggested that CTS could downregulate the expression of miR-574-5p by regulating its methylation, and thus, could improve YAF2 expression and affect chondrocyte apoptosis.
Collapse
Affiliation(s)
- Songtao Yue
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Xiaochuan Su
- Health Management Center, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Junyan Teng
- Health Management Center, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Jiangyi Wang
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Malong Guo
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
15
|
Xiang Q, Wang J, Wang T, Zuo H. Combination of baicalein and miR-106a-5p mimics significantly alleviates IL-1β-induced inflammatory injury in CHON-001 cells. Exp Ther Med 2021; 21:345. [PMID: 33732318 PMCID: PMC7903477 DOI: 10.3892/etm.2021.9776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components, and as such, is a considerable source of disability, pain and socioeconomic burden worldwide. Baicalein (BAI) and microRNA (miR)-106a-5p suppress the progression of OA; however, the effects of BAI and miR-106a-5p for the combined treatment of OA are not completely understood. An in vitro OA model was established by treating CHON-001 cells with 20 ng/ml interleukin (IL)-1β. Cell Counting Kit-8 and flow cytometry assays were conducted to evaluate cell viability and apoptosis, respectively. Western blotting was performed to determine the expression levels of Bax, active caspase-3, Bcl-2, collagen I, collagen III, aggrecan, matrix metallopeptidase (MMP)-13, MMP-9, active Notch1 and transcription factor hes family bHLH transcription factor 1 (Hes1). The levels of IL-6 and tumor necrosis factor-α in the cell culture medium were quantified via ELISA. The present study revealed that treatment with BAI or miR-106a-5p mimic alleviated IL-1β-induced apoptosis, and BAI + miR-106a-5p combination treatment exerted enhanced anti-inflammatory effects compared with monotherapy. Furthermore, IL-1β-induced accumulation of collagen, collagen III, MMP-13 and MMP-9 in CHON-001 cells was reversed to a greater degree following combination treatment compared with monotherapy. Likewise, IL-1β-induced aggrecan degradation was markedly reversed by combination treatment. IL-1β-induced upregulation of active Notch1 and Hes1 in CHON-001 cells was also significantly attenuated by combined BAI + miR-106a-5p treatment. In conclusion, the results of the present study revealed that the combination of BAI and miR-106a-5p mimic significantly decreased IL-1β-induced inflammatory injury in CHON-001 cells, which may serve as a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Qingtian Xiang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Jijun Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Tongwei Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Hongguang Zuo
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| |
Collapse
|
16
|
Li H, Gao C, Liu C, Liu L, Zhuang J, Yang J, Zhou C, Feng F, Sun C, Wu J. A review of the biological activity and pharmacology of cryptotanshinone, an important active constituent in Danshen. Biomed Pharmacother 2021; 137:111332. [PMID: 33548911 DOI: 10.1016/j.biopha.2021.111332] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptotanshinone (IUPAC name: (R)-1,2,6,7,8,9-hexahydro-1,6,6-trimethyl-phenanthro(1,2-b)furan-10,11-dione), a biologically active constituent extracted from the roots and rhizomes of the plant Salvia miltiorrhiza, has been studied in depth as a medicinally active compound and shown to have efficacy in the treatment of numerous diseases and disorders. In this review, we describe in detail the current status of cryptotanshinone research, including findings relating to the structure, pharmacokinetics, pharmacological activity, and derivatives of this compound. Cryptotanshinoneh as a diverse range of pharmacological effects, including anti-cancer, anti-inflammatory, immune regulatory, neuroprotective, and anti-fibrosis activities. Studies on the molecular mechanisms underlying the activities of cryptotanshinone have established that the JAK2/STAT3, PI3K/AKT, NF-κB, AMPK, and cell cycle pathways are involved in the inhibitory and pro-apoptotic effects of cryptotanshinone on different tumor cell lines, these molecular pathways interact in a coordinated manner to inhibit cell proliferation, migration and invasion,and induce transformation, autophagy, necrosis, and cellular immunity. The anti-inflammatory mechanisms of cryptotanshinone have been found to be associated with the TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways, whereasthe Hedgehog, NF-κB, and Nrf-2/HO-1 pathways are regulated by cryptotanshinone to reduce organ fibrosis, and its inhibitory effects on the PI3K/AKT-eNOS pathway have been linked to neuroprotective effects. Given the potential medicinal utility of cryptotanshinone, further research is needed to verify the efficacy and safety of this compound in clinical use, evaluate its pharmacological activity, and identify molecular targets.
Collapse
Affiliation(s)
- Huayao Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China.
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China.
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China.
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China; Department of Basic Medical Science, Qingdao University, Qingdao, 266071, PR China.
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Chinese Medicine, Qingdao, 266112, Shandong, PR China.
| | - Jing Yang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China.
| | - Chao Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China; Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China.
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China; Department of Basic Medical Science, Qingdao University, Qingdao, 266071, PR China.
