1
|
Zhao Z, Liu W, Luo B. The Oncogenic role of Lysyl Oxidase-Like 1 (LOXL1): Insights into cancer progression and therapeutic potential. Gene 2025; 947:149312. [PMID: 39952484 DOI: 10.1016/j.gene.2025.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Lysyl oxidase-like-1 (LOXL1) is a copper-dependent amine oxidase that maintains the structural integrity of the extracellular matrix (ECM) by catalyzing the cross-linking of collagen and elastin. However, aberrations in LOXL1 expression can contribute to diseases like glaucoma, tissue fibrosis, and cancer. LOXL1 has been found to be overexpressed in various malignancies, playing a pivotal role in tumor growth and metastasis. Although some studies suggest tumor-suppressive attributes of LOXL1, its role in tumorigenesis remains controversial. Research on LOXL1 has been primarily focused on pseudoexfoliation syndrome/glaucoma, with limited reviews on its impact on cancer. This review aims to explore LOXL1 comprehensively, including its structure, biological effects, and regulatory processes. Emphasis is placed on understanding the relationship between LOXL1 and tumorigenesis, specifically how LOXL1 influences tumor microenvironment remodeling, tumorigenesis, and metastasis. The review also discusses potential therapeutic strategies targeting LOXL1 for anti-fibrosis and anti-tumor interventions.
Collapse
Affiliation(s)
- Zixiu Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Li P, Yang Y, Luan C, Wang W, Jiang Y, Zhao Z, Wang B, Zhao Y, Bai Y, Liu M, Zhao Z, Zhang L, Qian Y, Shi J. A HOTAIR-associated super-enhancer orchestrates glioblastoma malignancy via MEST. Oncogenesis 2025; 14:8. [PMID: 40195296 PMCID: PMC11976998 DOI: 10.1038/s41389-025-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors, and factors governing its progression are not fully characterized. Recent research suggests that the long non-coding RNA (lncRNA) HOTAIR and super-enhancers (SEs) contribute significantly to GBM progression. Here, we performed TCGA data analysis revealing that high HOTAIR expression in GBM is associated with poor prognosis. Conversely, HOTAIR knock-down (KD) decreased proliferation, colony formation, and invasion of GBM cells. Furthermore, RNA-seq analysis identified DEGs in GBM cells related to cell growth and adhesion. Using an integrated approach, we also identify MEST as a HOTAIR-associated SE target gene. Intriguingly, MEST suppression in GBM cells phenocopied HOTAIR KD, as evidenced by reduced cell proliferation and invasion, whereas MEST overexpression counteracted effects of HOTAIR depletion. Moreover, 3 C technique-based PCR confirmed reduced interaction between HOTAIR-associated SEs and target genes after HOTAIR KD. This study reveals a novel regulatory mechanism governing GBM, offering promising directions for clinical interventions.
Collapse
Affiliation(s)
- Peng Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Chunpeng Luan
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Wenbin Wang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuan Jiang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhenhao Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Bo Wang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuting Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yunlong Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Man Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongfang Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Lei Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuyang Qian
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Department of Maxillofacial and Otorhinolaryngological Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, Tianjin, China.
| | - Jiandang Shi
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Song F, Xu D, Che J, Huang M, Li H. Chitosan hydrogel incorporated with bone marrow mesenchymal stem cell-derived exosomal TIMP2 to inhibit angiogenesis in cholangiocarcinoma. Tissue Cell 2025; 93:102694. [PMID: 39718067 DOI: 10.1016/j.tice.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) presents a therapeutic challenge due to its aggressiveness and poor survival rates. This study introduces an approach using tissue inhibitor of metalloproteinase 2 (TIMP2)-enriched bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) encapsulated in chitosan hydrogels (CS), intending to provide novel insight into the CCA treatment. METHODS BMSC-Exo was characterized by using TEM, nanoparticle tracking analysis, and western blotting. Role of TIMP2 in CCA was explored using bioinformatics analysis. Therapeutic efficacy and mechanisms of BMSC-Exo/CS in CCA were assessed through cell viability tests and colony formation assays. Angiogenic and Wnt/β-catenin signaling pathways-related key factors were detected through RT-qPCR or western blotting. RESULTS BMSC-Exo displayed typical cup-shaped morphology and was positive for exosomal markers CD9 and TSG101, but negative for endoplasmic reticulum marker Calnexin, with a diameter of 124.6 nm. BMSC-Exo combined with CS showed synergistic anti-proliferative effects in CCA cells. High-expression TIMP2 samples indicated a better prognosis of CCA patients, and BMSC-Exo/CS increased the TIMP2 expression in CCA cells. Mechanistically, BMSC-Exo/CS TIMP2 overexpression inhibited key factors related to angiogenesis (VEGFA and VEGFR2) and Wnt/β-catenin pathway (β-catenin and c-Myc), thereby reducing CCA cell viability. Notably, these inhibitory effects were reversed by a Wnt signaling agonist (BML-284). CONCLUSION The study validates the therapeutic potential of BMSC-Exo/CS TIMP2 in CCA treatment. This innovative approach targets angiogenesis and Wnt/β-catenin signaling, providing a new avenue for more effective and comprehensive CCA therapies.
