1
|
Zhang A, Yang J, Wang M, Li Y, Hu T, Xie J, Xu Y, Cao W. Target inhibition of NAT10-mediated ac4C modification prevents seizure behavior in mice. Neuropharmacology 2025; 272:110415. [PMID: 40107603 DOI: 10.1016/j.neuropharm.2025.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
N4-acetylation of Cytidine (ac4C), catalyzed by its only known enzyme N-acetyltransferase 10 (NAT10), facilitates cellular mRNA translation and stability, but its function in brain disorders especially epilepsy is poorly understood. By using pentylenetetrazole (PTZ) induced mouse model of epilepsy, we first displayed spatiotemporally expression of ac4C and NAT10 in the mouse brain. To corroborate the alteration of ac4C and NAT10 in epilepsy, we used acute PTZ, chronic PTZ and intrahippocampal kainic acid (IHKA) mouse model. We then utilized a combination of viral tool and pharmacological approaches to implicate NAT10 mediated ac4C modification in seizure behaviors. We found that the expression of ac4C was increased in epileptic brain tissues in mouse models of epilepsy, which might be due to the up-regulated NAT10. Block of NAT10 led to both reduced brain ac4C level and resistance to PTZ or KA-induced seizure behavior, while hippocampal over-expression of NAT10 causes exacerbated seizure behavior. In support of such a role, our data demonstrated that the loss or gains of ac4C modification could normalize or exacerbate neuronal over-activation in epileptic brain tissues, respectively. Mechanically, we observed that block the NAT10 or over-expression NAT10 lead to reduced or enhanced BDNF, respectively. While the BDNF pathway inhibitor rescued the hippocampal NAT10 over-expression induced aggravated seizure behavior in the chronic PTZ treated mice. Therefore, our work provides the first demonstration of the ac4C levels in an epilepsy mice model, targeted to prevent ac4C by NAT10 inhibition seems to be effective in preventing and treating epilepsy.
Collapse
Affiliation(s)
- Aomei Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingwen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meng Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yujia Li
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tao Hu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jialing Xie
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Wang JN, Suo XG, Yu JT, Luo QC, Ji ML, Zhang MM, Zhu Q, Cheng XR, Hou C, Chen X, Wang F, Xu CH, Li C, Xie SS, Wei J, Zhang DF, Zhang XR, Wang ZJ, Dong YH, Zhu S, Peng LJ, Li XY, Chen HY, Xu T, Jin J, Chen FX, Meng XM. NAT10 exacerbates acute renal inflammation by enhancing N4-acetylcytidine modification of the CCL2/CXCL1 axis. Proc Natl Acad Sci U S A 2025; 122:e2418409122. [PMID: 40261924 DOI: 10.1073/pnas.2418409122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/08/2025] [Indexed: 04/24/2025] Open
Abstract
Inflammation plays an essential role in eliminating microbial pathogens and repairing tissues, while sustained inflammation accelerates kidney damage and disease progression. Therefore, understanding the mechanisms of the inflammatory response is vital for developing therapies for inflammatory kidney diseases like acute kidney injury (AKI), which currently lacks effective treatment. Here, we identified N-acetyltransferase 10 (NAT10) as an important regulator for acute inflammation. NAT10, the only known "writer" protein for N4-acetylcytidine (ac4C) acetylation, is elevated in renal tubules across various AKI models, human biopsies, and cultured tubular epithelial cells (TECs). Conditional knockout (cKO) of NAT10 in mouse kidneys attenuates renal dysfunction, inflammation, and infiltration of macrophages and neutrophils, whereas its conditional knock-in (cKI) exacerbates these effects. Mechanistically, our findings from ac4C-RIP-seq and RNA-seq analyses revealed that NAT10-mediated ac4C acetylation enhances the mRNA stability of a range of key chemokines, including C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1(CXCL1), promoting macrophage and neutrophil recruitment and accelerating renal inflammation. Additionally, CCL2 and CXCL1 neutralizing antibodies or their receptor inhibitors, abrogated renal inflammation in NAT10-overexpression TECs or NAT10-cKI mice. Importantly, inhibiting NAT10, either through Adeno-associated virus 9 (AAV9)-mediated silencing or pharmacologically with our found inhibitor Cpd-155, significantly reduces renal inflammation and injury. Thus, targeting the NAT10/CCL2/CXCL1 axis presents a promising therapeutic strategy for treating inflammatory kidney diseases.
Collapse
Affiliation(s)
- Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi-Chao Luo
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xin-Ran Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Hou
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fang Wang
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an 237006, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Dan-Feng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Xin-Ru Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhi-Juan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li-Jin Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 999077, Hong Kong
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Fei Xavier Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Zheng G, Lu M, Ouyang Y, Sun G. RNA methylation: A new perspective in osteoarthritis research. Gene 2025; 959:149518. [PMID: 40254081 DOI: 10.1016/j.gene.2025.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, osteophyte formation, and joint dysfunction, significantly impairing the quality of life in the elderly population. Recently, RNA modifications, as a dynamic and reversible epigenetic modification, have emerged as critical players in the onset and progression of OA. This review systematically summarizes the major types of RNA modifications involved in OA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G), and explores their roles in regulating chondrocyte autophagy, inflammatory responses, and key signaling pathways. with a primary focus on RNA methylation. Special emphasis is placed on the dynamic regulatory functions of key methyltransferases (e.g., METTL3, FTO, WTAP) and their potential contributions to OA pathogenesis. Furthermore, we address current research hotspots and controversies in the field, proposing future research directions, such as leveraging single-cell sequencing to decipher dynamic RNA modification changes during OA progression and uncovering the cooperative networks among various RNA modifications. Advancing our understanding of the biological roles and mechanisms of RNA modifications holds promise for innovative strategies in the early diagnosis, disease stratification, and targeted therapy of OA.
