1
|
Mo X, He J, Shen X, Li C, Mo X, Liang K, He L, Li T, Pan X, Cao S, Mao N, Xing S, Chen Z, Luo Z, Yang J. Connexin43 Promotes the Invasion and Metastasis of Lung Squamous Cell Carcinoma via GJIC-Dependent Ca 2+/ERK Signaling Activation. Cancer Sci 2025. [PMID: 40449992 DOI: 10.1111/cas.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 06/03/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC) is an extremely metastatic cancer with limited available treatment and poor outcomes. Connexin43 (Cx43) is frequently overactivated and positively correlated with tumorigenesis in many cancers, including breast cancer and lung adenocarcinoma, but its role in LUSC remains elusive. In this study, we demonstrated that Cx43 was highly expressed in LUSC tissues as compared to matching normal lung tissues (n = 103) and negatively related to prognosis. Through the 3D spheroid cell invasion assay, zCDX (zebrafish cell line-derived xenograft), and orthotopic lung cancer xenograft model, we further revealed that Cx43 promotes LUSC invasion and migration via forming GJIC. Knockdown of Cx43 reduced the Ca2+ transmission and ERK phosphorylation, whereas the addition of Ca2+ enhanced ERK phosphorylation and promoted LUSC invasion and migration. Furthermore, verapamil (40 μM and 80 μM), a calcium channel inhibitor, significantly inhibited ERK phosphorylation as well as the invasion and migration of LUSC cells. Mechanistically, Cx43 promoted the invasion and metastasis of LUSC via activating the Ca2+/ERK signaling pathway by gap junctional intracellular communication (GJIC). Our findings provide a novel mechanism insight for LUSC invasion and migration and a proof of concept for a new therapeutic strategy to tackle this disease.
Collapse
Affiliation(s)
- Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingchuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changsheng Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Kai Liang
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liangjun He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tingting Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoqin Pan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sisi Cao
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Naiquan Mao
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shangping Xing
- Department of Chinese Materia Medica, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
2
|
Esposito T, Pentimalli F, Giordano A, Cortellino S. Vitamins and dietary supplements in cancer treatment: is there a need for increased usage? Expert Rev Anticancer Ther 2025:1-24. [PMID: 40322898 DOI: 10.1080/14737140.2025.2501077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Vitamins are essential for homeostasis and proper functioning of organisms. These micronutrients prevent tumor onset by functioning as antioxidants and enzymatic cofactors involved in anti-stress and immune responses, modulating epigenetic regulators, and shaping the microbiota composition. Unbalanced diets and sedentary lifestyles contribute to obesity, associated with increasing cancer risk. Cancer patients often exhibit vitamin deficiencies due to chronic inflammation, anticancer therapies, and tumor-induced metabolic changes, leading to malnutrition and cachexia. AREAS COVERED This review critically analyzes preclinical and clinical studies, sourced from PubMed and ClinicalTrials.gov databases, that investigate the potential benefits of vitamin supplementation and dietary interventions, such as intermittent fasting and ketogenic diets, in mouse tumor models and cancer patients. This analysis elucidates the limitations of such interventions and suggests optimal dietary strategies to prevent cancer and enhance patients' quality of life and prognosis. EXPERT OPINION To date, clinical studies have found no substantial benefit of over-the-counter vitamin supplements and dietary interventions on cancer patients' health and prognosis. To prevent the spread of useless and potentially harmful products by the nutraceutical industry, establishing a regulatory authority is necessary to monitor and ensure product quality and validity before commercialization.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Clinical Dietetics and Metabolic Diseases, Cavalier Raffaele Apicella Hospital, ASL Napoli 3 Sud, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Cortellino
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, Italy
- S.H.R.O. Italia Foundation ETS, Turin, Italy
| |
Collapse
|
3
|
Chang L, Qin C, Chu Y, Guan M, Deng X. Migrasome-Related Genes as Potential Prognosis and Immunotherapy Response Predictors for Colorectal Cancer. Biomedicines 2025; 13:799. [PMID: 40299331 PMCID: PMC12024535 DOI: 10.3390/biomedicines13040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Studies highlight the role of migrasomes as mediators of intercellular communication and signaling, critical in influencing tumorigenesis and progression. Yet migrasome-related genes and their potential role in colorectal cancer prognosis remain unexplored. Methods: Differentially expressed gene set A (DEG set A) was identified in the TCGA-CRC dataset, and Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify the most important modules associated with migrasome-related gene (MRG) scores. Single-cell RNA-seq dataset GSE231559 DEG set B was determined. Candidate migrasome-related genes were filtered by intersecting DGE set A, key module genes, and DEG set B. Prognostic genes were subsequently screened through regression analysis, and a risk model was developed. Patients with CRC in the TCGA cohort were stratified into high- and low-risk groups based on the optimal cutoff of the risk score. Immunotherapy response-related analyses were then performed. Finally, cell-to-cell communication analysis was carried out for key cells identified based on prognostic gene expression analysis in annotated cells. Results: The six candidate migrasome-related genes were identified through the overlap of 5158 DEG set A, 1960 key module genes, and 146 DEG set B. Further screening led to the selection of T1MP1, CXCL8, and MGP as potential prognostic biomarkers. Immune-related analysis indicated that the high-risk group exhibited a better response to immunotherapy. Notably, the prognostic genes showed elevated expression levels in monocytes and tissue stem cells, thereby designating them as key cell types. Conclusions: We conducted bioinformatic analysis of migrasome-related genes and identified significant involvement of T1MP1, CXCL8, and MGP in influencing CRC prognosis and immunotherapy response. Our research provides novel insights into the role of migrasomes in CRC biology.