Collapse
Affiliation(s)
- Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Dan Xu
- Department of Medical laboratory, Pingbian County People's Hospital, Pingbian, Yunnan, China.
| | - Jiayin Che
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ming Huang
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Hongyang Li
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Jiang Y, Wang S, Zhu W, Liu X, Yang Y, Huo L, Ye J, Ma Y, Zhou Y, Yang Z, Mao J, Wang X. Lysyl Oxidase-Like 1 (LOXL1) Up-Regulation in Chondrocytes Promotes M1 Macrophage Activation in Osteoarthritis via NF-κB and STAT3 Signaling. Immunotargets Ther 2025; 14:259-278. [PMID: 40161479 PMCID: PMC11951931 DOI: 10.2147/itt.s512768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose Osteoarthritis (OA) constitutes a widespread degenerative joint disease predominantly affecting the elderly, leading to disability. There is still a lack of biomarkers for OA, so it cannot be intervened in time. Methods OA biomarkers were identified from human cartilage datasets using LASSO and SVM-RFE, followed by ROC analysis. LOXL1 was prioritized for further research due to its high expression in OA cartilage and robust predictive performance. Anterior cruciate ligament transection (ACLT) surgery-induced OA rats were used to explore the correlation between LOXL1 and inflammatory factors and macrophages. Macrophage markers and cytokine secretion were detected from macrophages treated with LOXL1, or co-cultured with chondrocytes after LOXL1 siRNA silencing. Results Five hub biomarkers with OA-specific expression were identified. Elevated LOXL1 correlated with IL-6 and IL-8 in patients and increased M1 macrophages in OA rats. LOXL1-stimulated macrophages upregulated CD86 and inflammatory cytokines. Silencing LOXL1 in chondrocytes reduced CD86, inflammatory cytokines, and NF-κB p65 and p-STAT3 expression in co-cultured macrophages, mitigating MMP13 and chondrocyte apoptosis. STAT3 and NF-κB signal inhibition reduces p-STAT3, p-p65, CD86, IL-6 and IL-1β expression in LOXL1-stimulated macrophages. Conclusion This study underscores the pivotal role of LOXL1 in activating M1 macrophages through NF-κB and STAT3 signaling, thereby promoting pro-inflammatory cytokine secretion and contributing to OA pathogenesis. LOXL1 holds promise as a potential marker for early diagnosis of OA inflammation and as a novel therapeutic target.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Shang Wang
- Tzu Chi International College of Traditional Chinese Medicine, Vancouver, BC, Canada
| | - Wei Zhu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Sports Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yanwei Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Liyue Huo
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, 213200, People’s Republic of China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhe Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
5
|
Mathews Paul B, Kannan G, Jegan Raj F, Velavan Sundararajan V, Annadurai Y, Piramanayagam S, Thangaraj P. GC-MS/HPLC Profiling and Sono-Maceration Mediated Extraction of Osbeckia Parvifolia Polyphenols: In Silico and In Vitro Analysis on Anti-Proliferative Activity in Ovarian Cancer Cell Lines. Chem Biodivers 2025; 22:e202402228. [PMID: 39417207 DOI: 10.1002/cbdv.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Osbeckia parvifolia, an endemic edible plant of Western Ghats, was investigated in the present study for its polyphenolic compounds, including content, constituents, extraction through an ultrasonic-assisted maceration technique and therapeutic potential in biomedical applications. The methanolic extract (OPM) exhibited an IC50 value of 1.25 μg/mL against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals. Furthermore, the ethyl acetate and methanolic extracts also strongly inhibited 5-lipoxygenase, especially OPM (84.93 %), which was comparable to standard curcumin. OPM also elicited cytotoxicity in SKOV3 ovarian cancer cells (93.80 %), surpassing paclitaxel. Bio-accessibility analysis demonstrated that the release of phenolic compounds and antioxidant potential were very high (above 100 %), revealing the possibility of synergistic efficacy of polyphenolic complexes in drug development. Gas Chromatography -Mass Spectrometry (GC-MS) analysis revealed 22 bioactive polyphenolic compounds in OPM, such as epicatechin, quercetin, and psoralidin. This was confirmed by High Performance Liquid Chromatography (HPLC) and High-Pressure Thin Layer Chromatography (HPTLC) analyses, which revealed a high quantity of catechin (37.45 mg/g). Molecular docking revealed the significant binding affinity of these proteins for the ovarian oncoproteins PI3K (-8.52 kcal/mol) and Casp-8 (-8.41 kcal/mol). Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profiling indicated the favorable pharmacokinetic properties of these compounds, supporting their candidacy in drug formulations against ovarian cancer.
Collapse
Affiliation(s)
- Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Vetri Velavan Sundararajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Yamuna Annadurai
- Computational Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
6
|
Zhang H, Liu M, Zhong H, Ma L, Liu Y, Liu C, Yang S, Wang B, An J, Song S, Cao Q. Mechanistic role of FN1 in LAIR-1 mediated downregulation of ovarian cancer cell proliferation. BMC Cancer 2025; 25:339. [PMID: 40000955 PMCID: PMC11853514 DOI: 10.1186/s12885-025-13692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE RNA-seq was used to explore the potential mechanism underlying human leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) inhibition of the proliferation and migration of ovarian cancer cells. METHOD A LAIR-1-overexpression cell model was established using a LAIR-1-lentivirus. After confirming and identifying the LAIR-1 expression cell clones by flow cytometry and RT-qPCR, the proliferation and migration of the cells were examined by CCK8 and scratch assays, and the differentially expressed genes (DEGs) were searched by RNA-seq and analyzed by GO and KEGG enrichment. String was used for protein interaction network analysis, and Cytoscape was used to identify key proteins. RESULTS LAIR-1 inhibited the proliferation and migration of ovarian cancer cells. LAIR-1 expression caused the upregulation of 83 genes and the downregulation of 80 genes. Among the DEGs, fibronectin 1 (FN1) was a key protein affecting the downstream FAK-MEK-ERK axis. KEGG enrichment analysis identified the MAPK pathway as the most obvious enrichment pathway, followed by PI3K-AKT pathway. CONCLUSION LAIR-1 downregulates FN1 to inhibit the FAK-MEK-ERK axis, as well as the proliferation and migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Huachang Zhang
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Mengke Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Hao Zhong
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, P.R. China
| | - Li Ma
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Yunyi Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Chuntong Liu
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Shude Yang
- School of Agriculture, Ludong University, 264025, Yantai, Shandong, P.R. China
| | - Bin Wang
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), LaJolla, CA92037, USA
| | - Shuling Song
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China.
| | - Qizhi Cao
- Binzhou Medical University, Yantai, 264003, Shandong, P.R. China.