Collapse
Affiliation(s)
- Guihao Zheng
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Meifeng Lu
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Yulong Ouyang
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Guicai Sun
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
4
|
Mo X, Meng K, Xu B, Li Z, Lan S, Ren Z, Xiang X, Zou P, Chen Z, Lai Z, Ao X, Liu Z, Shang W, Dai B, Luo L, Xu J, Wang Z, Zhang Z. Nat10-mediated N4-acetylcytidine modification enhances Nfatc1 translation to exacerbate osteoclastogenesis in postmenopausal osteoporosis. Proc Natl Acad Sci U S A 2025; 122:e2423991122. [PMID: 40193598 PMCID: PMC12012521 DOI: 10.1073/pnas.2423991122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Increased differentiation or activity of osteoclasts is the key pathogenic factor of postmenopausal osteoporosis (PMOP). N4-acetylcytidine (ac4C) modification, catalyzed by Nat10, is a novel posttranscriptional mRNA modification related to many diseases. However, its impact on regulating osteoclast activation in PMOP remains uncertain. Here, we initially observed that Nat10-mediated ac4C positively correlates with osteoclast differentiation of monocytes and low bone mass in PMOP. The specific knockout of Nat10 in monocytes and remodelin, a Nat10 inhibitor, alleviates ovariectomized (OVX)-induced bone loss by downregulating osteoclast differentiation. Mechanistically, epitranscriptomic analyses reveal that the nuclear factor of activated T cells cytoplasmic 1 (Nfatc1) is the key downstream target of ac4C modification during osteoclast differentiation. Subsequently, translatomic results demonstrate that Nat10-mediated ac4C enhances the translation efficiency (TE) of Nfatc1, thereby inducing Nfatc1 expression and consequent osteoclast maturation. Cumulatively, these findings reveal the promotive role of Nat10 in osteoclast differentiation and PMOP from a novel field of RNA modifications and suggest that Nat10 can be a target of epigenetic therapy for preventing bone loss in PMOP.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Bohan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zehui Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Shanwei Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhengda Ren
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Peiqian Zou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, NIH, Bethesda, MD20814
| | - Bingyang Dai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518000, China
| | - Li Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510080, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
5
|
Li H, Chen X, Huang B, He J, Xie J, Guo W, Liang J, Ruan J, Liu J, Xiang Z, Zhu L. Stigmasterol alleviates endplate chondrocyte degeneration through inducing mitophagy by enhancing PINK1 mRNA acetylation via the ESR1/NAT10 axis. Open Life Sci 2025; 20:20220913. [PMID: 40226364 PMCID: PMC11992624 DOI: 10.1515/biol-2022-0913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 04/15/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a core factor in spinal degeneration. To date, there is no effective treatment for IVDD. It is urgent to identify the pathogenesis of IVDD to develop effective strategies for IVDD treatment. Alleviating endplate chondrocyte degeneration is a promising strategy for IVDD treatment, while mitophagy prevents degeneration of endplate chondrocytes. Stigmasterol (STM) protects neurons from injuries by triggering mitophagy, yet the effect of STM on the mitophagy of endplate chondrocytes in IVDD has not been reported. In this study, endplate chondrocyte degeneration was induced by interleukin-1β, and the ribonucleic acid (RNA) acetylation level was identified by acetylated RNA immunoprecipitation. Herein, results indicated that STM alleviated endplate chondrocyte degeneration. Besides, STM induced PTEN-induced kinase 1 (PINK1)-mediated mitophagy in degenerated endplate chondrocytes. Moreover, N-acetyltransferase 10 (NAT10) increased PINK1 expression by improving PINK1 mRNA acetylation in endplate chondrocytes. In addition, STM regulated NAT10 expression by estrogen receptor 1 (ESR1) in degenerated endplate chondrocytes. In summary, the present study revealed that STM attenuated endplate chondrocyte degeneration through inducing mitophagy by enhancing PINK1 mRNA acetylation via the ESR1/NAT10 axis. These findings would provide novel strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Hao Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital, Guangzhou,
Guangdong510310, China
| | - Junjie He
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
| | - Junxian Xie
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Weijun Guo
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Jinjun Liang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Jiajian Ruan
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Jincheng Liu
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Zhen Xiang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou,
Guangdong511400, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
| |
Collapse
|
6
|
Wan X, Wang L, Khan MA, Peng L, Sun X, Yi X, Wang Z, Chen K. NAT10-mediated N4-acetylcytidine modification in KLF9 mRNA promotes adipogenesis. Cell Death Differ 2025:10.1038/s41418-025-01483-x. [PMID: 40123006 DOI: 10.1038/s41418-025-01483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Dysfunctional adipogenesis is a major contributor of obesity. N-acetyltransferase 10 (NAT10) plays a crucial role in regulating N4-acetylcysteine (ac4C) modification in tRNA, 18SrRNA, and mRNA. As the sole "writer" in the ac4C modification process, NAT10 enhances mRNA stability and translation efficiency. There are few reports on the relationship between NAT10 and adipogenesis, as well as obesity. Our study revealed a significant upregulation of NAT10 in adipose tissues of obese individuals and high-fat diet-fed mice. Furthermore, our findings revealed that the overexpression of NAT10 promotes adipogenesis, while its silencing inhibits adipogenesis in both human adipose tissue-derived stem cells (hADSCs) and 3T3-L1 cells. These results indicate the intimate relationship between NAT10 and obesity. After silencing mouse NAT10 (mNAT10), we identified 30 genes that exhibited both hypo-ac4C modification and downregulation in their expression, utilizing a combined approach of acRIP-sequencing (acRIP-seq) and RNA-sequencing (RNA-seq). Among these genes, we validated KLF9 as a target of NAT10 through acRIP-PCR. KLF9, a pivotal transcription factor that positively regulates adipogenesis. Our findings showed that NAT10 enhances the stability of KLF9 mRNA and further activates the CEBPA/B-PPARG pathway. Furthermore, a dual-luciferase reporter assay demonstrated that NAT10 can bind to three motifs of mouse KLF9 and one motif of human KLF9. In vivo studies revealed that adipose tissue-targeted mouse AAV-NAT10 (AAV-shRNA-mNAT10) inhibits adipose tissue expansion in mice. Additionally, Remodelin, a specific NAT10 inhibitor, significantly reduced body weight, adipocyte size, and adipose tissue expansion in high-fat diet-fed mice by inhibiting KLF9 mRNA ac4C modification. These findings provide novel insights and experimental evidence of the prevention and treatment of obesity, highlighting NAT10 and its downstream targets as potential therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
7
|
Han Y, Zhang X, Miao L, Lin H, Zhuo Z, He J, Fu W. Biological function and mechanism of NAT10 in cancer. CANCER INNOVATION 2025; 4:e154. [PMID: 39817252 PMCID: PMC11732740 DOI: 10.1002/cai2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 01/18/2025]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood. In this review, we first describe the cellular localization of NAT10 and then summarize its numerous biological functions. NAT10 is involved in various biological processes by mediating the acetylation of different proteins and RNAs. These biological functions are also associated with cancer progression and patient prognosis. We also review the mechanisms by which NAT10 plays roles in various cancer types. NAT10 can affect tumor cell proliferation, metastasis, and stress tolerance through its acetyltransferase properties. Further research into NAT10 functions and expression regulation in tumors will help explore its future potential in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yufeng Han
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Lei Miao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
- State Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen Fu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Wan K, Nie T, Ouyang W, Xiong Y, Bian J, Huang Y, Ling L, Huang Z, Zhu X. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Brief Funct Genomics 2025; 24:elae020. [PMID: 38841796 PMCID: PMC11735739 DOI: 10.1093/bfgp/elae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tiantian Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yunjing Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jing Bian
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ying Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Wan K, Nie T, Ouyang W, Xiong Y, Bian J, Huang Y, Ling L, Huang Z, Zhu X. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Brief Funct Genomics 2025; 24:elae020. [PMID: 38841796 DOI: 10.1093/bfgp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 10/30/2024] Open
Abstract
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tiantian Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yunjing Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jing Bian
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ying Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
10
|
Li Z, Meng K, Lan S, Ren Z, Lai Z, Ao X, Liu Z, Xu J, Mo X, Zhang Z. The Role of mRNA Modifications in Bone Diseases. Int J Biol Sci 2025; 21:1065-1080. [PMID: 39897026 PMCID: PMC11781163 DOI: 10.7150/ijbs.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
As a type of epigenetic modifications, mRNA modifications regulate the metabolism of mRNAs, thereby influencing gene expression. Previous studies have indicated that dysregulation of mRNA modifications is closely associated with the occurrence and progression of bone diseases (BDs). In this study, we first introduced the dynamic regulatory processes of five major mRNA modifications and their effects on the nucleus export, stability, and translation of mRNAs. We then summarized the mechanisms of mRNA modifications involved in the development of osteoporosis, osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, fractures, osteomyelitis, and osteosarcoma. Finally, we reviewed therapeutic strategies for BDs based on the above mechanisms, focusing on regulating osteoblast and osteoclast differentiation, inhibiting cellular senescence and injury, and alleviating inflammation. This review identified mRNA modifications as potential targets for treating BDs and proposes perspectives on the diversity, targetability, and safety of mRNA-modifying therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
11
|
Xiao B, Wu S, Tian Y, Huang W, Chen G, Luo D, Cai Y, Chen M, Zhang Y, Liu C, Zhao J, Li L. Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase. Cell Biol Toxicol 2024; 41:17. [PMID: 39725720 PMCID: PMC11671434 DOI: 10.1007/s10565-024-09962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation. NAT10 stands out as the sole identified modification enzyme responsible for RNA acetylation. There remains some ambiguity regarding the similarities and differences in NAT10's actions on protein and RNA substrates. While NAT10 involves acetylation modification in both cases, which is a crucial molecular mechanism in epigenetic regulation, there are significant disparities in the catalytic mechanisms, regulatory pathways, and biological processes involved. Therefore, this review aims to offer a comprehensive overview of NAT10 as a protein and RNA acetyltransferase, covering its basic catalytic features, biological functions, and roles in related diseases.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| | - Shunhong Wu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yan Tian
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weikai Huang
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Guangzhan Chen
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Dongxin Luo
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yishen Cai
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Chen
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yuqian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chuyan Liu
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Junxiu Zhao
- College of Public Health, Dali University, Dali, 671003, Yunnan, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
12
|
Wang L, Huang J, Song L, Ke B. N-acetyltransferase 10 regulates UNC-51-like kinase 1 to reduce tubular cell injury and kidney stone formation. Cytojournal 2024; 21:68. [PMID: 39917001 PMCID: PMC11801649 DOI: 10.25259/cytojournal_72_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/22/2024] [Indexed: 02/09/2025] Open
Abstract
Objective Among the most common chronic kidney diseases, kidney stones are second only to hypertension. Kidney stones pose a public health threat due to their increased incidence, high recurrence rate, and heavy economic burden. In this work, we investigated the potential mechanism of N-acetyltransferase 10 (NAT10) in oxidative stress and pyroptosis of renal tubular epithelial cells (RTECs). Material and Methods A kidney-stone cell model was simulated using calcium oxalate monohydrate (COM) in vitro. Western blot analysis of NAT10 expression and N4-acetylcytidine RNA immunoprecipitation verified the regulatory efficacy of NAT10 in Unc-51 like autophagy activating kinase 1 (ULK1) ac4C modification. The luciferase reporter gene assay further verified the interaction between NAT10 and ULK1. A kidney stone model was established using BALB/c mice injected with glyoxylic acid. Results COM can dose-dependently suppressed the cell viability and superoxide dismutase activity of HK-2 cells and promoted the release of lactate dehydrogenase and malondialdehyde levels (P < 0.05). COM also promoted apoptosis in HK-2 cells, upregulated the protein levels of caspase-1 and gasdermin D-N, and simultaneously enhanced the HK-2 cell secretion of interleukin-1b (IL-1b) and IL-18 (P < 0.05). The overexpression of NAT10 in HK-2 cells reversed the aforementioned effects, and that of NAT10 upregulated the messenger RNA (mRNA) levels of ULK1 and increased ac4C modification (P < 0.01). Furthermore, only the luciferase activity of the wild-type ULK1 containing NAT10 binding sites was enhanced with the upregulation of NAT10 (P < 0.001). Actinomycin D treatment showed that NAT10 overexpression extended the half-life of ULK1 mRNA (P < 0.01). Silencing of ULK1 neutralized the effects of NAT10 overexpression on COM-induced cell injury (P < 0.05). In addition, the increased expression of NAT10 inhibited crystal deposition, oxidative stress, and apoptosis in vivo (P < 0.05). Conclusion This study confirmed that NAT10 inhibits RTECs oxidative stress and cell pyrodeath through the enhanced ac4C modification of ULK1 and impedes kidney stone progression.