Collapse
Affiliation(s)
- Lu Chang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai 200040, China; (L.C.); (C.Q.)
| | - Chao Qin
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai 200040, China; (L.C.); (C.Q.)
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200050, China;
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai 200040, China; (L.C.); (C.Q.)
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai 200040, China; (L.C.); (C.Q.)
| |
Collapse
|
4
|
Li Q, Gao Y, Huo Z, Liu J, Zhang P, Wang Y. LGR4 attenuates MGP expression and suppresses EGFR activation-induced triple-negative breast cancer metastasis. Am J Cancer Res 2024; 14:3419-3432. [PMID: 39113859 PMCID: PMC11301280 DOI: 10.62347/thii9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Breast cancer has emerged as the most common cancer globally, with a significant reduction in overall survival rate after metastasis. Compared with other types of breast cancer, triple-negative breast cancer (TNBC) is more prone to metastasize, presenting substantial treatment challenges due to the lack of effective therapies. LGR4, which is highly expressed in breast cancer, has been shown to promote the proliferation and invasion of breast cancer cells. However, its specific role in TNBC remains unclear. In this study, we applied a multi-omics approach to explore the regulatory mechanism of LGR4 in TNBC metastasis. Our findings showed that LGR4 could regulate actin cytoskeletal through EGFR and curtail EGFR activation-induced TNBC metastasis by inhibiting MGP expression. These insights provide new perspectives on the role of LGR4 in breast cancer metastasis.
Collapse
Affiliation(s)
- Qishuang Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical UniversityNanning 530021, Guangxi, PR China
| | - Yankun Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, PR China
| | - Zitian Huo
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Jing Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, PR China
| | - Pumin Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical UniversityNanning 530021, Guangxi, PR China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, PR China
| |
Collapse
|
5
|
Perné MG, Sitar-Tăut AV, Orășan OH, Negrean V, Vlad CV, Alexescu TG, Milaciu MV, Ciumărnean L, Togănel RD, Petre GE, Șimon I, Crăciun A. The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma. Int J Mol Sci 2024; 25:4997. [PMID: 38732222 PMCID: PMC11084444 DOI: 10.3390/ijms25094997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms in developed countries, with increasing incidence and mortality, even in young people. A variety of serum markers have been associated with CRC (CEA, CA 19-9), but neither should be used as a screening tool for the diagnosis or evolution staging of CRC. The sensitivity and specificity of these markers are not as good as is required, so new ones need to be found. Matrix Gla protein and PIVKA II are involved in carcinogenesis, but few studies have evaluated their usefulness in predicting the presence and severity of CRC. Two hundred patients were divided into three groups: 80 patients were included in the control group; 80 with CRC and without hepatic metastasis were included in Group 1; 40 patients with CRC and hepatic metastasis were included in Group 2. Vitamin K-dependent proteins (VKDPs) levels in plasma were determined. Patients with CRC without methastasis (Group 1) and CRC patients with methastasis (Group 2) presented significantly higher values of CEA, CA 19-9, PIVKA II (310.05 ± 38.22 vs. 430.13 ± 122.13 vs. 20.23 ± 10.90), and ucMGP (14,300.00 ± 2387.02 vs. 13,410.52 ± 2243.16 vs. 1780.31 ± 864.70) compared to control group (Group 0). Interestingly, Group 1 presented the greatest PIVKA II values. Out of all the markers, significant differences between the histological subgroups were found only for ucMGP, but only in non-metastatic CRC. Studying the discrimination capacity between the patients with CRC vs. those without, no significant differences were found between the classical tumor markers and the VKDP AUROC curves (PIVKA II and ucMGP AUROCs = 1). For the metastatic stage, the sensitivity and specificity of the VKDPs were lower in comparison with those of CA 19-9 and CEA, respectively (PIVKA II AUROC = 0.789, ucMGP AUROC = 0.608). The serum levels of these VKDPs are significantly altered in patients with colorectal carcinoma; it is possible to find additional value of these in the early stages of the disease.