| |
Collapse
|
7
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Liang JE, Bao BW, He XH, Lu WQ, Liu Y, Wang J, Qu XJ, Li DY, Che XF. LOXL1 promotes gastric cancer progression by β-catenin-cyclinD mediated proliferation. Exp Cell Res 2024; 443:114331. [PMID: 39547354 DOI: 10.1016/j.yexcr.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Although much progress has been made in chemotherapy or target therapy for advanced gastric cancer, the prognosis is still poor. It is necessary to screen biomarkers for early diagnosis and prognosis prediction. However, the prognostic value of LOX family in gastric cancer and the underlying molecular mechanisms for promoting the progression of gastric cancer remains unclear. Among five members of LOX family, LOXL1 was the unique independent prognostic risk factor. The nomogram established based on the expression of LOXL1 and other clinical parameters could predict the overall survival rate of gastric cancer. Knockdown (KD) of LOXL1 decreased cell proliferation and led to G1 phase arrest in gastric cells. According to GSEA analysis that LOXL1 was positively correlated with the WNT signaling pathway, in vitro experiment proved that LOXL1-KD reduced the phosphorylation level of β-catenin and the expression of the downstream G1 phase checkpoint CCND1. In conclusion, LOXL1 has been identified as a potential risk prognostic biomarker for gastric cancer by promoting gastric cancer proliferation via WNT/β-catenin/cyclinD1 pathway.
Collapse
Affiliation(s)
- Jin-E Liang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Bo-Wen Bao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Hua He
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China; Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen-Qing Lu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yang Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Jin Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Dong-Yang Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xiao-Fang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
10
|
Zhai W, Yang W, Ge J, Xiao X, Wu K, She K, Zhou Y, Kong Y, Wu L, Luo S, Pu X. ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway. Biol Direct 2024; 19:94. [PMID: 39415271 PMCID: PMC11483991 DOI: 10.1186/s13062-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear. METHODS ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays. RESULTS Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway. CONCLUSIONS We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wensheng Yang
- Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 36, Hongqi Road, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Jing Ge
- Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuelian Xiao
- Department of Medical Administration, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Kang Wu
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Kelin She
- Department of Thoracic Surgery, Hunan Provincial Pecople's Hospital, The First Affiliated Hospital of Huan Nomal University, No. 61, Jiefang West Road, Furong District, Changsha, 410013, Hunan, China
| | - Yu Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yi Kong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Shiya Luo
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
12
|
Pattamaprapanont P, Cooney EM, MacDonald TL, Paulo JA, Pan H, Dreyfuss JM, Lessard SJ. Matrisome proteomics reveals novel mediators of muscle remodeling with aerobic exercise training. Matrix Biol Plus 2024; 23:100159. [PMID: 39220302 PMCID: PMC11363848 DOI: 10.1016/j.mbplus.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skeletal muscle has a unique ability to remodel in response to stimuli such as contraction and aerobic exercise training. Phenotypic changes in muscle that occur with training such as a switch to a more oxidative fiber type, and increased capillary density contribute to the well-known health benefits of aerobic exercise. The muscle matrisome likely plays an important role in muscle remodeling with exercise. However, due to technical limitations in studying muscle ECM proteins, which are highly insoluble, little is known about the muscle matrisome and how it contributes to muscle remodeling. Here, we utilized two-fraction methodology to extract muscle proteins, combined with multiplexed tandem mass tag proteomic technology to identify 161 unique ECM proteins in mouse skeletal muscle. In addition, we demonstrate that aerobic exercise training induces remodeling of a significant proportion of the muscle matrisome. We performed follow-up experiments to validate exercise-regulated ECM targets in a separate cohort of mice using Western blotting and immunofluorescence imaging. Our data demonstrate that changes in several key ECM targets are strongly associated with muscle remodeling processes such as increased capillary density in mice. We also identify LOXL1 as a novel muscle ECM target associated with aerobic capacity in humans. In addition, publically available data and databases were used for in silico modeling to determine the likely cellular sources of exercise-induced ECM remodeling targets and identify ECM interaction networks. This work greatly enhances our understanding of ECM content and function in skeletal muscle and demonstrates an important role for ECM remodeling in the adaptive response to exercise. The raw MS data have been deposited to the ProteomeXchange with identifier PXD053003.
Collapse
Affiliation(s)
| | | | - Tara L. MacDonald
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah J. Lessard
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Burchard PR, Ruffolo LI, Ullman NA, Dale BS, Dave YA, Hilty BK, Ye J, Georger M, Jewell R, Miller C, De Las Casas L, Jarolimek W, Perryman L, Byrne MM, Loria A, Marin C, Chávez Villa M, Yeh JJ, Belt BA, Linehan DC, Hernandez-Alejandro R. Pan-lysyl oxidase inhibition disrupts fibroinflammatory tumor stroma, rendering cholangiocarcinoma susceptible to chemotherapy. Hepatol Commun 2024; 8:e0502. [PMID: 39101793 PMCID: PMC11299993 DOI: 10.1097/hc9.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/11/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) features highly desmoplastic stroma that promotes structural and functional resistance to therapy. Lysyl oxidases (LOX, LOXL1-4) catalyze collagen cross-linking, thereby increasing stromal rigidity and facilitating therapeutic resistance. Here, we evaluate the role of lysyl oxidases in stromal desmoplasia and the effects of pan-lysyl oxidase (pan-LOX) inhibition in CCA. METHODS Resected CCA and normal liver specimens were analyzed from archival tissues. Spontaneous and orthotopic murine models of intrahepatic CCA (iCCA) were used to assess the impact of the pan-LOX inhibitor PXS-5505 in treatment and correlative studies. The functional role of pan-LOX inhibition was interrogated through in vivo and ex vivo assays. RESULTS All 5 lysyl oxidases are upregulated in CCA and reduced lysyl oxidase expression is correlated with an improved prognosis in resected patients with CCA. Spontaneous and orthotopic murine models of intrahepatic cholangiocarcinoma upregulate all 5 lysyl oxidase isoforms. Pan-LOX inhibition reversed mechanical compression of tumor vasculature, resulting in improved chemotherapeutic penetrance and cytotoxic efficacy. The combination of chemotherapy with pan-LOX inhibition increased damage-associated molecular pattern release, which was associated with improved antitumor T-cell responses. Pan-LOX inhibition downregulated macrophage invasive signatures in vitro, rendering tumor-associated macrophages more susceptible to chemotherapy. Mice bearing orthotopic and spontaneously occurring intrahepatic cholangiocarcinoma tumors exhibited delayed tumor growth and improved survival following a combination of pan-LOX inhibition with chemotherapy. CONCLUSIONS CCA upregulates all 5 lysyl oxidase isoforms, and pan-LOX inhibition reverses tumor-induced mechanical forces associated with chemotherapy resistance to improve chemotherapeutic efficacy and reprogram antitumor immune responses. Thus, combination therapy with pan-LOX inhibition represents an innovative therapeutic strategy in CCA.