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China; Chinese Medicine Innovation Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China.
| | - Jibiao Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China.
| |
Collapse
|
17
|
Liu H, Zhan X, Xu G, Wang Z, Li R, Wang Y, Qin Q, Shi W, Hou X, Yang R, Wang J, Xiao X, Bai Z. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases. Pharmacol Res 2021; 164:105384. [PMID: 33352229 DOI: 10.1016/j.phrs.2020.105384] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
NLRP3 inflammasome activation is implicated in the pathogenesis of a wide range of inflammatory diseases, but medications targeting the NLRP3 inflammasome are not available for clinical use. Here, we demonstrate that cryptotanshinone (CTS), a major component derived from the traditional medicinal herb Salvia miltiorrhiza Bunge, is a specific inhibitor for the NLRP3 inflammasome. Cryptotanshinone inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanistically, cryptotanshinone blocks Ca2+ signaling and the induction of mitochondrial reactive oxygen species (mtROS), which are important upstream signals of NLRP3 inflammasome activation. In vivo, cryptotanshinone attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3 inflammasome-mediated diseases such as endotoxemia syndrome and methionine- and choline-deficient-diet-induced nonalcoholic steatohepatitis (NASH). Our findings suggest that cryptotanshinone may be a promising therapeutic agent for the treatment of NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Hongbin Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Guang Xu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Qin Qin
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruichuang Yang
- Research Center for Clinical and Translational Medicine, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaohe Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
18
|
miR-106a-5p Functions as a Tumor Suppressor by Targeting VEGFA in Renal Cell Carcinoma. DISEASE MARKERS 2020; 2020:8837941. [PMID: 33224312 PMCID: PMC7669356 DOI: 10.1155/2020/8837941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/04/2022]
Abstract
MicroRNAs (miRNAs) regulate progression of different cancers. Nevertheless, there is limited information regarding the role of miR-106a-5p in renal cell carcinoma (RCC). Herein, we demonstrate that miR-106a-5p levels are drastically decreased in clear cell RCC (ccRCC) tissues and cell lines, which subsequently contribute to a poor patient overall survival and a high tumor stage. By screening and analyzing, we found that miR-106a-5p directly targets the 3′-UTR of the VEGFA mRNA and led to a decrease in VEGFA. This process is important for tumor cells' growth and colony formation, and overexpression of miR-106a-5p can especially kill kidney tumor cells. Therefore, our data reveal that miR-106a-5p functions as a tumor suppressor by regulating VEGFA and ccRCC may be susceptible to miR-106a-5p therapy.
Collapse
|
19
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
20
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Xie F, Liu YL, Chen XY, Li Q, Zhong J, Dai BY, Shao XF, Wu GB. Role of MicroRNA, LncRNA, and Exosomes in the Progression of Osteoarthritis: A Review of Recent Literature. Orthop Surg 2020; 12:708-716. [PMID: 32436304 PMCID: PMC7307224 DOI: 10.1111/os.12690] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common clinical degenerative disease characterized by the destruction of articular cartilage, which has an increasing impact on people's lives and social economy. The pathogenesis of OA is complex and unclear, and there is no effective way to block its progress. The study of the pathogenesis of OA is the prerequisite for the early diagnosis and effective treatment of OA. To define the pathogenesis of OA, this review considers the pathological mechanism of OA that involves microRNA, lncRNA, and exosomes. More and more evidence shows that microRNA, lncRNA, and exosomes are closely related to OA. MicroRNA inhibits the target gene by binding to the 3'- untranslated region of the targets. LncRNA usually competes with microRNA to regulate the expression level of downstream genes, while exosomes, as a carrier of intercellular information transfer, transmit the biological information of mother cells to target cells, and the effect of exosomes secreted by different cells on OA are different. In this review, we emphasized that different microRNA, lncRNA, and exosomes have different regulatory effects on chondrocyte proliferation and apoptosis, extracellular matrix degradation and inflammation. Besides, we classified and analyzed these molecules according to their effects on the progress of OA. Based on the analysis of the reported literature, this review reveals some pathogenesis of OA, and emphasizes that microRNA, lncRNA, and exosomes have great potential to assist early diagnosis and effective treatment of OA.