Collapse
Affiliation(s)
- Mirela-Georgiana Perné
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Adela-Viviana Sitar-Tăut
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Olga Hilda Orășan
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Vasile Negrean
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Călin Vasile Vlad
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Teodora-Gabriela Alexescu
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Mircea Vasile Milaciu
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Lorena Ciumărnean
- 4th Department–Internal Medicine, 4th Medical Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Răzvan Dan Togănel
- 6th Department–Surgery, 4th Surgery Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Gabriel Emil Petre
- 6th Department–Surgery, 4th Surgery Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Ioan Șimon
- 6th Department–Surgery, 4th Surgery Discipline, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Republicii Street, Nr. 18, 400015 Cluj-Napoca, Romania
| | - Alexandra Crăciun
- 2nd Department–Molecular Sciences, Discipline of Medical Biochemistry, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Pasteur Street, Nr. 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Chen G, Sun W, Li Y, Li M, Jia X, Wang J, Lai S. miR-196a Promotes Proliferation of Mammary Epithelial Cells by Targeting CDKN1B. Animals (Basel) 2023; 13:3682. [PMID: 38067033 PMCID: PMC10705059 DOI: 10.3390/ani13233682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 09/11/2024] Open
Abstract
Heat stress (HS) has become one of the key challenges faced by the dairy industry due to global warming. Studies have reported that miR-196a may exert a role in the organism's response to HS, enhancing cell proliferation and mitigating cellular stress. However, its specific role in bovine mammary epithelial cells (BMECs) remains to be elucidated. In this study, we aimed to investigate whether miR-196a could protect BMECs against proliferation arrest induced by HS and explore its potential underlying mechanism. In this research, we developed an HS model for BMECs and observed a significant suppression of cell proliferation as well as a significant decrease in miR-196a expression when BMECs were exposed to HS. Importantly, when miR-196a was overexpressed, it alleviated the inhibitory effect of HS on cell proliferation. We conducted RNA-seq and identified 105 differentially expressed genes (DEGs). Some of these DEGs were associated with pathways related to thermogenesis and proliferation. Through RT-qPCR, Western blotting, and dual-luciferase reporter assays, we identified CDKN1B as a target gene of miR-196a. In summary, our findings highlight that miR-196a may promote BMEC proliferation by inhibiting CDKN1B and suggest that the miR-196a/CDKN1B axis may be a potential pathway by which miR-196a alleviates heat-stress-induced proliferation arrest in BMECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (W.S.); (Y.L.); (M.L.); (X.J.); (J.W.)
| |
Collapse
|
8
|
Fei T, Zhou EC, Wang XJ. FOXD2 regulations IQGAP3 mediated Ca 2+ signaling pathway to facilitate gastric adenocarcinoma cell promotion. Kaohsiung J Med Sci 2023; 39:1087-1095. [PMID: 37724892 DOI: 10.1002/kjm2.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
As a transcriptional factor, the Forkhead box (FOX) gene family is closely connected with apoptosis, proliferation, and other cellular processes. FOXD2, as one descendant of the FOX gene family, has been mentioned in many articles to show a high expression in several cancers. However, whether FOXD2 has a connection with gastric adenocarcinoma remains an unanswered question. Expression of FOXD2 and IQGAP3 in gastric adenocarcinoma was evaluated by bioinformatics analysis, which was further detected by real-time quantitative PCR (qRT-PCR) and western blot. The downstream target genes of FOXD2 were also mined by bioinformatics analysis. Pathway enrichment analysis was then performed on the target genes. Chromatin immunoprecipitation assay (ChIP) and dual-luciferase reporter assay were conducted to validate the regulatory relationship between FOXD2 and its downstream target gene IQGAP3. Methyl thiazolyl tetrazolium assay (MTT), combined with cell colony formation assay, was employed to assess the effect of FOXD2 and IQGAP3 on the proliferation of gastric adenocarcinoma cells. Intracytoplasmic Ca2+ concentration was measured by Fluo-3 fluorescence staining. FOXD2 showed a high expression in gastric adenocarcinoma tissues and cells, and FOXD2 silencing considerably attenuated gastric adenocarcinoma cell proliferation. IQGAP3, a downstream target gene of FOXD2, had a positive connection with the expression of FOXD2. The binding relationship between FOXD2 and the promoter region of IQGAP3 was further verified