Collapse
Affiliation(s)
- Paul R. Burchard
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas A. Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin S. Dale
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Yatee A. Dave
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Bailey K. Hilty
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Rachel Jewell
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Christine Miller
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis De Las Casas
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lara Perryman
- Drug Discovery, Syntara Ltd., Sydney, New South Wales, Australia
| | - Matthew M. Byrne
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Anthony Loria
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Chelsea Marin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mariana Chávez Villa
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, Division of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Division of Solid Organ Transplant Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Lewinska M, Zhuravleva E, Satriano L, Martinez MB, Bhatt DK, Oliveira DVNP, Antoku Y, Keggenhoff FL, Castven D, Marquardt JU, Matter MS, Erler JT, Oliveira RC, Aldana BI, Al-Abdulla R, Perugorria MJ, Calvisi DF, Perez LA, Rodrigues PM, Labiano I, Banales JM, Andersen JB. Fibroblast-Derived Lysyl Oxidase Increases Oxidative Phosphorylation and Stemness in Cholangiocarcinoma. Gastroenterology 2024; 166:886-901.e7. [PMID: 38096955 DOI: 10.1053/j.gastro.2023.11.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND & AIMS Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.
Collapse
Affiliation(s)
- Monika Lewinska
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Marta B Martinez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Deepak K Bhatt
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yasuko Antoku
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Friederike L Keggenhoff
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Darko Castven
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Jens U Marquardt
- Universitatsklinikum Schleswig-Holstein, Medizinische Klinik I, Campus Lubeck, Lubeck, Germany
| | - Matthias S Matter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Janine T Erler
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Rui C Oliveira
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Diego F Calvisi
- University of Regensburg, Institute of Pathology, Regensburg, Germany
| | - Luis Arnes Perez
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country, San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Zhong X, Zhang S, Wang H, Wang M, Feng Z, Su W, Wang J, Liu Z, Ye L. Dynamic RGD ligands derived from highly mobile cyclodextrins regulate spreading and proliferation of endothelial cells to promote vasculogenesis. Int J Biol Macromol 2024; 267:131667. [PMID: 38636761 DOI: 10.1016/j.ijbiomac.2024.131667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
A thiolated RGD was incorporated into the threaded allyl-β-cyclodextrins (Allyl-β-CDs) of the polyrotaxane (PR) through a thiol-ene click reaction, resulting in the formation of dynamic RGD ligands on the PR surface (dRGD-PR). When maintaining consistent RGD density and other physical properties, endothelial cells (ECs) cultured on dRGD-PR exhibited significantly increased cell proliferation and a larger cell spreading area compared to those on the non-dynamic RGD (nRGD-PCL). Furthermore, ECs on dRGD-PR demonstrated elevated expression levels of FAK, p-FAK, and p-AKT, along with a larger population of cells in the G2/M stage during cell cycle analysis, in contrast to cells on nRGD-PCL. These findings suggest that the movement of the RGD ligands may exert additional beneficial effects in promoting EC spreading and proliferation, beyond their essential adhesion and proliferation-promoting capabilities, possibly mediated by the RGD-integrin-FAK-AKT pathway. Moreover, in vitro vasculogenesis tests were conducted using two methods, revealing that ECs cultured on dRGD-PR exhibited much better vasculogenesis than nRGD-PCL in vitro. In vivo testing further demonstrated an increased presence of CD31-positive tissues on dRGD-PR. In conclusion, the enhanced EC spreading and proliferation resulting from the dynamic RGD ligands may contribute to improved in vitro vasculogenesis and in vivo vascularization.
Collapse
Affiliation(s)
- Xuanshu Zhong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shulei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Han Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Division of Medical Device, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Mengjie Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100044, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100044, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China.