Collapse
Affiliation(s)
- Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinjing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Song
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Feng Y, Zhang T, Chang Y. Compression force promotes the osteogenic differentiation of periodontal ligament stem cells by regulating NAT10-mediated ac4C modification of BMP2. J Orthop Surg Res 2024; 19:861. [PMID: 39702283 DOI: 10.1186/s13018-024-05302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Orthodontic treatment applies specific corrective forces to teeth, transmitting stress to periodontal tissue, thereby regulating the growth and development of periodontal ligament stem cells (PDLSCs). Recently, N-acetyltransferase 10 (NAT10) mediated N4-acetylcytidine (ac4C) modification is demonstrated to play a key role in the osteogenic differentiation of stem cells. Therefore, this study aimed explore the effects of Orthodontic treatment on the NAT10 mediated ac4C modification and osteogenic differentiation of PDLSCs. METHODS Compressive force was used to treat PDLSCs to simulate orthodontic force treatment. The ALP and ARS staining was performed to analyze the osteogenic differentiation of PDLSCs. Besides, ac4C dot blot and ac4C-RIP assays were performed to detect the global ac4C levels and BMP2 ac4C levels. The relationship between NAT10 and BMP2 was confirmed by RIP assay and immunofluorescence staining. The mRNA and protein levels of RUNX2, Oxterix and BMP2 were detected by RT-qPCR and western blot assays. RESULTS Compressive force treatment promoted the osteogenic differentiation of PDLSCs, and enhanced the global ac4C levels and NAT10 levels in PDLSCs. NAT10 overexpression further promoted the osteogenic differentiation of compressive force treated PDLSCs. Besides, NAT10 overexpression increased ac4C levels of BMP2 and enhanced the mRNA stability of BMP2. Remodelin treatment significantly decreased the ac4C and mRNA levels of BMP2. Furthermore, BMP2 silencing reversed the role of NAT10 in the compressive force treated PDLSCs. CONCLUSION This study demonstrated that compressive force promotes cell viability and osteogenic differentiation of PDLSCs by regulating BMP2 levels mediated by NAT10. NAT10 mediated ac4C levels of BMP2 is the key signaling axis of orthodontic stress in promoting cell growth and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Feng
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China.
| | - Ting Zhang
- Department of Oral Orthodontics, Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou City, 221000, Jiangsu, China
| | - Yue Chang
- Department of Oral Orthodontics, The First Affiliated Hospital, Zhengzhou University, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
14
|
Zhang S, Huang F, Wang Y, Long Y, Li Y, Kang Y, Gao W, Zhang X, Wen Y, Wang Y, Pan L, Xia Y, Yang Z, Yang Y, Mo H, Li B, Hu J, Song Y, Zhang S, Dong S, Du X, Li Y, Liu Y, Liao W, Gao Y, Zhang Y, Chen H, Liang Y, Chen J, Weng H, Huang H. NAT10-mediated mRNA N 4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia. Nat Cell Biol 2024; 26:2168-2182. [PMID: 39506072 PMCID: PMC11628400 DOI: 10.1038/s41556-024-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
RNA modification has emerged as an important epigenetic mechanism that controls abnormal metabolism and growth in acute myeloid leukaemia (AML). However, the roles of RNA N4-acetylcytidine (ac4C) modification in AML remain elusive. Here, we report that ac4C and its catalytic enzyme NAT10 drive leukaemogenesis and sustain self-renewal of leukaemic stem cells/leukaemia-initiating cells through reprogramming serine metabolism. Mechanistically, NAT10 facilitates exogenous serine uptake and de novo biosynthesis through ac4C-mediated translation enhancement of the serine transporter SLC1A4 and the transcription regulators HOXA9 and MENIN that activate transcription of serine synthesis pathway genes. We further characterize fludarabine as an inhibitor of NAT10 and demonstrate that pharmacological inhibition of NAT10 targets serine metabolic vulnerability, triggering substantial anti-leukaemia effects both in vitro and in vivo. Collectively, our study demonstrates the functional importance of ac4C and NAT10 in metabolism control and leukaemogenesis, providing insights into the potential of targeting NAT10 for AML therapy.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Mice
- Serine/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- N-Terminal Acetyltransferases/metabolism
- N-Terminal Acetyltransferases/genetics
- Cell Line, Tumor
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Mice, Inbred NOD
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
Collapse
Affiliation(s)
- Subo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Huang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yushuai Wang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yueting Wen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Youmei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhoutian Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Baiqing Li
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yunda Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shilin Zhang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shenghua Dong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingmin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yadi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongming Chen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology & Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Hengyou Weng
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
15
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024; 140:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
16
|
He W, Han Y, Zuo Y, Bai Y, Guo F. NBCR-ac4C: A Deep Learning Framework Based on Multivariate BERT for Human mRNA N4-Acetylcytidine Sites Prediction. J Chem Inf Model 2024; 64:8074-8081. [PMID: 39367830 DOI: 10.1021/acs.jcim.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
N4-acetylcytidine (ac4C) plays a crucial role in regulating cellular biological processes, particularly in gene expression regulation and disease development. However, experiments to identify ac4C in a wet lab are time-consuming and costly, and the learning-based methods struggle to capture the underlying semantic knowledge and relations within sequences. To address this, we propose a deep learning approach called NBCR-ac4C based on pretrained models. Specifically, we employ Nucleotide Transformer and DNABERT2 to construct contextual embedding of nucleotide sequences, which effectively mine and express context relations between different features in the sequence. Convolutional neural network (CNN) and ResNet18 are then applied to further extract shallow and deep knowledge from context embedding. Depending on extensive experiments for the prediction of ac4C sites in nucleotide sequences, we observe that NBCR-ac4C outperforms general learning-based models. It achieves the highest accuracy (ACC) of 83.51% and an Area Under the Receiver Operating Characteristic Curve (AUROC) of 89.58% on an independent test set. Moreover, the proposed model, compared to the current state-of-the-art (SOTA) model LSA-ac4C, demonstrates higher ACC and AUROC by 0.81-3.7% and 0.05-1.58%, respectively. The data set and code are available on https://github.com/2103374200/NBCR to facilitate further discussion on NBCR-ac4C.