by ChIP and dual-luciferase reporter assays. The results of cell function experiments indicated that FOXD2 could promote gastric adenocarcinoma cell proliferation by transcriptionally activating IQGAP3 to induce an increase in intracellular Ca2+ level. This study confirmed that FOXD2 increased intracellular Ca2+ level through transcriptional activation of IQGAP3, which in turn propelled the proliferation of gastric adenocarcinoma cells, revealing the considerable significance of FOXD2 in the development of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ting Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - En-Cheng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Nusair SD, Abandah B, Al-Share QY, Abu-Qatouseh L, Ahmad MIA. Toxicity induced by orellanine from the mushroom Cortinarius orellanus in primary renal tubular proximal epithelial cells (RPTEC): Novel mechanisms of action. Toxicon 2023; 235:107312. [PMID: 37806454 DOI: 10.1016/j.toxicon.2023.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The toxicity of Orellanine (OR), a significant factor in mushroom poisoning, has severe effects on the kidneys, particularly the proximal tubules. This study investigated the acute toxicity of OR from the Cortinarius orellanus mushroom in human Primary Renal Tubular Proximal Epithelial Cells (RPTEC). Additionally, the half maximal inhibitory concentration (IC50) of OR in MCF-7 cells was established. RPTEC were subjected to a 6.25 μg/ml dose of orellanine for 24 h, while Control cells were exposed to 0.05% DMSO (vehicle). The RT2 Profiler™ PCR Array Human Nephrotoxicity was utilized to identify genes that were upregulated or downregulated. Western blotting confirmed the protein product of some significantly regulated genes compared to control cells. The IC50 of OR was found to be 319.2 μg/ml. The mechanism of OR toxicity involved several pathways including apoptosis, metal ion binding, cell proliferation, tissue remodeling, xenobiotic metabolism, transporters, extracellular matrix molecules, and cytoskeleton pathways. Other genes from non-specific pathways were also identified. These findings enhance our understanding of OR nephrotoxicity and pave the way for future research into potential treatments or antidotes for natural mushroom poisoning.
Collapse
Affiliation(s)
- Shreen D Nusair
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan.
| | - Bayan Abandah
- Department of Legal Medicine, Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Jordan
| | - Qusai Y Al-Share
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan
| | - Luay Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Jordan
| | - Mohammad I A Ahmad
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy & Medical Sciences, University of Petra, Jordan; Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
10
|
Liu Z, Xu Y, Jin S, Liu X, Wang B. Construction of a Prognostic Model Based on Methylation-Related Genes in Patients with Colon Adenocarcinoma. Cancer Manag Res 2023; 15:1097-1110. [PMID: 37818334 PMCID: PMC10561619 DOI: 10.2147/cmar.s417897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose Colon adenocarcinoma (COAD) is the second leading cause of death in the world, and the new incidence rate ranks third among all cancers. Abnormal DNA methylation is related to the occurrence and development of tumors. In this study, we aimed to identify genes associated with abnormal methylation in COAD. Methods COAD transcriptome data, methylation data and clinical information were downloaded from the TCGA database and GEO database. The differentially expressed genes (DEGs) and methylated genes (DMGs) were analyzed and identified in COAD. PCA analysis was applied to divide COAD into subtypes, and the survival and immune cell infiltration of each subtype were evaluated. Cox and LASSO analyses were performed to construct COAD risk model. GSEA was used to evaluate the enrichment pathways. The Kaplan-Meier was used to analyze the difference in survival. ROC curve was plotted to evaluate the accuracy of the model, and GSE17536 was used to verify the accuracy of the risk model. The risk model is combined with the clinicopathological characteristics of COAD patients to perform multivariate Cox regression analysis to obtain independent risk factors and draw nomograms. Results In total, 4564 DEGs and 1093 DMGs were screened, among which 298 were found to be overlapping genes. For 220 of these overlapping genes, the methylation was significantly negatively correlated to expression levels. An optimal signature from 4 methylated biomarkers was identified to construct the prognostic model. Conclusion Our study identified 4 methylated biomarkers in the COAD. Then, we constructed the risk model to provide a theoretical basis and reference value for the research and treatment of COAD.