| |
Collapse
|
16
|
Wang Q, Huang Q, Ying X, Shen J, Duan S. Unveiling the role of tRNA-derived small RNAs in MAPK signaling pathway: implications for cancer and beyond. Front Genet 2024; 15:1346852. [PMID: 38596214 PMCID: PMC11002130 DOI: 10.3389/fgene.2024.1346852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are novel small non-coding RNAs originating from mature or precursor tRNAs (pre-tRNA), typically spanning 14 to 30 nt. The Mitogen-activated protein kinases (MAPK) pathway orchestrates cellular responses, influencing proliferation, differentiation, apoptosis, and transformation. tsRNAs influence the expression of the MAPK signaling pathway by targeting specific proteins within the pathway. Presently, four MAPK-linked tsRNAs have implications in gastric cancer (GC) and high-grade serous ovarian cancer (HGSOC). Notably, tRF-Glu-TTC-027 and tRF-Val-CAC-016 modulate MAPK-related protein expression, encompassing p38, Myc, ERK, CyclinD1, CyclinB, and c-Myc, hindering GC progression via MAPK pathway inhibition. Moreover, tRF-24-V29K9UV3IU and tRF-03357 remain unexplored in specific mechanisms. KEGG analysis posits varied tsRNAs in MAPK pathway modulation for diverse non-cancer maladies. Notably, high tRF-36-F900BY4D84KRIME and tRF-23-87R8WP9IY expression relates to varicose vein (VV) risk. Elevated tiRNA-Gly-GCC-001, tRF-Gly-GCC-012, tRF-Gly-GCC-013, and tRF-Gly-GCC-016 target spinal cord injury (SCI)-related brain-derived neurotrophic factor (BDNF), influencing MAPK expression. tRF-Gly-CCC-039 associates with diabetes foot sustained healing, while tRF-5014a inhibits autophagy-linked ATG5 in diabetic cardiomyopathy (DCM). Additionally, tsRNA-14783 influences keloid formation by regulating M2 macrophage polarization. Upregulation of tRF-Arg-ACG-007 and downregulation of tRF-Ser-GCT-008 are associated with diabetes. tsRNA-04002 alleviates Intervertebral disk degeneration (IDD) by targeting PRKCA. tsRNA-21109 alleviates Systemic lupus erythematosus (SLE) by inhibiting macrophage M1 polarization. The upregulated tiNA-Gly-GCC-002 and the downregulated tRF-Ala-AGC-010, tRF-Gln-CTG-005 and tRF-Leu-AAG-001 may be involved in the pathogenesis of Lupus nephritis (LN) by affecting the expression of MAPK pathway. Downregulation of tsRNA-1018, tsRNA-3045b, tsRNA-5021a and tsRNA-1020 affected the expression of MAPK pathway, thereby improving Acute lung injury (ALI). This review comprehensively dissects tsRNA roles in MAPK signaling across cancers and other diseases, illuminating a novel avenue for translational medical exploration.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wu X, Li X, Wang L, Bi X, Zhong W, Yue J, Chin YE. Lysine Deacetylation Is a Key Function of the Lysyl Oxidase Family of Proteins in Cancer. Cancer Res 2024; 84:652-658. [PMID: 38194336 DOI: 10.1158/0008-5472.can-23-2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.
Collapse
Affiliation(s)
- Xingxing Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Luwei Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Xianxia Bi
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jicheng Yue
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
18
|
Wang Y, Li F, Mao L, Liu Y, Chen S, Liu J, Huang K, Chen Q, Wu J, Lu L, Zheng Y, Shen W, Ying T, Dai Y, Shen Y. Promoting collateral formation in type 2 diabetes mellitus using ultra-small nanodots with autophagy activation and ROS scavenging. J Nanobiotechnology 2024; 22:85. [PMID: 38429826 PMCID: PMC10908163 DOI: 10.1186/s12951-024-02357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Feifei Li
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Linshuang Mao
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Ke Huang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Qiujing Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Weifeng Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yang Dai
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China.
| | - Ying Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Zhang R, Li Y, Zhang J. Molecular mechanisms of pelvic organ prolapse influenced by FBLN5 via FOSL1/miR-222/MEIS1/COL3A1 axis. Cell Signal 2024; 114:111000. [PMID: 38056607 DOI: 10.1016/j.cellsig.2023.111000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
This study delves into the role of FBLN5 in pelvic organ prolapse (POP) and its molecular mechanisms, focusing on the FOSL1/miR-222/MEIS1/COL3A1 axis. Gene relationships linked to POP were confirmed using bioinformatics databases like GEO and StarBase. Primary human uterosacral ligament fibroblasts (hUSLF) were extracted and subjected to mechanical stretching. Cellular cytoskeletal changes were examined via phalloidin staining, intracellular ROS levels with a ROS kit, cell apoptosis through flow cytometry, and cell senescence using β-galactosidase staining. FBLN5's downstream targets were identified, and the interaction between FOSL1 and miR-222 and miR-222 and MEIS1 were validated using assays. In rat models, the role of FBLN5 in POP was assessed using bladder pressure tests. Results indicated diminished FBLN5 expression in uterine prolapse. Enhanced FBLN5 countered mechanical damage in hUSLF cells by downregulating FOSL1. FOSL1 augmented miR-222, inhibiting MEIS1, which subsequently fostered COL3A1 transcription. In rat models, the absence of FBLN5 exacerbated POP by influencing the FOSL1/miR-222/MEIS1/COL3A1 pathway. FBLN5's protective role likely involves regulating the above axis and boosting COL3A1 expression. Further research is needed to validate the effectiveness and safety of this mechanism in human patients and to propose potential new treatment options.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China
| | - Ya Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China.
| |
Collapse
|
20
|
Liu Y, Li Z, Li W, Chen X, Yang L, Lu S, Zhou S, Li M, Xiong W, Zhang X, Liu Y, Zhou J. Discovery of β-sitosterol's effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages. Int Immunopharmacol 2024; 126:111283. [PMID: 38035407 DOI: 10.1016/j.intimp.2023.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Diabetes care, particularly for diabetic foot ulcers (DFUs)-related complications, increases treatment costs substantially. Failure to provide timely and appropriate treatment for severe DFUs significantly increases amputation risk. Neovascularization and macrophage polarization play an important role in diabetic wound healing during different stages of the wound repair process. Therefore, a new treatment method that promotes neovascularization and macrophage polarization may accelerate diabetic wound healing. β-sitosterol possesses anti-inflammatory, lipid-lowering, and antidiabetic properties. However, its therapeutic potential in diabetic wound healing remains underexplored. This study evaluated the healing effects of β-sitosterol on diabetic ulcer wounds in rats. We found that β-sitosterol can promote angiogenesis, alternatively activated macrophages (M2 macrophage) proliferation, and collagen synthesis in diabetic wounds. Transcriptomics analysis and proteomics analysis revealed that MAPK, mTOR and VEGF signaling pathways were enriched in β-sitosterol-treated wounds. Molecular docking revealed Ndufb5 maybe the target of β-sitosterol-treated wounds. Our findings confirm the significant diabetic wound healing effects of β-sitosterol in a rat model. β-sitosterol treatment to diabetic wounds accelerates wound healing through promoting M2 macrophage proliferation and angiogenesis. Interestingly, we also found that the process of M2 macrophage proliferation accompanies angiogenesis. Thus, β-sitosterol may be a promising therapeutic approach to enhance diabetic wound healing and reduce amputation in diabetes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Zenan Li
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Weidong Li
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xuan Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Liping Yang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Shengli Lu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuai Zhou
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Meng Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Wu Xiong
- Department of Burns and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xi Zhang
- Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yu Liu
- Hunan University of Chinese Medicine, College of Integrated Chinese and Western Medicine, Changsha 410007, China; Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China.