Collapse
Affiliation(s)
- Wenying He
- School of Artificial Intelligence, Hebei University of Technology, Tianjin 300400, China
| | - Yu Han
- School of Artificial Intelligence, Hebei University of Technology, Tianjin 300400, China
| | - Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China
| | - Yude Bai
- School of Software, Tiangong University, Tianjin 300387, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Xue Z, Xie H, Shan Y, Zhang L, Cheng L, Chen W, Zhu R, Zhang K, Ni H, Zhang Z, You Y, You B. NAT10 inhibition promotes ac4C-dependent ferroptosis to counteract sorafenib resistance in nasopharyngeal carcinoma. Cancer Sci 2024; 115:3256-3272. [PMID: 39038928 PMCID: PMC11447888 DOI: 10.1111/cas.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 07/24/2024] Open
Abstract
Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.
Collapse
Affiliation(s)
- Ziyi Xue
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Haijing Xie
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Ying Shan
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Lin Zhang
- Haimen People's HospitalNantongJiangsu ProvinceChina
| | - Lin Cheng
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenyue Chen
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Rui Zhu
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Kaiwen Zhang
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Haosheng Ni
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Zhenxin Zhang
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bo You
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
18
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Liu H, Xu L, Yue S, Su H, Chen X, Liu Q, Li H, Liang H, Chen X, He J, Ding Z, Zhang B. Targeting N4-acetylcytidine suppresses hepatocellular carcinoma progression by repressing eEF2-mediated HMGB2 mRNA translation. Cancer Commun (Lond) 2024; 44:1018-1041. [PMID: 39030964 PMCID: PMC11492314 DOI: 10.1002/cac2.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND N4-acetylcytidine (ac4C) represents a novel messenger RNA (mRNA) modification, and its associated acetyltransferase N-acetyltransferase 10 (NAT10) plays a crucial role in the initiation and progression of tumors by regulating mRNA functionality. However, its role in hepatocellular carcinoma (HCC) development and prognosis is largely unknown. This study aimed to elucidate the role of NAT10-mediated ac4C in HCC progression and provide a promising therapeutic approach. METHODS The ac4C levels were evaluated by dot blot and ultra-performance liquid chromatography-tandem mass spectrometry with harvested HCC tissues. The expression of NAT10 was investigated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemical staining across 91 cohorts of HCC patients. To explore the underlying mechanisms of NAT10-ac4C in HCC, we employed a comprehensive approach integrating acetylated RNA immunoprecipitation and sequencing, RNA sequencing and ribosome profiling analyses, along with RNA immunoprecipitation, RNA pull-down, mass spectrometry, and site-specific mutation analyses. The drug affinity responsive targets stability, cellular thermal shift assay, and surface plasmon resonance assays were performed to assess the specific binding of NAT10 and Panobinostat. Furthermore, the efficacy of targeting NAT10-ac4C for HCC treatment was elucidated through in vitro experiments using HCC cells and in vivo HCC mouse models. RESULTS Our investigation revealed a significant increase in both the ac4C RNA level and NAT10 expression in HCC. Notably, elevated NAT10 expression was associated with poor outcomes in HCC patients. Functionally, silencing NAT10 suppressed HCC proliferation and metastasis in vitro and in vivo. Mechanistically, NAT10 stimulates the ac4C modification within the coding sequence (CDS) of high mobility group protein B2 (HMGB2), which subsequently enhances HMGB2 translation by facilitating eukaryotic elongation factor 2 (eEF2) binding to the ac4C sites on HMGB2 mRNA's CDS. Additionally, high-throughput compound library screening revealed Panobinostat as a potent inhibitor of NAT10-mediated ac4C modification. This inhibition significantly attenuated HCC growth and metastasis in both in vitro experiments using HCC cells and in vivo HCC mouse models. CONCLUSIONS Our study identified a novel oncogenic epi-transcriptome axis involving NAT10-ac4C/eEF2-HMGB2, which plays a pivotal role in regulating HCC growth and metastasis. The drug Panobinostat validates the therapeutic potential of targeting this axis for HCC treatment.
Collapse
Affiliation(s)
- Hailing Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Lei Xu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Shiwei Yue
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Hongfei Su
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xing Chen
- Department of Hepatopancreatobiliary SurgeryZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiangP. R. China
| | - Qiumeng Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor CenterChongqing University Cancer HospitalSchool of MedicineChongqing UniversityChongqingP. R. China
| | - Huifang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiP. R. China
| | - Jiefeng He
- Department of Hepatobiliary SurgeryKey Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory)Shanxi Bethune HospitalShanxi Academy of Medical SciencesShanxi Medical UniversityTaiyuanShanxiP. R. China
| | - Zeyang Ding
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiP. R. China
| |
Collapse
|
20
|
Liu D, Kuang Y, Chen S, Li R, Su F, Zhang S, Qiu Q, Lin S, Shen C, Liu Y, Liang L, Wang J, Xu H, Xiao Y. NAT10 promotes synovial aggression by increasing the stability and translation of N4-acetylated PTX3 mRNA in rheumatoid arthritis. Ann Rheum Dis 2024; 83:1118-1131. [PMID: 38724075 DOI: 10.1136/ard-2023-225343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Simin Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuoyang Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuyu Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingli Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Xiao D, Huang S, Tang Z, Liu M, Di D, Ma Y, Li Y, Duan JA, Lu C, Zhao M. Mijiao formula regulates NAT10-mediated Runx2 mRNA ac4C modification to promote bone marrow mesenchymal stem cell osteogenic differentiation and improve osteoporosis in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118191. [PMID: 38621468 DOI: 10.1016/j.jep.2024.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dong Xiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Zhuqian Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Mengqiu Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Di Di
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yingrun Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Yunjuan Li
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Cai Lu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Ming Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
22
|
Li K, Hong Y, Yu Y, Xie Z, Lv D, Wang C, Xie T, Chen H, Chen Z, Zeng J, Zhao S. NAT10 Promotes Prostate Cancer Growth and Metastasis by Acetylating mRNAs of HMGA1 and KRT8. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310131. [PMID: 38922788 PMCID: PMC11348116 DOI: 10.1002/advs.202310131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.
Collapse
Affiliation(s)
- Kang‐Jing Li
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Yaying Hong
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yu‐Zhong Yu
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyue Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dao‐Jun Lv
- Department of UrologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Chong Wang
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Tao Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenan471934P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Jianwen Zeng
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Shan‐Chao Zhao
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhou510900China
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510500China
| |
Collapse
|
23
|
Yi Q, Sun M, Jiang G, Liang P, Chang Q, Yang R. Echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. Eur J Clin Invest 2024; 54:e14198. [PMID: 38501711 DOI: 10.1111/eci.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE The purpose of this research is to demonstrate echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. METHODS We conducted a cell experiment in vitro to study how echinacoside affects angiogenesis, osteogenesis and osteoclast formation. We used polymerase chain reaction and Western blotting to detect the expression levels of proteins and genes related to angiogenesis, osteogenesis and osteoclast formation. We established a bone fracture model with rats to test angiogenesis, osteogenesis and osteoclast formation of echinacoside. We labelled osteogenic markers, blood vessels and osteoclastic markers in fracture sections of rats. RESULTS The in vitro cell experiments showed echinacoside improved the osteogenic activity of mouse embryo osteoblast precursor cells and promoted the migration and tube formation of human umbilical vein endothelial cells. In addition, it inhibited differentiation of mouse leukaemia cells of monocyte macrophage. Echinacoside increased the expression of related proteins and genes and improved angiogenesis and osteogenesis while inhibiting osteoclast formation by repressing the expression of related proteins and genes. From in vivo experiments, the results of IHC and HE experiments demonstrated echinacoside significantly decreased the content of MMP-9 and improved the content of VEGF and OCN. The fluorescence immunoassay showed echinacoside promoted the activities of RUNX2 and VEGF and inhibited CTSK. Echinacoside reduced the content of TNF-α, IL-1β and IL-6, thus demonstrating its anti-inflammatory activity. CONCLUSION Echinacoside improved angiogenesis and osteogenesis and inhibited osteoclast formation to promote fracture healing.