Collapse
Affiliation(s)
- ZhenDong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - YuYang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Shan Jin
- Department of Anesthesiology, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - BaoChun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| |
Collapse
|
11
|
Yao H, Jiang R, Chen D, Li Y, Song M, Sun Z, Long G, Wu L, Hu W. Whole-Transcriptome Sequencing of Antler Tissue Reveals That circRNA2829 Regulates Chondrocyte Proliferation and Differentiation via the miR-4286-R+1/FOXO4 Axis. Int J Mol Sci 2023; 24:ijms24087204. [PMID: 37108365 PMCID: PMC10139046 DOI: 10.3390/ijms24087204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The antler is the unique mammalian organ found to be able to regenerate completely and periodically after loss, and the continuous proliferation and differentiation of mesenchymal cells and chondrocytes together complete the regeneration of the antler. Circular non-coding RNAs (circRNAs) are considered to be important non-coding RNAs that regulate body development and growth. However, there are no reports on circRNAs regulating the antler regeneration process. In this study, full-transcriptome high-throughput sequencing was performed on sika deer antler interstitial and cartilage tissues, and the sequencing results were verified and analyzed. The competing endogenous RNA (ceRNA) network related to antler growth and regeneration was further constructed, and the differentially expressed circRNA2829 was screened out from the network to study its effect on chondrocyte proliferation and differentiation. The results indicated that circRNA2829 promoted cell proliferation and increased the level of intracellular ALP. The analysis of RT-qPCR and Western blot demonstrated that the mRNA and protein expression levels of genes involved in differentiation rose. These data revealed that circRNAs play a crucial regulatory role in deer antler regeneration and development. CircRNA2829 might regulate the antler regeneration process through miR-4286-R+1/FOXO4.
Collapse
Affiliation(s)
- Haibo Yao
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Renfeng Jiang
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Danyang Chen
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Yanjun Li
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Mengmeng Song
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Zitong Sun
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
12
|
Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, Bertalot G, Olsen JV, Colombo N, Bianchi F, Cavallaro U. Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis 2023; 14:220. [PMID: 36977707 PMCID: PMC10050398 DOI: 10.1038/s41419-023-05760-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Ovarian cancer (OC) displays the highest mortality among gynecological tumors, mainly due to early peritoneal dissemination, the high frequency of tumor relapse following primary debulking, and the development of chemoresistance. All these events are thought to be initiated and sustained by a subpopulation of neoplastic cells, termed ovarian cancer stem cells (OCSC), that are endowed with self-renewing and tumor-initiating properties. This implies that interfering with OCSC function should offer novel therapeutic perspectives to defeat OC progression. To this aim, a better understanding of the molecular and functional makeup of OCSC in clinically relevant model systems is essential. We have profiled the transcriptome of OCSC vs. their bulk cell counterpart from a panel of patient-derived OC cell cultures. This revealed that Matrix Gla Protein (MGP), classically known as a calcification-preventing factor in cartilage and blood vessels, is markedly enriched in OCSC. Functional assays showed that MGP confers several stemness-associated traits to OC cells, including a transcriptional reprogramming. Patient-derived organotypic cultures pointed to the peritoneal microenvironment as a major inducer of MGP expression in OC cells. Furthermore, MGP was found to be necessary and sufficient for tumor initiation in OC mouse models, by shortening tumor latency and increasing dramatically the frequency of tumor-initiating cells. Mechanistically, MGP-driven OC stemness was mediated by the stimulation of Hedgehog signaling, in particular through the induction of the Hedgehog effector GLI1, thus highlighting a novel MGP/Hedgehog pathway axis in OCSC. Finally, MGP expression was found to correlate with poor prognosis in OC patients, and was increased in tumor tissue after chemotherapy, supporting the clinical relevance of our findings. Thus, MGP is a novel driver in OCSC pathophysiology, with a major role in stemness and in tumor initiation.
Collapse
Affiliation(s)
- V Nieddu
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - V Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - C Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - M Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - C Stellato
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - J V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - N Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCSS, Milan, Italy
- University of Milan-Bicocca, Milan, Italy
| | - F Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - U Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.