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
21
|
Fang H, Fu K, Shi P, Zhao Z, Yang F, Liu Y. Forkhead box F2/ Lysyl oxidase like 1 contribute to epithelial-mesenchymal transition and angiogenesis in thyroid cancer. Cell Signal 2024; 113:110956. [PMID: 37918464 DOI: 10.1016/j.cellsig.2023.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Bioinformatics analysis suggests an association between lysyl oxidase like 1 (LOXL1) and forkhead box F2 (FOXF2), both of which are found to be dysregulated in thyroid cancer. This study aims to elucidate their specific roles in thyroid cancer. METHODS The correlation of LOXL1 expression with thyroid cancer staging and the overall survival was analyzed. LOXL1 levels were determined in several thyroid cancer cells, and its effects on poorly differentiated BCPAP cell proliferation, colony formation, malignant phenotypes, epithelial-mesenchymal transition (EMT) progression, and angiogenesis were evaluated. The relationship between LOXL1 and FOXF2 was confirmed using Luciferase reporter and ChIP assays. The impacts of FOXF2 on LOXL1 regulation along with the Wnt/β-catenin signaling were assessed, followed by the verification of transplanted tumor in nude mice. RESULTS Elevated LOXL1 expression was associated with advanced clinical staging and poorer overall survival. Reduced LOXL1 suppressed cell proliferation, colony formation, migration, invasion, EMT, and angiogenesis. FOXF2 was found to be down-regulated in thyroid cancer, acting as a transcription factor that recognizes the LOXL1 promoter and modulates its transcriptional expression. Moreover, the regulatory outcome of LOXL1 knockdown was partially reversed upon FOXF2 knockdown, including the modulation of the Wnt/β-catenin signaling and tumor growth in vivo. CONCLUSION Our findings indicate that LOXL1 is transcriptionally regulated by FOXF2 and activates the Wnt/β-catenin to promote malignant phenotypes, EMT progression, and angiogenesis in BCPAP cells.
Collapse
Affiliation(s)
- Hao Fang
- Hepatobiliary Surgery Department, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Kai Fu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Ping Shi
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Zhen Zhao
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Fei Yang
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China
| | - Yan Liu
- Otorhinolaryngology, Hebei Medical University Fourth Affiliated Hospital/Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
22
|
Yan X, Zhang N, Wei L, Zhang W, Huang T, Li W, Chen W, Yang A, You H. Selective inhibition of hepatic stellate cell and fibroblast-derived LOXL1 attenuates BDL- and Mdr2-/--induced cholestatic liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G608-G621. [PMID: 37873581 DOI: 10.1152/ajpgi.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Lysyl oxidase-like 1 (LOXL1) proteins are amine oxidases that play a crucial role in extracellular matrix remodeling due to their collagen cross-linking and intracellular functions. The role of LOXL1 in cholestatic liver fibrosis remains unexplored. We measured LOXL1 expression in two murine models of cholestasis [Mdr2 knockout (Mdr2-/-) and bile duct ligation (BDL)]. We used adeno-associated virus (AAV) serotype 6-mediated hepatic delivery against LOXL1 (AAV2/6-shLoxl1) to investigate the therapeutic efficacy of targeting LOXL1 in cholestatic liver fibrosis. NIH-3T3 murine fibroblasts were used to investigate the function and regulatory mechanisms of LOXL1 in vitro. LOXL1 expression was significantly upregulated in Mdr2-/- and BDL mice compared with their corresponding controls, predominantly in collagen-rich fibrous septa and portal areas. AAV2/6-shLoxl1 significantly reduced LOXL1 levels in Mdr2-/- and BDL mice, mainly in desmin-positive hepatic stellate cells (HSCs) and fibroblasts. Concomitant with reduced LOXL1 expression, there was reduced ductular reaction, inflammation, and fibrosis in both Mdr2-/- and BDL mice. In addition, Loxl1 intervention decreased Ki-67-positive cells in the desmin-positive areas in both Mdr2-/- and BDL mice. Overexpression of LOXL1 significantly promoted fibroblast proliferation by activating the platelet-derived growth factor receptor and extracellular signal-regulated kinase signaling pathways in vitro. Our findings demonstrated that selective inhibition of LOXL1 derived from HSCs/fibroblasts attenuated cholestatic liver/biliary fibrosis, inflammation, ductal reaction, and HSC/fibroblast proliferation. Based on our findings, LOXL1 could be a potential therapeutic target for cholestatic fibrosis.NEW & NOTEWORTHY Selectively, inhibition of HSC/fibroblasts-derived LOXL1 by AAV2/6-shLoxl1 could reduce collagen deposition, HSC/fibroblasts proliferation, and cholestatic liver fibrosis progression. In addition, overexpression of LOXL1 significantly promoted HSC/fibroblast proliferation by activating the PDGFRß/PI3K and ERK signaling pathways in vitro.
