1
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Whitfield JR, Soucek L. MYC in cancer: from undruggable target to clinical trials. Nat Rev Drug Discov 2025:10.1038/s41573-025-01143-2. [PMID: 39972241 DOI: 10.1038/s41573-025-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
MYC is among the most infamous oncogenes in cancer. A notable feature that distinguishes it from other common oncogenes is that its deregulation is not usually due to direct mutation, but instead to its relentless activation by other oncogenic lesions. These signalling pathways funnel through MYC to execute the transcriptional programmes that eventually lead to the uncontrolled proliferation of cancer cells. Indeed, deregulated MYC activity may be linked to most - if not all - human cancers. Despite this unquestionable role of MYC in tumour development and maintenance, no MYC inhibitor has yet been approved for clinical use. The main reason is that MYC has long fallen into the category of 'undruggable' or 'difficult-to-drug' targets, mainly because of its intrinsically disordered structure, which is not amenable to traditional drug development strategies. However, in recent years, attempts to develop MYC inhibitors have multiplied, and the first clinical trials have been testing their efficacy in patients. We are finally reaching the point at which its inhibition seems clinically viable. This Review provides an overview of the various strategies to inhibit MYC, focusing on the most recently described inhibitors and those that have reached clinical trials.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
- Peptomyc S.L., Barcelona, Spain.
| |
Collapse
|
3
|
Pan J, Zhang C, Huang H, Zhu Y, Zhang Y, Wu S, Zhao YC, Chen F. Deciphering the Prognostic and Therapeutic Value of a Gene Model Associated with Two Aggressive Hepatocellular Carcinoma Phenotypes Using Machine Learning. J Hepatocell Carcinoma 2024; 11:2373-2390. [PMID: 39634327 PMCID: PMC11614714 DOI: 10.2147/jhc.s480358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Background Macrotrabecular-massive (MTM) and vessels encapsulating tumor clusters (VETC)-hepatocellular carcinoma (HCC) are aggressive histopathological phenotypes with significant prognostic implications. However, the molecular markers associated with MTM-HCC and VETC-HCC and their implications for clinical outcomes and therapeutic strategies remain unclear. Methods Utilizing the TCGA-LIHC cohort, we employed machine learning techniques to develop a prognostic risk score based on MTM and VETC-related genes. The performance of the risk score was assessed by investigating various aspects including clinical outcomes, biological pathways, treatment responses, drug sensitivities, tumor microenvironment, and molecular subclasses. To validate the risk score, additional data from the ICGC-JP, GSE14520, GSE104580, GSE109211, and an in-house cohort were collected and analyzed. Results The machine learning algorithm established a 4-gene-based risk score. High-risk patients had significantly worse prognosis compared to low-risk patients, with the risk score being associated with malignant progression of HCC. Functionally, the high-risk group exhibited enrichment in tumor proliferation pathways. Additionally, patients in the low-risk group exhibited improved response to TACE and sorafenib treatments compared to the high-risk group. In contrast, the high-risk group exhibited reduced sensitivity to immunotherapy and increased sensitivity to paclitaxel. In the in-house cohort, high-risk patients displayed higher rates of early recurrence, along with an increased frequency of elevated alpha-fetoprotein, microvascular invasion, and aggressive MRI features associated with HCC. Conclusion This study has successfully developed a risk score based on MTM and VETC-related genes, providing a promising tool for prognosis prediction and personalized treatment strategies in HCC patients.
