1
|
Ebrahimiyan H, Sayadmanesh A, Hesaraki M, Ebrahimi M, Baharand H, Basiri M. Engineering CD3 subunits with endoplasmic reticulum retention signal facilitates allogeneic CAR T cell production. Int Immunopharmacol 2025; 152:114412. [PMID: 40056516 DOI: 10.1016/j.intimp.2025.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
The success of autologous CAR T cell therapies has driven interest in developing off-the-shelf allogeneic CAR T cells as a scalable and readily available option for broader patient access. Most of the current approaches involve the knockout of T cell receptor (TCR) subunits via genome editing for preventing graft-versus-host disease (GvHD). However, clinical translation of these methods faces challenges due to manufacturing complexities and emerging safety concerns like unintended long deletions and chromosomal loss. In this study, we explored an alternative approach by engineering synthetic CD3 subunits containing an endoplasmic reticulum retention (ERR) signal to suppress TCR surface expression by disrupting its trafficking to the plasma membrane. We screened multiple CD3-ERR candidate designs to identify the construct with the highest efficacy in TCR downregulation. The selected candidate, CD3ζ-ERR, was further characterized, demonstrating its ability to minimize TCR-mediated activation and alloreactivity without affecting T cell phenotype, cell cycle and cytokine-induced expansion. Subsequent assays revealed that CD3ζ-ERR CD19 CAR T cells retained their CAR-mediated cytotoxic function against CD19+ malignant cells. This study presents an alternative approach for TCR downregulation that circumvents genome editing. By using a transgene compatible with conventional viral vector delivery, this approach holds promise for scalable clinical-grade manufacturing of allogeneic CAR T cell therapies.
Collapse
MESH Headings
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- Endoplasmic Reticulum/metabolism
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Antigens, CD19/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Lymphocyte Activation
Collapse
Affiliation(s)
- Hamidreza Ebrahimiyan
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
2
|
Bae SH, Lee KY, Han S, Yun CW, Park C, Jang H. SOX2 Expression Does Not Guarantee Cancer Stem Cell-like Characteristics in Lung Adenocarcinoma. Cells 2024; 13:216. [PMID: 38334608 PMCID: PMC10854781 DOI: 10.3390/cells13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.
Collapse
Affiliation(s)
- Seung-Hyun Bae
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Kyung Yong Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Suji Han
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - Chul Won Yun
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - ChanHyeok Park
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Hyonchol Jang
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| |
Collapse
|
3
|
Czarnek M, Kochan J, Wawro M, Myrczek R, Bereta J. Construction of a Set of Novel Transposon Vectors for Efficient Silencing of Protein and lncRNA Genes via CRISPR Interference. Mol Biotechnol 2023; 65:1598-1607. [PMID: 36707469 PMCID: PMC10471651 DOI: 10.1007/s12033-023-00675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Rafał Myrczek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Sowinska W, Wawro M, Biswas DD, Kochan J, Pustelny K, Solecka A, Gupta AS, Mockenhaupt K, Polak J, Kwinta B, Kordula T, Kasza A. The homeostatic function of Regnase-2 restricts neuroinflammation. FASEB J 2023; 37:e22798. [PMID: 36753401 PMCID: PMC9983307 DOI: 10.1096/fj.202201978r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
The precise physiological functions and mechanisms regulating RNase Regnase-2 (Reg-2/ZC3H12B/MCPIP2) activity remain enigmatic. We found that Reg-2 actively modulates neuroinflammation in nontransformed cells, including primary astrocytes. Downregulation of Reg-2 in these cells results in increased mRNA levels of proinflammatory cytokines IL-1β and IL-6. In primary astrocytes, Reg-2 also regulates the mRNA level of Regnase-1 (Reg-1/ZC3H12A/MCPIP1). Reg-2 is expressed at high levels in the healthy brain, but its expression is reduced during neuroinflammation as well as glioblastoma progression. This process is associated with the upregulation of Reg-1. Conversely, overexpression of Reg-2 is accompanied by the downregulation of Reg-1 in glioma cells in a nucleolytic NYN/PIN domain-dependent manner. Interestingly, low levels of Reg-2 and high levels of Reg-1 correlate with poor-glioblastoma patients' prognoses. While Reg-2 restricts the basal levels of proinflammatory cytokines in resting astrocytes, its expression is reduced in IL-1β-activated astrocytes. Following IL-1β exposure, Reg-2 is phosphorylated, ubiquitinated, and degraded by proteasomes. Simultaneously, the Reg-2 transcript is destabilized by tristetraprolin (TTP) and Reg-1 through the AREs elements and conservative stem-loop structure present in its 3'UTR. Thus, the peer-control loop, of Reg-1 and Reg-2 opposing each other, exists. The involvement of TTP in Reg-2 mRNA turnover is confirmed by the observation that high TTP levels correlate with the downregulation of the Reg-2 expression in high-grade human gliomas. Additionally, obtained results reveal the importance of Reg-2 in inhibiting human and mouse glioma cell proliferation. Our current studies identify Reg-2 as a critical regulator of homeostasis in the brain.