Collapse
Affiliation(s)
- Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Miaomiao Sun
- Luoxi (Shanghai) Medical Technology Co LTD, Shanghai, China
| | - Guowei Jiang
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, China
| | - Qing Chang
- Institute of Digestive Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Yang
- Pathology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
24
|
Yang R, Yu W, Lin L, Cui Z, Tang J, Li G, Jin M, Gu Y, Lu E. NAT10 promotes osteoclastogenesis in inflammatory bone loss by catalyzing Fos mRNA ac4C modification and upregulating MAPK signaling pathway. J Adv Res 2024:S2090-1232(24)00318-7. [PMID: 39089619 DOI: 10.1016/j.jare.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.
Collapse
Affiliation(s)
- Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhurong Cui
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
25
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
26
|
Wang XX, Zhao YM, Zhang QY, Zhao JX, Yin DH, Zhang ZZ, Jin XY, Li SN, Ji HY, Chen HY, Guo XF, Yu Y, Ma WY, Yan H, Li H, Ou-Yang QM, Pan ZW, Liang HH, Wang N, Chen W, Cai BZ, Liu Y. Acetylcytidine modification of Amotl1 by N-acetyltransferase 10 contributes to cardiac fibrotic expansion in mice after myocardial infarction. Acta Pharmacol Sin 2024; 45:1425-1437. [PMID: 38839936 PMCID: PMC11192918 DOI: 10.1038/s41401-024-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Yi-Ming Zhao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Qian-Yun Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Jing-Xuan Zhao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Dao-Hong Yin
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Zi-Zhen Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Xiao-Yan Jin
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Shuai-Nan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Hao-Yu Ji
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Hong-Yang Chen
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Xiao-Fei Guo
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Yang Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Wen-Ya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Hong Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Han Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Qi-Meng Ou-Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China
| | - Zhen-Wei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Hai-Hai Liang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ning Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China.
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Ben-Zhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China.
- Institute of Clinical Pharmacology (The Heilongjiang Key Laboratory of Drug Research), Harbin Medical University, Harbin, 150086, China.
- NHC Key Laboratory of Cell Transplantation, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150001, China.
| | - Yu Liu
- Department of Clinical Laboratory at the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
27
|
Ding M, Yu Z, Lu T, Hu S, Zhou X, Wang X. N-acetyltransferase 10 facilitates tumorigenesis of diffuse large B-cell lymphoma by regulating AMPK/mTOR signalling through N4-acetylcytidine modification of SLC30A9. Clin Transl Med 2024; 14:e1747. [PMID: 38961519 PMCID: PMC11222071 DOI: 10.1002/ctm2.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.
Collapse
Affiliation(s)
- Mengfei Ding
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Tiange Lu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Wang
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Taishan Scholars Program of Shandong ProvinceJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
| |
Collapse
|
28
|
Zhang J, Cao J, Liu Y, Zhao H. Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head. Biomolecules 2024; 14:667. [PMID: 38927070 PMCID: PMC11202272 DOI: 10.3390/biom14060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is very high, which imposes a significant economic burden on both families and society. Steroid-associated osteonecrosis of the femoral head (SANFH) is the most common type of ONFH. However, the pathogenesis of SANFH remains unclear, and it is an urgent challenge for orthopedic surgeons to explore it. In this paper, the pathogenesis of SANFH and its related signaling pathways were briefly reviewed to enhance comprehension of the pathogenesis and prevention of SANFH.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Jianze Cao
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Yongfei Liu
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Li F, Zhang J, Li K, Peng Y, Zhang H, Xu Y, Yu Y, Zhang Y, Liu Z, Wang Y, Huang L, Zhou F. GANSamples-ac4C: Enhancing ac4C site prediction via generative adversarial networks and transfer learning. Anal Biochem 2024; 689:115495. [PMID: 38431142 DOI: 10.1016/j.ab.2024.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
RNA modification, N4-acetylcytidine (ac4C), is enzymatically catalyzed by N-acetyltransferase 10 (NAT10) and plays an essential role across tRNA, rRNA, and mRNA. It influences various cellular functions, including mRNA stability and rRNA biosynthesis. Wet-lab detection of ac4C modification sites is highly resource-intensive and costly. Therefore, various machine learning and deep learning techniques have been employed for computational detection of ac4C modification sites. The known ac4C modification sites are limited for training an accurate and stable prediction model. This study introduces GANSamples-ac4C, a novel framework that synergizes transfer learning and generative adversarial network (GAN) to generate synthetic RNA sequences to train a better ac4C modification site prediction model. Comparative analysis reveals that GANSamples-ac4C outperforms existing state-of-the-art methods in identifying ac4C sites. Moreover, our result underscores the potential of synthetic data in mitigating the issue of data scarcity for biological sequence prediction tasks. Another major advantage of GANSamples-ac4C is its interpretable decision logic. Multi-faceted interpretability analyses detect key regions in the ac4C sequences influencing the discriminating decision between positive and negative samples, a pronounced enrichment of G in this region, and ac4C-associated motifs. These findings may offer novel insights for ac4C research. The GANSamples-ac4C framework and its source code are publicly accessible at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Jiale Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Yu Peng
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Haotian Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Yiping Xu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yue Yu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Yuteng Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Zewen Liu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
30
|
Xin J, Wang Z, Shen Y, Bai J, Shen Y. S100 calcium‑binding protein A16 suppresses the osteogenic differentiation of rat bone marrow mesenchymal stem cells by inhibiting SMAD family member 4 signaling. Exp Ther Med 2024; 27:250. [PMID: 38682113 PMCID: PMC11046178 DOI: 10.3892/etm.2024.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
Osteogenesis is a complex process of bone formation regulated by various factors, yet its underlying molecular mechanisms remain incompletely understood. The present study aimed to investigate the role of S100A16, a novel member of the S100 protein family, in the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and uncover a novel Smad4-mitogen-activated protein kinase (MAPK)/Jun N-terminal kinase (JNK) signaling axis. In the present study, the expression level of S100A16 in bone tissues and BMSCs from ovariectomized rats was evaluated and then the impact of S100A16 silencing on osteogenic differentiation was examined. Increased S100A16 expression was observed in bone tissues and BMSCs from ovariectomized rats, and S100A16 silencing promoted osteogenic differentiation. Further transcriptomic sequencing revealed that the Smad4 pathway was involved in S100A16 silencing-induced osteogenesis. The results of western blot analysis revealed that S100A16 overexpression not only downregulated Smad4 but also activated MAPK/JNK signaling, which was validated by treatment with MAPK and JNK inhibitors U0126 and SP600125. Overall, in the present study, the novel regulatory factors influencing osteogenic differentiation were elucidated and mechanistic insights that could aid in the development of targeted therapeutic strategies for patients with osteoporosis were provided.
Collapse
Affiliation(s)
- Jing Xin
- Department of Endocrinology and Diabetes, Luohe Central Hospital, Luohe First People's Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, P.R. China
| | - Zhaoxu Wang
- Department of Endocrinology and Diabetes, Luohe Central Hospital, Luohe First People's Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, P.R. China
| | - Yanju Shen
- Department of Endocrinology and Diabetes, Luohe Central Hospital, Luohe First People's Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, P.R. China
| | - Jing Bai
- Department of Endocrinology and Diabetes, Luohe Central Hospital, Luohe First People's Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, P.R. China
| | - Yafei Shen
- Department of Endocrinology and Diabetes, Luohe Central Hospital, Luohe First People's Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, Henan 462000, P.R. China
| |
Collapse
|
31
|
Qu Z, Pang X, Mei Z, Li Y, Zhang Y, Huang C, Liu K, Yu S, Wang C, Sun Z, Liu Y, Li X, Jia Y, Dong Y, Lu M, Ju T, Wu F, Huang M, Li N, Dou S, Jiang J, Dong X, Zhang Y, Li W, Yang B, Du W. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol 2024; 72:103145. [PMID: 38583415 PMCID: PMC11002668 DOI: 10.1016/j.redox.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.