Collapse
Affiliation(s)
- Junhan Pan
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Cong Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Huizhen Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yuhao Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shuzhen Wu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan-Ci Zhao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Bakiri L, Wagner EF. c-Jun and Fra-2 pair up to Myc-anistically drive HCC. Cell Cycle 2024:1-9. [PMID: 39581891 DOI: 10.1080/15384101.2024.2429968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death with limited therapies, is a complex disease developing in a background of Hepatitis Virus infection or systemic conditions, such as the metabolic syndrome. Investigating HCC pathogenesis in model organisms is therefore crucial for developing novel diagnostic and therapeutic tools. Genetically engineered mouse models (GEMMs) have been instrumental in recapitulating the local and systemic features of HCC. Early studies using GEMMs and patient material implicated members of the dimeric Activator Protein-1 (AP-1) transcription factor family, such as c-Jun and c-Fos, in HCC formation. In a recent report, we described how switchable, hepatocyte-restricted expression of a single-chain c-Jun~Fra-2 protein, functionally mimicking the c-Jun/Fra-2 AP-1 dimer, results in spontaneous and largely reversible liver tumors in GEMMs. Dysregulated cell cycle, inflammation, and dyslipidemia are observed at early stages and tumors display molecular HCC signatures. We demonstrate that increased c-Myc expression is an essential molecular determinant of tumor formation that can be therapeutically targeted using the BET inhibitor JQ1. Here, we discuss these findings with additional results illustrating how AP-1 GEMMs can foster preclinical research on liver diseases with novel perspectives offered by the constantly increasing wealth of HCC-related datasets.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| |
Collapse
|
5
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
6
|
Senapedis W, Gallagher KM, Figueroa E, Farelli JD, Lyng R, Hodgson JG, O'Donnell CW, Newman JV, Pacaro M, Siecinski SK, Chen J, McCauley TG. Targeted transcriptional downregulation of MYC using epigenomic controllers demonstrates antitumor activity in hepatocellular carcinoma models. Nat Commun 2024; 15:7875. [PMID: 39285180 PMCID: PMC11405918 DOI: 10.1038/s41467-024-52202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription. Significant antitumor activity is observed in preclinical models of HCC treated with the MYC-targeted EC, as monotherapy or in combination with tyrosine kinase or immune checkpoint inhibitors. These findings pave the way for clinical development of MYC-targeting epigenomic controllers in HCC patients and provide a framework for programmable epigenomic mRNA therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Elmer Figueroa
- Omega Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | | | - Robert Lyng
- Omega Therapeutics, Cambridge, MA, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
8
|
Miao Y, Li Z, Feng J, Lei X, Shan J, Qian C, Li J. The Role of CD4 +T Cells in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:6895. [PMID: 39000005 PMCID: PMC11240980 DOI: 10.3390/ijms25136895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become the fourth leading cause of cancer-related deaths worldwide; annually, approximately 830,000 deaths related to liver cancer are diagnosed globally. Since early-stage HCC is clinically asymptomatic, traditional treatment modalities, including surgical ablation, are usually not applicable or result in recurrence. Immunotherapy, particularly immune checkpoint blockade (ICB), provides new hope for cancer therapy; however, immune evasion mechanisms counteract its efficiency. In addition to viral exposure and alcohol addiction, nonalcoholic steatohepatitis (NASH) has become a major cause of HCC. Owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance, NASH-associated HCC patients respond much less efficiently to ICB treatment than do patients with other etiologies. In addition, abnormal inflammation contributes to NASH progression and NASH-HCC transition, as well as to HCC immune evasion. Therefore, uncovering the detailed mechanism governing how NASH-associated immune cells contribute to NASH progression would benefit HCC prevention and improve HCC immunotherapy efficiency. In the following review, we focused our attention on summarizing the current knowledge of the role of CD4+T cells in NASH and HCC progression, and discuss potential therapeutic strategies involving the targeting of CD4+T cells for the treatment of NASH and HCC.
Collapse
Affiliation(s)
- Yadi Miao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ziyong Li
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juan Feng
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xia Lei
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juanjuan Shan
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Cheng Qian
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jiatao Li
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
9
|