| |
Collapse
|
13
|
Qiu Z, Wang Y, Zhang Z, Qin R, Peng Y, Tang W, Xi Y, Tian G, Zhang Y. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol 2022; 12:1052672. [PMID: 36505809 PMCID: PMC9728583 DOI: 10.3389/fonc.2022.1052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major global health problem and one of the major causes of cancer-related death worldwide. It is very important to understand the pathogenesis of CRC for early diagnosis, prevention strategies and identification of new therapeutic targets. Intercellular adhesion molecule-1 (ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and immune process. It is also expressed by tumor cells and modulates their functions, including apoptosis, cell motility, invasion and angiogenesis. The interaction between ICAM-1 and its ligand may facilitate adhesion of tumor cells to the vascular endothelium and subsequently in the promotion of metastasis. ICAM-1 expression determines malignant potential of cancer. In this review, we will discuss the expression, function, prognosis, tumorigenesis, polymorphisms and therapeutic implications of ICAM-1 in CRC.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao Zhang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qin
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Peng
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yan Xi
- Department of Geriatrics, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 2022; 290:121823. [DOI: 10.1016/j.biomaterials.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
15
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
16
|
Cui Y, Wang X, Zhang L, Liu W, Ning J, Gu R, Cui Y, Cai L, Xing Y. A novel epithelial-mesenchymal transition (EMT)-related gene signature of predictive value for the survival outcomes in lung adenocarcinoma. Front Oncol 2022; 12:974614. [PMID: 36185284 PMCID: PMC9521574 DOI: 10.3389/fonc.2022.974614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a remarkably heterogeneous and aggressive disease with dismal prognosis of patients. The identification of promising prognostic biomarkers might enable effective diagnosis and treatment of LUAD. Aberrant activation of epithelial-mesenchymal transition (EMT) is required for LUAD initiation, progression and metastasis. With the purpose of identifying a robust EMT-related gene signature (E-signature) to monitor the survival outcomes of LUAD patients. In The Cancer Genome Atlas (TCGA) database, least absolute shrinkage and selection operator (LASSO) analysis and cox regression analysis were conducted to acquire prognostic and EMT-related genes. A 4 EMT-related and prognostic gene signature, comprising dickkopf-like protein 1 (DKK1), lysyl oxidase-like 2 (LOXL2), matrix Gla protein (MGP) and slit guidance ligand 3 (SLIT3), was identified. By the usage of datum derived from TCGA database and Western blotting analysis, compared with adjacent tissue samples, DKK1 and LOXL2 protein expression in LUAD tissue samples were significantly higher, whereas the trend of MGP and SLIT3 expression were opposite. Concurrent with upregulation of epithelial markers and downregulation of mesenchymal markers, knockdown of DKK1 and LOXL2 impeded the migration and invasion of LUAD cells. Simultaneously, MGP and SLIT3 silencing promoted metastasis and induce EMT of LUAD cells. In the TCGA-LUAD set, receiver operating characteristic (ROC) analysis indicated that our risk model based on the identified E-signature was superior to those reported in literatures. Additionally, the E-signature carried robust prognostic significance. The validity of prediction in the E-signature was validated by the three independent datasets obtained from Gene Expression Omnibus (GEO) database. The probabilistic nomogram including the E-signature, pathological T stage and N stage was constructed and the nomogram demonstrated satisfactory discrimination and calibration. In LUAD patients, the E-signature risk score was associated with T stage, N stage, M stage and TNM stage. GSEA (gene set enrichment analysis) analysis indicated that the E-signature might be linked to the pathways including GLYCOLYSIS, MYC TARGETS, DNA REPAIR and so on. In conclusion, our study explored an innovative EMT based prognostic signature that might serve as a potential target for personalized and precision medicine.
Collapse
Affiliation(s)
- Yimeng Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ruixue Gu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaowen Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Ying Xing, ; Li Cai,
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Ying Xing, ; Li Cai,
| |
Collapse
|
17
|
Zhang X, Zhao H, Li Y, Zhang Y, Liang Y, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Amphiregulin Supplementation During Pig Oocyte In Vitro Maturation Enhances Subsequent Development of Cloned Embryos by Promoting Cumulus Cell Proliferation. Cell Reprogram 2022; 24:175-185. [PMID: 35861708 DOI: 10.1089/cell.2022.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.