Collapse
Affiliation(s)
- Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaochen Pang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiyong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqi Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuechao Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixi Lu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Ju
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianhui Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wanhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China; Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
32
|
Bai Y, Zhang W, Hao L, Zhao Y, Tsai IC, Qi Y, Xu Q. Acetyl-CoA-dependent ac 4C acetylation promotes the osteogenic differentiation of LPS-stimulated BMSCs. Int Immunopharmacol 2024; 133:112124. [PMID: 38663312 DOI: 10.1016/j.intimp.2024.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - I-Chen Tsai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
33
|
Wang Z, Luo J, Huang H, Wang L, Lv T, Wang Z, Li C, Wang Y, Liu J, Cheng Q, Zuo X, Hu L, Ye M, Liu H, Song Y. NAT10-mediated upregulation of GAS5 facilitates immune cell infiltration in non-small cell lung cancer via the MYBBP1A-p53/IRF1/type I interferon signaling axis. Cell Death Discov 2024; 10:240. [PMID: 38762546 PMCID: PMC11102450 DOI: 10.1038/s41420-024-01997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024] Open
Abstract
Interactions of tumor cells with immune cells in the tumor microenvironment play an important role during malignancy progression. We previously identified that GAS5 inhibited tumor development by suppressing proliferation of tumor cells in non-small cell lung cancer (NSCLC). Herein, we discovered a tumor-suppressing role for tumor cell-derived GAS5 in regulating tumor microenvironment. GAS5 positively coordinated with the infiltration of macrophages and T cells in NSCLC clinically, and overexpression of GAS5 promoted macrophages and T cells recruitment both in vitro and in vivo. Mechanistically, GAS5 stabilized p53 by directly binding to MYBBP1A and facilitating MYBBP1A-p53 interaction, and enhanced p53-mediated transcription of IRF1, which activated type I interferon signaling and increased the production of downstream CXCL10 and CCL5. We also found that activation of type I interferon signaling was associated with better immunotherapy efficacy in NSCLC. Furthermore, the stability of GAS5 was regulated by NAT10, the key enzyme responsible for N4-acetylcytidine (ac4C) modification, which bound to GAS5 and mediated its ac4C modification. Collectively, tumor cell-derived GAS5 could activate type I interferon signaling via the MYBBP1A-p53/IRF1 axis, promoting immune cell infiltration and potentially correlating with immunotherapy efficacy, which suppressed NSCLC progression. Our results suggested GAS5 as a promising predictive marker and potential therapeutic target for combination therapy in NSCLC. A schematic diagram demonstrating the regulatory effect of GAS5 on immune cell infiltration by activating type I interferon signaling via MYBBP1A-p53/IRF1 axis in non-small cell lung cancer. IFN, interferon.
Collapse
Affiliation(s)
- Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210008, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Li Wang
- Nanjing Medical University, Nanjing, 211166, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Zhaofeng Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Chuling Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Yimin Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Liwen Hu
- Department of Cardiothoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
34
|
Xia B, Dai X, Shi H, Yin J, Xu T, Liu T, Yue G, Guo H, Liang R, Liu Y, Gao J, Wang X, Chen X, Tang J, Wang L, Zhu R, Zhang D. Lycopene Promotes Osteogenesis and Reduces Adipogenesis through Regulating FoxO1/PPARγ Signaling in Ovariectomized Rats and Bone Marrow Mesenchymal Stem Cells. Nutrients 2024; 16:1443. [PMID: 38794681 PMCID: PMC11123960 DOI: 10.3390/nu16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.
Collapse
Affiliation(s)
- Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Gaiyue Yue
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Haochen Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Ruiqiong Liang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
- Food and Pharmacy College, Xuchang University, 88 Bayi Road, Xuchang 461000, China
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xiaofei Chen
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Jinfa Tang
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| |
Collapse
|
35
|
Ge J, Wang Z, Wu J. NAT10-mediated ac 4C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif 2024; 57:e13577. [PMID: 38041497 PMCID: PMC10984107 DOI: 10.1111/cpr.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
Cell fate determination in mammalian development is complex and precisely controlled and accumulating evidence indicates that epigenetic mechanisms are crucially involved. N4-acetylcytidine (ac4C) is a recently identified modification of messenger RNA (mRNA); however, its functions are still elusive in mammalian. Here, we show that N-acetyltransferase 10 (NAT10)-mediated ac4C modification promotes ectoderm differentiation of human embryonic stem cells (hESCs) by acetylating nuclear receptor subfamily 2 group F member 1 (NR2F1) mRNA to enhance translation efficiency (TE). Acetylated RNA immunoprecipitation sequencing (acRIP-seq) revealed that levels of ac4C modification were higher in ectodermal neuroepithelial progenitor (NEP) cells than in hESCs or mesoendoderm cells. In addition, integrated analysis of acRIP-seq and ribosome profiling sequencing revealed that NAT10 catalysed ac4C modification to improve TE in NEP cells. RIP-qRT-PCR analysis identified an interaction between NAT10 and NR2F1 mRNA in NEP cells and NR2F1 accelerated the nucleus-to-cytoplasm translocation of yes-associated protein 1, which contributed to ectodermal differentiation of hESCs. Collectively, these findings point out the novel regulatory role of ac4C modification in the early ectodermal differentiation of hESCs and will provide a new strategy for the treatment of neuroectodermal defects diseases.
Collapse
Affiliation(s)
- Junbang Ge
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Wang
- Laboratory Animal Center of Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Ji Wu
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Shanghai Key Laboratory of Reproductive MedicineShanghaiChina
| |
Collapse
|
36
|
Ma W, Tian Y, Shi L, Liang J, Ouyang Q, Li J, Chen H, Sun H, Ji H, Liu X, Huang W, Gao X, Jin X, Wang X, Liu Y, Yu Y, Guo X, Tian Y, Yang F, Li F, Wang N, Cai B. N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration. Nat Commun 2024; 15:2137. [PMID: 38459019 PMCID: PMC10923914 DOI: 10.1038/s41467-024-46458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin-a Nat10 pharmacological inhibitor-or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.
Collapse
Affiliation(s)
- Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China
| | - Yanan Tian
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Leping Shi
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jing Liang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimeng Ouyang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jianglong Li
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyang Chen
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyue Sun
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Haoyu Ji
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Laboratory Medicine at The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Huang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xinlu Gao
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoyan Jin
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yining Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ye Tian
- Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ning Wang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Gao J, Xu P, Wang F, Zhang W, Min M, Urba R, Fan L. Revealing the pharmacological effects of Remodelin against osteosarcoma based on network pharmacology, acRIP-seq and experimental validation. Sci Rep 2024; 14:3577. [PMID: 38347067 PMCID: PMC10861577 DOI: 10.1038/s41598-024-54197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. Remodelin, an inhibitor of the N (4)-Acetylcytidine (ac4C) acetylation modifying enzyme N-acetyltransferase 10 (NAT10), has been shown to have therapeutic effects on cancer in several studies, and our previous studies have confirmed the inhibitory effect of Remodelin on OS cells, however, the mechanism of action has not yet been elucidated. We used network pharmacological analysis to quantify the therapeutic targets of Remodelin against OS. acRIP-seq and RNA-seq were performed to investigate the inhibitory activity of Remodelin on acetylation and its effect on the transcriptome after intervening in OS cells U2OS with Remodelin in vitro. Key target genes were deduced based on their pharmacological properties, combined with network pharmacology results and sequencing results. Finally, the deduced target genes were validated with vitro experiments. Network pharmacological analysis showed that 2291 OS-related target genes and 369 Remodelin-related target genes were obtained, and 116 overlapping genes were identified as Remodelin targets for OS treatment. Sequencing results showed that a total of 13,736 statistically significant ac4C modification peaks were detected by acRIP-seq, including 6938 hypoacetylation modifications and 6798 hyperacetylation modifications. A total of 2350 statistically significant mRNAs were detected by RNA-seq, of which 830 were up-regulated and 1520 were down-regulated. Association analyses identified a total of 382 genes that were Hypoacetylated-down, consistent with inhibition of mRNA acetylation and expression by Remodelin. Five genes, CASP3, ESR2, FGFR2, IGF1 and MAPK1, were identified as key therapeutic targets of Remodelin against OS. Finally, in vitro experiments, CCK-8 and qRT-PCR demonstrated that Remodelin indeed inhibited the proliferation of OS cells and reduced the expression of three genes: ESR2, IGF1, and MAPK1. In conclusion, ESR2, IGF1 and MAPK1 were identified as key therapeutic targets of Remodelin against OS. This reveals the target of Remodelin's pharmacological action on OS and provides new ideas for the treatment of OS.