Collapse
Affiliation(s)
- Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Ning Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Luyang Wei
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Weiyu Li
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Hong You
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| |
Collapse
|
23
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
24
|
Lin W, Song Y, Li T, Yan J, Zhang R, Han L, Ba X, Huang Y, Qin K, Chen Z, Wang Y, Tu S, Huang Y. Triptolide attenuates pulmonary fibrosis by inhibiting fibrotic extracellular matrix remodeling mediated by MMPs/LOX/integrin. Biomed Pharmacother 2023; 166:115394. [PMID: 37660647 DOI: 10.1016/j.biopha.2023.115394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Fibrotic extracellular matrix (ECM) remodeling characterized different types of pulmonary fibrosis, and its regulation could be a potential shared treatment strategy for pulmonary fibrosis. PURPOSE We aimed to investigate the effect of triptolide on pulmonary fibrosis through the inhibition of several important aspects of fibrotic ECM remodeling. METHODS Bleomycin-induced pulmonary fibrosis mice and TGF-β1-induced primary lung fibroblasts were used. The effect of triptolide on pulmonary fibrosis was detected using histopathology, immunostaining, RT-qPCR, western blotting, ELISA, and protein activity assay. RESULTS Triptolide significantly alleviated bleomycin-induced pulmonary fibrosis in mice. It inhibited the expression of fibrotic genes α-SMA, collagen I, fibronectin, and vimentin and blocked the TGF-β-SMAD signaling pathway both in vivo and in vitro. In addition, triptolide regulated the expression and activity of MMPs during fibrosis. Interestingly, it suppressed the expression of lysyl oxidase, which was responsible for matrix cross-linking and elevated ECM stiffness. Furthermore, triptolide blocked the biomechanical stress transduction pathway integrin-β1-FAK-YAP signaling and attenuated the pro-fibrotic feedback of fibrotic ECM on fibroblasts via integrin inhibition. CONCLUSION These findings show that triptolide prevents the key linkages of fibrotic ECM remodeling, including deposition, degradation, cross-linking, and pro-fibrotic feedback and, therefore, has potential therapeutic value for pulmonary fibrosis.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyuan Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Hu X, Liu T, Li L, Gan H, Wang T, Pang P, Mao J. Fibulin-2 Facilitates Malignant Progression of Hepatocellular Carcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:635-644. [PMID: 37162505 PMCID: PMC10441129 DOI: 10.5152/tjg.2023.22134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/12/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Identification of biomarkers to assist in the clinical management of hepatocellular carcinoma represents an urgent requirement. Fibulin-2 is known to contribute to the development and progression of various cancer types. This research investigated the role of fibulin-2 in hepatocellular carcinoma and explored the possible mechanisms. METHODS The expression of fibulin-2 in hepatocellular carcinoma was measured by bioinformatic analysis and confirmed by western blot and immunohistochemical staining in cell lines or patients' samples. The clinicopathologic features of hepatocellular carcinoma patients was analyzed. Cell viability assays were used to explore the role of fibulin-2 on proliferation in hepatocellular carcinoma. Western blot was conducted to uncover changes of protein expression of Ras-MEK-ERK1/2 pathway when Fibulin-2 was overexpressed or silenced. Flow cytometry analyses were used to determine the roles of fibulin-2 in the function of apoptosis and cell cycle. Subcutaneous xenograft mouse models showed the tumor growth pattern after fibulin-2 silence in vivo. RESULTS We reported the upregulation of fibulin-2 in most hepatocellular carcinoma tissues and cells lines. Fibulin-2 promoted the proliferation of hepatocellular carcinoma cells in vitro by regulating Ras-MEK-ERK1/2 signaling pathway, whereas knockdown of fibulin-2 incurred the opposite effect on proliferation. Consistently, knockdown of fibulin-2 resulted in increased apoptosis and induced growth arrest during the G0/G1 phase transition. In vivo xenograft assessment confirmed that knockdown of fibulin-2 inhibited hepatocellular carcinoma tumor growth. CONCLUSIONS Fibulin-2 exhibited tumor promotor activities in malignant progression of hepatocellular carcinoma. The results of the study highlighted the potential of fibulin-2 to be utilized as a promising biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinyan Hu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tianze Liu
- The Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Luting Li
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tiancheng Wang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Pengfei Pang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
26
|
Cheng XH, Yang XX, Cui HR, Zhang BB, Chen KD, Yang XY, Jiao JY, Du YW, Zhang Q, Zheng JX, Xie W, Li FF, Lei HM. Chuanxiong improves angiogenesis via the PI3K/AKT/Ras/MAPK pathway based on network pharmacology and DESI-MSI metabolomics. Front Pharmacol 2023; 14:1135264. [PMID: 37214436 PMCID: PMC10196038 DOI: 10.3389/fphar.2023.1135264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Chuanxiong, a traditional Chinese medicine, has been proved to treat a variety of cardiovascular and cerebrovascular diseases by promoting angiogenesis. However, the mechanisms of Chuanxiong's pro-angiogenesis is currently unknown. This study aimed to uncover the effect and mechanisms of Chuanxiong promoting angiogenesis in vivo and in vitro. Methods: First, potential targets were predicted by network pharmacology analysis, and PPI network was established and the pathways were enriched. Then, the chorioallantoic membrane test on quails was applied to assess the proangiogenic effects in vivo. As well, to evaluate the effects in vitro, real-time PCR, western blot analysis, the scratch test, and the tube formation experiment were used. Subsequently, the major metabolic pathways were analyzed using non-targeted metabolomics. Results: As a result of network pharmacological analysis, 51 collective targets of Chuanxiong and angiogenesis were identified, which are mainly associated with PI3K/AKT/Ras/MAPK pathway. And the biological verification results showed that Chuanxiong could increase the vessel numbers and vessel area in qCAM models. Meanwhile, Chuanxiong contributed to HUVEC proliferation, tube formation, migration, by encouraging scratch healing rates and boosting tube branch points. In addition, the levels of VEGFR2, MAPK and PI3K were elevated compared to the control group. The western blot analysis also confirmed Chuanxiong could promote an increase in AKT, FOXO1 and Ras. Furtheremore, metabolomic results showed that the proangiogenic effect of Chuanxiong is associated with glycine, serine and threonine metabolism. Discussion: In conclusion, this study clarified that Chuanxiong could promote angiogenesis in vivo and in vitro via regulating PI3K/AKT/Ras/MAPK pathway.
Collapse
Affiliation(s)
- Xue-hao Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | | | - He-rong Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bei-bei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-dian Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-yun Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-yi Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-wen Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-xin Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei-fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-min Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
28
|
Liburkin-Dan T, Toledano S, Neufeld G. Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. Int J Mol Sci 2022; 23:6249. [PMID: 35682926 PMCID: PMC9181702 DOI: 10.3390/ijms23116249] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.