Collapse
Affiliation(s)
- Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Bai S, Lan Y, Fu S, Cheng H, Lu Z, Liu G. Connecting Calcium-Based Nanomaterials and Cancer: From Diagnosis to Therapy. NANO-MICRO LETTERS 2022; 14:145. [PMID: 35849180 PMCID: PMC9294135 DOI: 10.1007/s40820-022-00894-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 05/07/2023]
Abstract
As the indispensable second cellular messenger, calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins. The importance of calcium ions (Ca2+) makes its "Janus nature" strictly regulated by its concentration. Abnormal regulation of calcium signals may cause some diseases; however, artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role. "Calcium overload," for example, is characterized by excessive enrichment of intracellular Ca2+, which irreversibly switches calcium signaling from "positive regulation" to "reverse destruction," leading to cell death. However, this undesirable death could be defined as "calcicoptosis" to offer a novel approach for cancer treatment. Indeed, Ca2+ is involved in various cancer diagnostic and therapeutic events, including calcium overload-induced calcium homeostasis disorder, calcium channels dysregulation, mitochondrial dysfunction, calcium-associated immunoregulation, cell/vascular/tumor calcification, and calcification-mediated CT imaging. In parallel, the development of multifunctional calcium-based nanomaterials (e.g., calcium phosphate, calcium carbonate, calcium peroxide, and hydroxyapatite) is becoming abundantly available. This review will highlight the latest insights of the calcium-based nanomaterials, explain their application, and provide novel perspective. Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yulu Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shiying Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
19
|
Qiu Y, Li H, Zhang Q, Qiao X, Wu J. Ferroptosis-Related Long Noncoding RNAs as Prognostic Marker for Colon Adenocarcinoma. Appl Bionics Biomech 2022; 2022:5220368. [PMID: 35432591 PMCID: PMC9012622 DOI: 10.1155/2022/5220368] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The incidence of colon adenocarcinoma (COAD) has been increasing over time. Although ferroptosis and long noncoding RNAs (lncRNAs) have been extensively reported to participate in the tumorigenesis and development of COAD, few studies have investigated the role of ferroptosis-related lncRNAs in the prognosis of COAD. Methods Gene-sequencing and clinical data for COAD were obtained from The Cancer Genome Atlas database. The coexpression network was constructed using known ferroptosis-related genes. Cox and least absolute shrinkage and selection operator regression were used to screen ferroptosis-related lncRNAs with prognostic value and to identify a predictive model of COAD. Patients with COAD were divided into low- and high-risk groups according to their risk score. Cases of COAD in the International Cancer Genome Consortium database were included as the testing cohort. Results In total, nine lncRNAs (LINC02381, AC105219.1, AC009283.1, LINC01011, ELFN1-AS1, EIF3J-DT, NKILA, LINC01063, and SNHG16) were considered prognostic factors for COAD. Then, a risk score model was established. The overall survival rate of COAD patients was negatively associated with the risk score. Kaplan-Meier analyses in the original and testing cohorts showed similar results. The expression of the lncRNAs in tissue was consistent with the risk score, and the relationship with tumor mutation burden, immunity, and drug sensitivity presented a marked link between the signature and COAD. A nomogram was established for clinical applications. Conclusions Nine ferroptosis-related lncRNAs and the established signature have a certain predictive value for prognosis of COAD patients and can be used as potential research targets for exploring treatment of COAD.
Collapse
Affiliation(s)
- Yuting Qiu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Haobo Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Xinwei Qiao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
20
|
Rong D, Sun G, Zheng Z, Liu L, Chen X, Wu F, Gu Y, Dai Y, Zhong W, Hao X, Zhang C, Pan X, Tang J, Tang W, Wang X. MGP promotes CD8 + T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int J Biol Sci 2022; 18:2345-2361. [PMID: 35414780 PMCID: PMC8990480 DOI: 10.7150/ijbs.70137] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Matrix Gla protein (MGP) was originally reported as a physiological suppressor of ectopia calcification and has also been reported to be associated with cancer. However, the relation between the biological functions of MGP and the immune response in colorectal cancer (CRC) remains unclear. Here, we investigated the regulatory role of MGP in the immune microenvironment of CRC. MGP expression in CRC samples was assessed by single-cell RNA sequencing and the Gene Expression Omnibus (GEO) database, and confirmed by quantitative real-time Polymerase Chain Reaction (qRT-PCR) and immunohistochemistry analysis of human CRC samples. The effect of MGP on proliferation and invasion of CRC cells was evaluated by in vitro assays involving MGP knockdown and overexpression. Luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay were performed to identify transcriptional regulatory sites of the nuclear factor kappa-B (NF-κB) and programmed cell death ligand 1 (PD-L1). In vivo experiments were performed in mouse model of CRC liver metastasis established via spleen injection. The results revealed that MGP was significantly upregulated in cancer cell clusters from the primary CRC or liver metastases, compared with that in the corresponding paracancerous tissues via single-cell RNA sequencing. MGP enriched intracellular free Ca2+ levels and promoted NF-κB phosphorylation, thereby activated PD-L1 expression to promote CD8+ T cell exhaustion in CRC. The luciferase reporter assay and ChIP-qPCR assay indicated that the transcriptional regulation of NF-κB upregulated PD-L1 expression. In vivo, MGP inhibition significantly decreased the rate of CRC liver metastasis, which was further reduced after combined therapy with αPD1 (anti-PD1). In conclusions, this study revealed that MGP can facilitate CD8+ T cell exhaustion by activating the NF-κB pathway, leading to liver metastasis of CRC. The combination of MGP knockdown and αPD1 can synergistically resist liver metastasis of CRC.