Collapse
Affiliation(s)
- Jia Gao
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Peili Xu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Feng Wang
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Wenjie Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Meipeng Min
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Rafi Urba
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Lei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Luo B, Jiang Q. Effect of RNA-binding proteins on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Cell Biochem 2024; 479:383-392. [PMID: 37072640 DOI: 10.1007/s11010-023-04742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Tissue regeneration mediated by mesenchymal stem cells (MSCs) is an ideal way to repair bone defects. RNA-binding proteins (RBPs) can affect cell function through post-transcriptional regulation. Exploring the role of RBPs in the process of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is helpful to find a key method to promote the osteogenic efficiency of BMSCs. By reviewing the literature, we obtained a differentially expressed mRNA dataset during the osteogenic differentiation of BMSCs and a human RBP dataset. A total of 82 differentially expressed RBPs in the osteogenic differentiation of BMSCs were screened by intersection of the two datasets. Functional analysis showed that the differentially expressed RBPs were mainly involved in RNA transcription, translation and degradation through the formation of spliceosomes and ribonucleoprotein complexes. The top 15 RBPs determined by degree score were FBL, NOP58, DDX10, RPL9, SNRPD3, NCL, IFIH1, RPL18A, NAT10, EXOSC5, ALYREF, PA2G4, EIF5B, SNRPD1 and EIF6. The results of this study demonstrate that the expression of many RBPs changed during osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bin Luo
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
39
|
Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X, Wang Y, Yue J, Ge S, Li T, Yuan Y, Yang L. NAT10 mediated ac4C acetylation driven m 6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal 2024; 22:51. [PMID: 38233839 PMCID: PMC10795323 DOI: 10.1186/s12964-023-01321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 01/19/2024] Open
Abstract
The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.
Collapse
Affiliation(s)
- Zhongting Mei
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhihua Shen
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaying Pu
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Liu
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guoxin Liu
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xuting He
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Wang
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinrui Yue
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiyu Ge
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Li
- Department of Pharmacology, (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
- National Key Laboratory of Frigid Cardiovascular Disease, Harbin, China.
- Department of Pharmacy, (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
40
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
41
|
Wang L, Tao Y, Zhai J, Xue M, Zheng C, Hu H. The emerging roles of ac4C acetylation "writer" NAT10 in tumorigenesis: A comprehensive review. Int J Biol Macromol 2024; 254:127789. [PMID: 37926318 DOI: 10.1016/j.ijbiomac.2023.127789] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The quick progress of epigenetic study has kindled new hope for treating many cancers. When it comes to RNA epigenetics, the ac4C acetylation modification is showing promise, whereas N-acetyltransferase 10 plays a wide range of biological functions, has a significant impact on cellular life events, and is frequently highly expressed in many malignant tumors. N-acetyltransferase 10 is an acetyltransferase with important biological involvement in cellular processes and lifespan. Because it is highly expressed in many malignant tumors, it is considered a pro-carcinogenic gene. The review aims to introduce NAT10, summarize the effects of ac4C acetylation on tumor growth from multiple angles, and discuss the possible therapeutic targeting of NAT10 and the future directions of ac4C acetylation investigations.
Collapse
Affiliation(s)
- Leisheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Yue Tao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China, 450001
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China; Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China; Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, China; Medical School, Nantong University, Nantong, 226001, China; Wuxi Institute of Hepatobiliary Surgery, Wuxi, 214122, China
| |
Collapse
|
42
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
43
|
Xu T, Wang J, Wu Y, Wu J, Lu W, Liu M, Zhang S, Xie D, Xin W, Xie J. Ac4C Enhances the Translation Efficiency of Vegfa mRNA and Mediates Central Sensitization in Spinal Dorsal Horn in Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303113. [PMID: 37877615 PMCID: PMC10724395 DOI: 10.1002/advs.202303113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Indexed: 10/26/2023]
Abstract
N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.
Collapse
Affiliation(s)
- Ting Xu
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Wang
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
- Department of Pain ManagementHenan Provincial People's HospitalZhengzhou UniversityZhengzhou450000China
| | - Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong510062China
| | - Jia‐Yan Wu
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Wei‐Cheng Lu
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Meng Liu
- Department of Anesthesia and Pain MedicineGuangzhou First People's HospitalGuangzhou510180China
| | - Su‐Bo Zhang
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wen‐Jun Xin
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing‐Dun Xie
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
44
|
Jia J, Cao X, Wei Z. DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods. Curr Genomics 2023; 24:171-186. [PMID: 38178985 PMCID: PMC10761336 DOI: 10.2174/0113892029270191231013111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction N4 acetylcytidine (ac4C) is a highly conserved nucleoside modification that is essential for the regulation of immune functions in organisms. Currently, the identification of ac4C is primarily achieved using biological methods, which can be time-consuming and labor-intensive. In contrast, accurate identification of ac4C by computational methods has become a more effective method for classification and prediction. Aim To the best of our knowledge, although there are several computational methods for ac4C locus prediction, the performance of the models they constructed is poor, and the network structure they used is relatively simple and suffers from the disadvantage of network degradation. This study aims to improve these limitations by proposing a predictive model based on integrated deep learning to better help identify ac4C sites. Methods In this study, we propose a new integrated deep learning prediction framework, DLC-ac4C. First, we encode RNA sequences based on three feature encoding schemes, namely C2 encoding, nucleotide chemical property (NCP) encoding, and nucleotide density (ND) encoding. Second, one-dimensional convolutional layers and densely connected convolutional networks (DenseNet) are used to learn local features, and bi-directional long short-term memory networks (Bi-LSTM) are used to learn global features. Third, a channel attention mechanism is introduced to determine the importance of sequence characteristics. Finally, a homomorphic integration strategy is used to limit the generalization error of the model, which further improves the performance of the model. Results The DLC-ac4C model performed well in terms of sensitivity (Sn), specificity (Sp), accuracy (Acc), Mathews correlation coefficient (MCC), and area under the curve (AUC) for the independent test data with 86.23%, 79.71%, 82.97%, 66.08%, and 90.42%, respectively, which was significantly better than the prediction accuracy of the existing methods. Conclusion Our model not only combines DenseNet and Bi-LSTM, but also uses the channel attention mechanism to better capture hidden information features from a sequence perspective, and can identify ac4C sites more effectively.