Galasso L, Cerrito L, Maccauro V, Termite F, Ainora ME, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma and the Multifaceted Relationship with Its Microenvironment: Attacking the Hepatocellular Carcinoma Defensive Fortress. Cancers (Basel) 2024; 16:1837. [PMID: 38791916 PMCID: PMC11119751 DOI: 10.3390/cancers16101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocellular carcinoma is a malignant tumor that originates from hepatocytes in an inflammatory substrate due to different degrees of liver fibrosis up to cirrhosis. In recent years, there has been growing interest in the role played by the complex interrelationship between hepatocellular carcinoma and its microenvironment, capable of influencing tumourigenesis, neoplastic growth, and its progression or even inhibition. The microenvironment is made up of an intricate network of mesenchymal cells, immune system cells, extracellular matrix, and growth factors, as well as proinflammatory cytokines and translocated bacterial products coming from the intestinal microenvironment via the enterohepatic circulation. The aim of this paper is to review the role of the HCC microenvironment and describe the possible implications in the choice of the most appropriate therapeutic scheme in the prediction of tumor response or resistance to currently applied treatments and in the possible development of future therapeutic perspectives, in order to circumvent resistance and break down the tumor's defensive fort.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
10
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Dhanasekaran R, Hansen AS, Park J, Lemaitre L, Lai I, Adeniji N, Kuruvilla S, Suresh A, Zhang J, Swamy V, Felsher DW. MYC Overexpression Drives Immune Evasion in Hepatocellular Carcinoma That Is Reversible through Restoration of Proinflammatory Macrophages. Cancer Res 2023; 83:626-640. [PMID: 36525476 PMCID: PMC9931653 DOI: 10.1158/0008-5472.can-22-0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cancers evade immune surveillance, which can be reversed through immune-checkpoint therapy in a small subset of cases. Here, we report that the MYC oncogene suppresses innate immune surveillance and drives resistance to immunotherapy. In 33 different human cancers, MYC genomic amplification and overexpression increased immune-checkpoint expression, predicted nonresponsiveness to immune-checkpoint blockade, and was associated with both Th2-like immune profile and reduced CD8 T-cell infiltration. MYC transcriptionally suppressed innate immunity and MHCI-mediated antigen presentation, which in turn impeded T-cell response. Combined, but not individual, blockade of PDL1 and CTLA4 could reverse MYC-driven immune suppression by leading to the recruitment of proinflammatory antigen-presenting macrophages with increased CD40 and MHCII expression. Depletion of macrophages abrogated the antineoplastic effects of PDL1 and CTLA4 blockade in MYC-driven hepatocellular carcinoma (HCC). Hence, MYC is a predictor of immune-checkpoint responsiveness and a key driver of immune evasion through the suppression of proinflammatory macrophages. The immune evasion induced by MYC in HCC can be overcome by combined PDL1 and CTLA4 blockade. SIGNIFICANCE Macrophage-mediated immune evasion is a therapeutic vulnerability of MYC-driven cancers, which has implications for prioritizing MYC-driven hepatocellular carcinoma for combination immunotherapy.
Collapse
Affiliation(s)
- Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida S. Hansen
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Lai
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sibu Kuruvilla
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Varsha Swamy
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Lu K, Fan Q, Zou X. Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 2022; 13:1061842. [PMID: 36569303 PMCID: PMC9780395 DOI: 10.3389/fphar.2022.1061842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.
Collapse
Affiliation(s)
- Kailing Lu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qijing Fan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China,*Correspondence: Xiaoju Zou,
| |
Collapse
|
14
|
Myc-mediated circular RNA circMcph1/miR-370-3p/Irak2 axis is a progressive regulator in hepatic fibrosis. Life Sci 2022; 312:121182. [PMID: 36435226 DOI: 10.1016/j.lfs.2022.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treating hepatic fibrosis (HF) is a major challenge worldwide. However, the biological functions and regulatory mechanisms of circular RNAs (circRNAs) remain unclear in HF. The present study aimed to elucidate the novel role of circMcph1 in HF. MAIN METHODS HF mouse model was established by injecting CCl4 intraperitoneally and validated using hematoxylin and eosin staining, immunohistochemistry, and serological tests in vivo. RAW264.7 cells were treated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in vitro inflammatory damage model. Gel electrophoresis, DNA sequencing, RNase R and actinomycin D treatment, random 6 primers and oligo dT primers assay, nuclear and cytoplasmic fractionation assay, and fluorescence in situ hybridization were performed to identify the characteristics of circMcph1. Functional assays such as ELISA, flow cytometry, and adeno-associated virus administration in vivo and liposome delivery gene therapy in vitro were used to determine the functional effects of circMcph1/miR-370-3p/interleukin-1 receptor-associated kinase 2 (Irak2) axis. Mechanistic assays such as luciferase reporter analysis, and chromatin immunoprecipitation revealed the molecular mechanism of the Myc/circMcph1/miR-370-3p/Irak2 axis in HF. KEY FINDINGS CircMcph1 expression was upregulated in liver tissues and primary Kupffer cells of CCl4-induced HF mice, as well as in LPS and IFN-γ-treated RAW264.7 cells. Knockdown of circMcph1 ameliorated liver fibrogenesis and inflammatory damage in HF mice and reduced the inflammatory response in LPS and IFN-γ-treated RAW264.7 cells. Mechanically, circMcph1 mediated by Myc regulated the expression of Irak2 by sponging miR-370-3p in HF. SIGNIFICANCE The study findings suggested that the Myc/circMcph1/miR-370-3p/Irak2 axis might be a novel identifier and therapeutic target for HF.