Collapse
Affiliation(s)
- Weronika Sowinska
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Pustelny
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Solecka
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Jarosław Polak
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA.,To whom correspondence should be addressed: Aneta Kasza, , Tel. (+48)126646521 and Tomasz Kordula, , Tel. (+1)804-828-0771
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland,To whom correspondence should be addressed: Aneta Kasza, , Tel. (+48)126646521 and Tomasz Kordula, , Tel. (+1)804-828-0771
| |
Collapse
|
5
|
Ragab N, Bauer J, Uhmann A, Marx A, Hahn H, Simon-Keller K. Tumor suppressive functions of WNT5A in rhabdomyosarcoma. Int J Oncol 2022; 61:102. [PMID: 35796028 PMCID: PMC9291248 DOI: 10.3892/ijo.2022.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly aggressive soft tissue malignancy that predominantly affects children. The main subtypes are alveolar RMS (ARMS) and embryonal RMS (ERMS) and the two show an impaired muscle differentiation phenotype. One pathway involved in muscle differentiation is WNT signaling. However, the role of this pathway in RMS is far from clear. Our recent data showed that the canonical WNT/β-Catenin pathway serves a subordinate role in RMS, whereas non-canonical WNT signaling probably is more important for this tumor entity. The present study investigated the role of WNT5A, which is the major ligand of non-canonical WNT signaling, in ERMS and ARMS. Gene expression analysis showed that WNT5A was expressed in human RMS samples and that its expression is more pronounced in ERMS. When stably overexpressed in RMS cell lines, WNT5A decreased proliferation and migration of the cells as demonstrated by BrdU incorporation and Transwell migration or scratch assay, respectively. WNT5A also decreased the self-renewal capacity and the expression of stem cell markers and modulates the levels of muscle differentiation markers as shown by sphere assay and western blot analysis, respectively. Finally, overexpression of WNT5A can destabilize active β-Catenin of RMS cells. A WNT5A knockdown has opposite effects. Together, the results suggest that WNT5A has tumor suppressive functions in RMS, which accompanies downregulation of β-Catenin.
Collapse
Affiliation(s)
- Nada Ragab
- Institute of Human Genetics, University Medical Center Göttingen, D‑37073 Göttingen, Germany
| | - Julia Bauer
- Institute of Human Genetics, University Medical Center Göttingen, D‑37073 Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, University Medical Center Göttingen, D‑37073 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, D‑68167 Mannheim, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, D‑37073 Göttingen, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, D‑68167 Mannheim, Germany
| |
Collapse
|
6
|
Goel K, Ploski JE. RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Front Mol Neurosci 2022; 15:914430. [PMID: 35959108 PMCID: PMC9362770 DOI: 10.3389/fnmol.2022.914430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Manipulating gene expression within and outside the nervous system is useful for interrogating gene function and developing therapeutic interventions for a variety of diseases. Several approaches exist which enable gene manipulation in preclinical models, and some of these have been approved to treat human diseases. For the last couple of decades, RNA interference (RNAi) has been a leading technique to knockdown (i.e., suppress) specific RNA expression. This has been partly due to the technology's simplicity, which has promoted its adoption throughout biomedical science. However, accumulating evidence indicates that this technology can possess significant shortcomings. This review highlights the overwhelming evidence that RNAi can be prone to off-target effects and is capable of inducing cytotoxicity in some cases. With this in mind, we consider alternative CRISPR/Cas-based approaches, which may be safer and more reliable for gene knockdown. We also discuss the pros and cons of each approach.
Collapse
Affiliation(s)
- Kanishk Goel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jonathan E. Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Czarnek M, Stalińska K, Sarad K, Bereta J. shRNAs targeting mouse Adam10 diminish cell response to proinflammatory stimuli independently of Adam10 silencing. Biol Open 2022; 11:274200. [PMID: 35107128 PMCID: PMC8905717 DOI: 10.1242/bio.059092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference is one of the common methods of studying protein functions. In recent years critical reports have emerged indicating that off-target effects may have a much greater impact on RNAi-based analysis than previously assumed. We studied the influence of Adam10 and Adam17 silencing on MC38CEA cell response to proinflammatory stimuli. Eight lentiviral vector-encoded shRNAs that reduced ADAM10 expression, including two that are specific towards ADAM17, caused inhibition of cytokine-induced Nos2 expression presumably via off-target effects. ADAM10 silencing was not responsible for this effect because: (i) CRISPR/Cas9 knockdown of ADAM10 did not affect Nos2 levels; (ii) ADAM10 inhibitor increased rather than decreased Nos2 expression; (iii) overexpression of ADAM10 in the cells with shRNA-silenced Adam10 did not reverse the effect induced by shRNA; (iv) shRNA targeting ADAM10 resulted in decrease of Nos2 expression even in ADAM10-deficient cells. The studied shRNAs influenced transcription of Nos2 rather than stability of Nos2 mRNA. They also affected stimulation of Ccl2 and Ccl7 expression. Additionally, we used vectors with doxycycline-inducible expression of chosen shRNAs and observed reduced activation of NF-κB and, to a lesser extent, AP-1 transcription factors. We discuss the requirements of strict controls and verification of results with complementary methods for reliable conclusions of shRNA-based experiments. Summary: Use of several specific shRNAs is not enough to escape a pitfall of their off-target activity: the case of Adam10 and Adam17 silencing.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|