Collapse
Affiliation(s)
| | | | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel; (T.L.-D.); (S.T.)
| |
Collapse
|
29
|
Zhou YT, Yu YQ, Yang H, Yang H, Huo YF, Huang Y, Tian XX, Fang WG. Extracellular ATP promotes angiogenesis and adhesion of TNBC cells to endothelial cells via up-regulation of CTGF. Cancer Sci 2022; 113:2457-2471. [PMID: 35441763 PMCID: PMC9277410 DOI: 10.1111/cas.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Our previous works have indicated that extracellular ATP is an important prometastasis factor. However, the molecular mechanism involved needs to be further studied. We demonstrated that extracellular ATP treatment could upregulate the expression of connective tissue growth factor (CTGF) in both triple‐negative breast cancer (TNBC) cells and endothelial cells (ECs). Extracellular ATP stimulated the migration of TNBC cells and ECs, and angiogenesis of ECs via the P2Y2––YAP‐CTGF axis. Furthermore, we demonstrated that adenosine triphosphate (ATP) stimulated TNBC cell adhesion to ECs and transmigration through the EC layer via CTGF by upregulation of integrin β1 on TNBC cells and VCAM‐1 on ECs. Both apyrase (ATP‐diphosphohydrolase) and CTGF shRNA treatments could inhibit the metastasis of inoculated tumors to lung and liver in a mouse model, and these treated tumors had fewer blood vessels. Collectively, our data indicated that extracellular ATP promotes tumor angiogenesis and the interactions between TNBC cells and ECs through upregulation of CTGF, thereby stimulating TNBC metastasis. The pleiotropic effects of ATP in angiogenesis and cell adhesion suggest that extracellular ATP or CTGF could be an effective target for TNBC therapy.
Collapse
Affiliation(s)
- Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yu-Qing Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yan-Fei Huo
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
30
|
Ellegate J, Mastri M, Isenhart E, Krolewski JJ, Chatta G, Kauffman E, Moffitt M, Eng KH. Loss of MAGEC3 Expression Is Associated with Prognosis in Advanced Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14030731. [PMID: 35158998 PMCID: PMC8833712 DOI: 10.3390/cancers14030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Familial studies connect variants in the X-linked gene MAGEC3 to early-onset ovarian cancers. In this retrospective cohort study, we determined that, unlike other MAGE family members, the MAGEC3 protein is normally expressed in ovarian tissue but is lost in half of the ovarian cancers. Similar to other predisposition genes like BRCA2, survival modeling suggests that expression loss is associated with favorable progression-free survival, and continued expression is associated with response to platinum therapy. Because of the assumed antigenicity of MAGE genes, we tested and observed associations with lymphocyte infiltration, NY-ESO-1 seropositivity, and the co-expression of tumor antigens at Xq28. Using transcriptomic modeling, we predicted that MAGEC3 expression is associated with stress-related cell cycle stalling and DNA repair pathway expression. Abstract Rare variants in MAGEC3 are associated with BRCA negative, early-onset ovarian cancers. Given this association, we evaluated the impact of MAGEC3 protein expression on prognosis and transcription. We quantified normal and tumor protein expression of MAGEC3 via immunohistochemistry in n = 394 advanced ovarian cancers, assessed the correlation of these values with clinicopathologic and immunological features and modeled survival using univariate and multivariate models. To extend these results, we quantified MAGEC3 protein expression in n = 180 cancers and used matching RNA sequencing data to determine MAGEC3-associated differentially expressed genes and to build an RNA-based model of MAGEC3 protein levels. This model was tested in a third independent cohort of patients from TCGA’s OV dataset (n = 282). MAGEC3 protein was sporadically lost in ovarian cancers, with half of the cases falling below the 9.5th percentile of normal tissue expression. Cases with MAGEC3 loss demonstrated better progression-free survival [HR = 0.71, p = 0.004], and analyses performed on predicted protein scores were consistent [HR = 0.57 p = 0.002]. MAGEC3 protein was correlated with CD8 protein expression [Pearson’s r = 0.176, p = 0.011], NY-ESO-1 seropositivity, and mRNA expression of tumor antigens at Xq28. Results of gene set enrichment analysis showed that genes associated with MAGEC3 protein expression cluster around G2/M checkpoint (NES = 3.20, FDR < 0.001) and DNA repair (NES = 2.28, FDR < 0.001) hallmark pathways. These results show that MAGEC3 is a prognostic biomarker in ovarian cancer.
Collapse
Affiliation(s)
- James Ellegate
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Emily Isenhart
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - John J. Krolewski
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Eric Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Melissa Moffitt
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kevin H. Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
31
|
Wang Y, Chen T, Li K, Mu W, Liu Z, Shi A, Liu J, Zhao W, Lian S, Huang S, Pan C, Zhang Z. Recent Advances in the Mechanism Research and Clinical Treatment of Anti-Angiogenesis in Biliary Tract Cancer. Front Oncol 2021; 11:777617. [PMID: 34778094 PMCID: PMC8581488 DOI: 10.3389/fonc.2021.777617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma (CCA) and gallbladder cancer (GC), are malignancies originating from the biliary tract with poor prognosis. In the early stage of BTCs, surgery is the only choice for cure. Unfortunately, most patients with BTC are diagnosed at an advanced stage and lose the opportunity for surgery. For many advanced solid tumors, antiangiogenic therapy has achieved encouraging results. While most clinical studies on antiangiogenic therapy in advanced BTCs have shown an excellent disease control rate (DCR), the improvement in overall survival (OS) is controversial. Understanding how the relevant signaling molecules influence the angiogenic response and the functional interaction is necessary for the formulation of new treatment regimens and the selection of enrolled patients. In this review, we aim to summarize and discuss the latest advances in antiangeogenesis for BTCs, mainly focusing on the molecular mechanism of angiogenesis in BTCs and the therapeutic effects from clinical trials. Furthermore, the horizon of antiangiogenesis for BTCs is highlighted.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wentao Mu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|