Collapse
Affiliation(s)
- Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xiaojing Cao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhangying Wei
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| |
Collapse
|
45
|
Liu Y, Huang H, Zhang C, Fan H. N-acetyltransferase 10 promotes the progression of oral squamous cell carcinoma through N4-acetylcytidine RNA acetylation of MMP1 mRNA. Cancer Sci 2023; 114:4202-4215. [PMID: 37705232 PMCID: PMC10637085 DOI: 10.1111/cas.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
The pathogenesis of oral squamous cell carcinoma (OSCC) remains unclear. Therefore, clarifying its pathogenesis and molecular-level development mechanism has become the focus of OSCC research. N-acetyltransferase 10 (NAT10) is a crucial enzyme involved in mRNA acetylation, regulating target gene expression and biological functions of various diseases through mediating N4-acetylcytidine (ac4C) acetylation. However, its role in OSCC progression is not well understood. In this study, we showed that NAT10 was significantly upregulated in OSCC tissues compared to normal oral tissues. Moreover, lentivirus-mediated NAT10 knockdown markedly suppressed cell proliferation, migration, and invasion in two OSCC cell lines (SCC-9 and SCC-15). Interestingly, MMP1 was found to be significantly upregulated in OSCC tissues and was a potential target of NAT10. N-acetyltransferase 10 knockdown significantly reduced both the total and ac4C acetylated levels of MMP1 mRNA and decreased its mRNA stability. Xenograft experiments further confirmed the inhibitory effect of NAT10 knockdown on the tumorigenesis and metastasis ability of OSCC cells and decreased MMP1 expression in vivo. Additionally, NAT10 knockdown impaired the proliferation, migration, and invasion abilities in OSCC cell lines in an MMP1-dependent manner. Our results suggest that NAT10 acts as an oncogene in OSCC, and targeting ac4C acetylation could be a promising therapeutic strategy for OSCC treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hui Huang
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Cun‐bao Zhang
- Department of Stomatology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineZhejiangChina
| | - Hua‐nan Fan
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
46
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
47
|
Zhang Z, Zhang Y, Cai Y, Li D, He J, Feng Z, Xu Q. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119521. [PMID: 37307924 DOI: 10.1016/j.bbamcr.2023.119521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic osteolytic inflammatory disease resulting from complex dynamic interactions among bacterial pathogens and the host immune response. Macrophages play a vital role in the pathogenesis of periodontitis by triggering periodontal inflammation and inducing periodontium destruction. N-Acetyltransferase 10 (NAT10) is an acetyltransferase that has been shown to catalyse N4-acetylcytidine (ac4C) mRNA modification and is related to cellular pathophysiological processes, including the inflammatory immune response. Nevertheless, whether NAT10 regulates the inflammatory response of macrophages in periodontitis remains unclear. In this study, the expression of NAT10 in macrophages was found to decrease during LPS-induced inflammation. NAT10 knockdown significantly reduced the generation of inflammatory factors, while NAT10 overexpression had the opposite effect. RNA sequencing revealed that the differentially expressed genes were enriched in the NF-κB signalling pathway and oxidative stress. Both the NF-κB inhibitor Bay11-7082 and the ROS scavenger N-acetyl-L-cysteine (NAC) could reverse the upregulation of inflammatory factors. NAC inhibited the phosphorylation of NF-κB, but Bay11-7082 had no effect on the production of ROS in NAT10-overexpressing cells, suggesting that NAT10 activated the LPS-induced NF-κB signalling pathway by regulating ROS generation. Furthermore, the expression and stability of Nox2 was promoted after NAT10 overexpression, indicating that Nox2 may be a potential target of NAT10. In vivo, the NAT10 inhibitor Remodelin reduced macrophage infiltration and bone resorption in ligature-induced periodontitis mice. In summary, these results showed that NAT10 accelerated LPS-induced inflammation via the NOX2-ROS-NF-κB pathway in macrophages and that its inhibitor Remodelin might be of potential therapeutic significance in periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
48
|
Cui Z, Xu Y, Wu P, Lu Y, Tao Y, Zhou C, Cui R, Li J, Han R. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification. Odontology 2023; 111:870-882. [PMID: 36879181 DOI: 10.1007/s10266-023-00793-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Periodontal tissue regeneration engineering based on human periodontal ligament stem cells (hPDLSCs) provides a broad prospect for the treatment of periodontal disease. N-Acetyltransferase 10 (NAT10)-catalyzed non-histone acetylation is widely involved in physiological or pathophysiological processes. However, its function in hPDLSCs is still missing. hPDLSCs were isolated, purified, and cultured from extracted teeth. Surface markers were detected by flow cytometry. Osteogenic, adipogenic, and chondrogenic differentiation potential was detected by alizarin red staining (ARS), oil red O staining, and Alcian blue staining. Alkaline phosphatase (ALP) activity was assessed by ALP assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of key molecules, such as NAT10, Vascular endothelial growth factor A (VEGFA), PI3K/AKT pathway, as well as bone markers (RUNX2, OCN, OPN). RNA-Binding Protein Immunoprecipitation PCR (RIP-PCR) was used to detect the N4-acetylcytidine (ac4C) mRNA level. Genes related to VEGFA were identified by bioinformatics analysis. NAT10 was highly expressed in the osteogenic differentiation process with enhanced ALP activity and osteogenic capability, and elevated expression of osteogenesis-related markers. The ac4C level and expression of VEGFA were obviously regulated by NAT10 and overexpression of VEGFA also had similar effects to NAT10. The phosphorylation level of PI3K and AKT was also elevated by overexpression of VEGFA. VEGFA could reverse the effects of NAT10 in hPDLSCs. NAT10 enhances the osteogenic development of hPDLSCs via regulation of the VEGFA-mediated PI3K/AKT signaling pathway by ac4C alteration.
Collapse
Affiliation(s)
- Zhao Cui
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, People's Republic of China
| | - Peng Wu
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Ying Lu
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yongxin Tao
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Chuibing Zhou
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Ruting Cui
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Jingying Li
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Rongpeng Han
- Pediatric Surgery, Children's Hospital of Changchun, No. 1321, Beian Road, Chaoyang District, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
49
|
Wang M, Cheng R, He H, Han Z, Zhang Y, Wu Q. N 4-acetylcytidine of Nop2 mRNA is required for the transition of morula-to-blastocyst. Cell Mol Life Sci 2023; 80:307. [PMID: 37768430 PMCID: PMC11071819 DOI: 10.1007/s00018-023-04955-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification is crucial for mRNA stability and translation efficiency, yet the underlying function in mammalian preimplantation embryos remains unclear. Here, we characterized the ac4C modification landscape in mouse early embryos and found that the majority of embryos deficient in ac4C writer-NAT10 failed to develop into normal blastocysts. Through single-cell sequencing, RNA-seq, acetylated RNA immunoprecipitation combined with PCR (acRIP-PCR), and embryonic phenotype monitoring, Nop2 was screened as a target gene of Nat10. Mechanistically, Nat10 knockdown decreases the ac4C modification on Nop2 mRNA and reduces RNA and protein abundance by affecting the mRNA stability of Nop2. Then, depletion of NOP2 may inhibit the translation of transcription factor TEAD4, resulting in defective expression of the downstream lineage-specific gene Cdx2, and ultimately preventing blastomeres from undergoing the trophectoderm (TE) fate. However, exogenous Nop2 mRNA partially reverses this abnormal development. In conclusion, our findings demonstrate that defective ac4C modification of Nop2 mRNA hinders the morula-to-blastocyst transition by influencing the first cell fate decision in mice.
Collapse
Affiliation(s)
- Mengyun Wang
- Developmental Biology Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Rui Cheng
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjuan He
- Developmental Biology Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiong Wu
- Developmental Biology Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
50
|
Cong D, Zhang Z, Xu M, Wang J, Pu X, Huang Z, Liao X, Yin G. Vanadium-Doped Mesoporous Bioactive Glass Promotes Osteogenic Differentiation of rBMSCs via the WNT/β-Catenin Signaling Pathway. ACS APPLIED BIO MATERIALS 2023; 6:3863-3874. [PMID: 37648658 DOI: 10.1021/acsabm.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pentavalent vanadium [V(V)] has been studied as bioactive ions to improve the bone defect repair; however, its osteogenic promotion mechanism is still not fully understood so far. In this study, a V-doped mesoporous bioactive glass (V-MBG) was prepared, and its effects on osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and potential signaling pathways were investigated. The physicochemical characterization revealed that the incorporation of V slightly reduced the specific surface area and increased the mesoporous pore size, and the abundant mesopores of V-MBG were beneficial to the sustained dissolution of V(V) ions as well as calcium, silicon, and phosphorus ions. Cell proliferation results indicated that the high dilution ratio (>16) V-MBG extract markedly promoted the proliferation of rBMSCs compared with the control group and the same dilution ratio MBG extract. Compared with the same dilution ratio MBG extract, diluted V-MBG extracts markedly promoted the secretion of alkaline phosphatase (ALP) and osteocalcin (OCN) protein at day 7 but insignificantly stimulated the runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor (VEGF) protein synthesis. In depth, the diluted V-MBG extracts remarkably up-regulated the expression of WNT/β-catenin pathway direct target genes, including WNT3a, β-catenin, and AXIN2 genes in contrast to the same dilution ratio MBG extracts, suggesting that the released V(V) ions might promote osteogenic differentiation of rBMSCs via the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dianzi Cong
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Zhou Zhang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Mengjie Xu
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|