Collapse
|
15
|
Kashyap A, Tripathi G, Tripathi A, Rao R, Kashyap M, Bhat A, Kumar D, Rajhans A, Kumar P, Chandrashekar DS, Mahmood R, Husain A, Zayed H, Bharti AC, Kashyap MK. RNA splicing: a dual-edged sword for hepatocellular carcinoma. Med Oncol 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
Affiliation(s)
- Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Manju Kashyap
- Facultad de Ingeniería Y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Deepak Kumar
- ThermoFisher Scientific, Carlsbad, CA, 92008, USA
| | - Anjali Rajhans
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | | | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaragatta (Shimoga), Jnanasahyadri, Karnataka, 577451, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India.
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
16
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O. Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R. Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Li X, Duan S, Zheng Y, Yang Y, Wang L, Li X, Zhang Q, Thorne RF, Li W, Yang D. Hyperthermia inhibits growth of nasopharyngeal carcinoma through degradation of c-Myc. Int J Hyperthermia 2022; 39:358-371. [PMID: 35184661 DOI: 10.1080/02656736.2022.2038282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaole Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Duan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjuan Zheng
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Yang
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19:23-36. [PMID: 34508258 PMCID: PMC9083341 DOI: 10.1038/s41571-021-00549-2] [Citation(s) in RCA: 476] [Impact Index Per Article: 158.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.
Collapse
|
19
|
Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine 2022; 75:103756. [PMID: 34942444 PMCID: PMC8713111 DOI: 10.1016/j.ebiom.2021.103756] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
c-MYC controls global gene expression and regulates cell proliferation, cell differentiation, cell cycle, metabolism and apoptosis. According to some estimates, MYC is dysregulated in ≈70% of human cancers and strong evidence implicates aberrantly expressed MYC in both tumor initiation and maintenance. In vivo studies show that MYC inhibition elicits a prominent anti-proliferative effect and sustained tumor regression while any alteration on healthy tissue remains reversible. This opens an exploitable window for treatment that makes MYC one of the most appealing therapeutic targets for cancer drug development. This review describes the main functional and structural features of the protein structure of MYC and provides a general overview of the most relevant or recently identified interactors that modulate MYC oncogenic activity. This review also summarizes the different approaches aiming to abrogate MYC oncogenic function, with a particular focus on the prototype inhibitors designed for the direct and indirect targeting of MYC.
Collapse
Affiliation(s)
- Victor Llombart
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK
| | - Marc R Mansour
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK; UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, London, UK.
| |
Collapse
|
20
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Reale A, Khong T, Mithraprabhu S, Spencer A. Translational Potential of RNA Derived From Extracellular Vesicles in Multiple Myeloma. Front Oncol 2021; 11:718502. [PMID: 34513695 PMCID: PMC8429596 DOI: 10.3389/fonc.2021.718502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
The cross-talk between tumour cells and stromal cells is a hallmark of multiple myeloma (MM), a blood cancer that still remains incurable despite increased knowledge of its biology and advances in its treatment. Extracellular vesicles (EVs) derived from both tumour and stromal cells have been shown to play an important role in mediating this cross-talk ultimately favouring MM progression and drug resistance. Furthermore, EVs and their content including RNA (EV-RNA) have been successfully isolated from blood and are being explored as liquid biomarkers in MM with the potential to improve diagnosis and monitoring modalities with a minimally-invasive and repeatable analysis, i.e. liquid biopsy. In this review, we describe both the role of EV-RNA in defining the biological features of MM and their potential translational relevance as liquid biomarkers, therapeutic targets and delivery systems. We also discuss the limitations and technical challenges related to the isolation and characterization of EVs and provide a perspective on the future of MM-derived EV-RNA in translational research.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|
23
|
Ma YS, Yang XL, Xin R, Wu TM, Shi Y, Dan Zhang D, Wang HM, Wang PY, Liu JB, Fu D. The power and the promise of organoid models for cancer precision medicine with next-generation functional diagnostics and pharmaceutical exploitation. Transl Oncol 2021; 14:101126. [PMID: 34020369 PMCID: PMC8144479 DOI: 10.1016/j.tranon.2021.101126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dan Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.
| |
Collapse
|
24
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|