Collapse
Affiliation(s)
- Fang Xie
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Yong-Li Liu
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Xiu-Yuan Chen
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Qian Li
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Jia Zhong
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Bin-Yu Dai
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Xian-Fang Shao
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Guan-Bao Wu
- Department of Orthopaedics, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
22
|
Zhang X, Liu X, Ni X, Feng P, Wang YU. Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J Biosci 2019; 44:128. [PMID: 31894109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA), a type of joint diseases, could result in breakdown of joint cartilage and underlying bone. Accumulating evidences suggested that long non-coding RNAs play important roles in OA progression. However, the underlying mechanism of H19 in OA is still not fully explored. The expression levels of H19 and miR-106a-5p in OA samples from patients or cultured chondrocytes were examined by quantitative real time polymerase chain reaction. Cell proliferation and apoptosis were analysed by MTT assay and flow cytometry, respectively. Western blotting was employed to detect the expression levels of PCNA, CyclinD1, Caspase 3 and Cleaved Caspase 3. StarBase database, luciferase assay and RNA immunoprecipitation were introduced to confirm the relationship between H19 and miR-106a-5p. The correlation of H19 and miR-106a-5p was analysed by Spearman rank analysis. H19 expression was upregulated, while miR-106a-5p level was downregulated in OA samples and IL-1b-treated chondrocytes. H19 overexpression inhibited the proliferation and induced apoptosis in IL-1b-treated chondrocytes, while H19 knockdown induced the opposite effect. Luciferase and RIP assay demonstrated that miR-106a-5p was a direct target of H19. miR-106a-5p overexpression led to proliferation promotion and apoptosis inhibition in chondrocytes treated by IL-1β and it reversed the effect of H19 addition. We conclude that H19 could regulate proliferation and apoptosis of chondrocytes treated by IL-1β in OA via sponging miR-106a-5p.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Orthopaedics, People's Hospital of Tongchuan, Tongchuan, Shaanxi Province 727000, China
| | | | | | | | | |
Collapse
|
23
|
miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:15-30. [PMID: 31790972 PMCID: PMC6909049 DOI: 10.1016/j.omtn.2019.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is a major cause of joint pain and disability, and chondrocyte senescence is a key pathological process in OA and may be a target of new therapeutics. MicroRNA-140 (miR-140) plays a protective role in OA, but little is known about its epigenetic effect on chondrocyte senescence. In this study, we first validated the features of chondrocyte senescence characterized by increased cell cycle arrest in the G0/G1 phase and the expression of senescence-associated β-galactosidase (SA-βGal), p16INK4a, p21, p53, and γH2AX in human knee OA. Then, we revealed in interleukin 1β (IL-1β)-induced OA chondrocytes in vitro that pretransfection with miR-140 effectively inhibited the expression of SA-βGal, p16INK4a, p21, p53, and γH2AX. Furthermore, in vivo results from trauma-induced early-stage OA rats showed that intra-articularly injected miR-140 could rapidly reach the chondrocyte cytoplasm and induce molecular changes similar to the in vitro results, resulting in a noticeable alleviation of OA progression. Finally, bioinformatics analysis predicted the potential targets of miR-140 and a mechanistic network by which miR-140 regulates chondrocyte senescence. Collectively, miR-140 can effectively attenuate the progression of early-stage OA by retarding chondrocyte senescence, contributing new evidence of the involvement of miR-mediated epigenetic regulation of chondrocyte senescence in OA pathogenesis.
Collapse
|
24
|
Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J Biosci 2019. [DOI: 10.1007/s12038-019-9943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Wenzhao L, Jiangdong N, Deye S, Muliang D, Junjie W, Xianzhe H, Mingming Y, Jun H. Dual regulatory roles of HMGB1 in inflammatory reaction of chondrocyte cells and mice. Cell Cycle 2019; 18:2268-2280. [PMID: 31313630 DOI: 10.1080/15384101.2019.1642680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common bone diseasesas it is reported that the impact of knee osteoarthritis symptomatic form is estimated at 240/100,000 people per year. The inflammation of articular cartilageis thought to be the pathologic drive for development of this disease. HMGB1(high mobility group box-1), a regulatory factor for gene transcription, could stimulate inflammation response. However, theexact regulatory role of HMGB1 in the inflammation of articular cartilage still need to be elucidated. In the current study, we used Quantitative Real-Time PCR(Q-PCR) to detect them RNA levels of Collagen Type II Alpha 1(Col2a1), Aggrecan, MMP3(Matrix Metallopeptidase 3), MMP13, ADAMTs4 and ADAMTs5; Enzyme-Linked Immunosorbent Assay(ELISA) was used to detect the content of IL-1β and calpain protein; Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL) assay and flow cytometryanalysis; Western blot and immunofluorescence assays were applied to assess the expression of HMGB1; Lastly autophagic activity was mainly verified by monodansylcadaverine (MDC) staining. Our data revealed that in the early stage of chondrocyte inflammation(3 and 6 h of LPS stimulation), cytosolic HMGB1 attenuated inflammation response by facilitating cell autophagy and preventing cell apoptosis. While in the late stage (24 and 48 h of LPS stimulation), the extracellular HMGB1 stimulated inflammation reaction and contributed to the cartilage destruction in OA.
Collapse
Affiliation(s)
- Li Wenzhao
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Ni Jiangdong
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Song Deye
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Ding Muliang
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Wang Junjie
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Huang Xianzhe
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Yan Mingming
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| | - Huang Jun
- Orthopedics Department, The Second Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|