Collapse
Affiliation(s)
- Dawei Rong
- School of Medicine, Southeast University, Nanjing 210000, Jiangsu, P. R. China
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000 Jiangsu, P. R. China
| | - Zhiying Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P. R. China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xiaoyuan Chen
- School of Medicine, Southeast University, Nanjing 210000, Jiangsu, P. R. China
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000 Jiangsu, P. R. China
| | - Yichao Gu
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Yongjiu Dai
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Weizhe Zhong
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Xiaopei Hao
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Chuanyong Zhang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Xiongxiong Pan
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P. R. China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P. R. China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| | - Xuehao Wang
- School of Medicine, Southeast University, Nanjing 210000, Jiangsu, P. R. China
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, Jiangsu, P. R. China
| |
Collapse
|
21
|
Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol 2022; 12:791565. [PMID: 35069573 PMCID: PMC8769504 DOI: 10.3389/fimmu.2021.791565] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Zhang Y, Xie J, Liu D, Zhu S, Zhang S. The expression of LRRN4 was correlated with the progression and prognosis of colon adenocarcinoma (COAD) patients. Genet Mol Biol 2022; 45:e20210138. [PMID: 34919118 PMCID: PMC8679243 DOI: 10.1590/1678-4685-gmb-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Our present study aims to investigate the value of LRRN4 in the progression and prognosis of COAD patients. All COAD and adjacent sample data was downloaded from TCGA database. Survival analysis was performed according to Kaplan-Meier method. The real-time quantitative PCR and immunohistochemistry analysis were conducted for validation in cell lines and tissues. The GSEA was conducted to find functional KEGG pathways. Multivariate Cox regression proportional hazard mode was used to determine whether LRRN4 expression was an independent prognostic factor. The LRRN4 expression in COAD samples were significantly higher than that in adjacent samples, which was consistent with our experiments in cell lines and tissues. Along with the increase of TNM Stage, LRRN4 expression had an increasing tendency. The COAD patients with high LRRN4 expression showed undesirable prognoses. Additionally, the TGF-β signaling pathway, WNT signaling pathway and other 25 pathways were significantly activated in the high LRRN4 expression group. In conclusion, high LRRN4 expression was closely related to the onset of COAD and it was a poor prognostic factor for COAD patients.
Collapse
Affiliation(s)
- Yuxian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| | | | | | - Shengtao Zhu
- Capital Medical University, Beijing Friendship Hospital, China
| | - Shutian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| |
Collapse
|
23
|
DNM1: A Prognostic Biomarker Associated with Immune Infiltration in Colon Cancer-A Study Based on TCGA Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4896106. [PMID: 34888380 PMCID: PMC8651384 DOI: 10.1155/2021/4896106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Aim The aim of our work was to determine the utility of DNM1 as a biomarker for the diagnosis and prognosis of colon cancer (CC). Methods DNM1 expression variations in CC vs. normal tissues were investigated using The Cancer Genome Atlas (TCGA) database. The association of DNM1 expression levels with the clinicopathological variables in CC prognosis was investigated using logistic regression analyses. Independent prognostic factors for CC were evaluated using univariate and multivariate Cox regression analyses. The correlation between DNM1 expression and immune cell infiltration was estimated using single-sample Gene Set Enrichment Analysis (ssGSEA). Results DNM1 expression in CC tissues was significantly higher than that in normal tissues. High DNM1 expression was significantly correlated with M stage, N stage, perineural invasion and lymphatic invasion and predicted poor prognosis. The univariate analysis highlighted that DNM1 was an independent CC risk factor. Results of ssGSEA showed that DNM1 was linked to several cancer-related pathways, including the neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, ECM-receptor interaction, dilated cardiomyopathy, and calcium signaling pathway. Moreover, DNM1 expression was positively correlated with the level of infiltration by Neutrophils, Tregs, NK cells, and Macrophages. Conclusion DNM1 has a significant function and has diagnostic and prognostic potential for CC.
Collapse
|
24
|
Wu H, Liang J. Contributions of NFKB1 -94insertion/deletion ATTG polymorphism to the susceptibility of gastrointestinal cancers: A meta-analysis. J Cell Mol Med 2021; 25:10674-10683. [PMID: 34672421 PMCID: PMC8581328 DOI: 10.1111/jcmm.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor-kappa B1 (NF-κB1), a pleiotropic transcription factor, functions as a critical contributor to tumorigenesis. Growing numbers of case-control studies were carried out to analyse the potential contribution of NF-κB1 gene variants to gastrointestinal cancer risk, yet remains conflicting conclusions. Therefore, we conducted this most up-to-date meta-analysis to evaluate the relationship between NF-κB1 gene insertion (I)/deletion (D) polymorphism, namely -94ins/delATTG or rs28362491, and the susceptibility to gastrointestinal cancers. We searched PubMed, EMBASE and MEDLINE databases updated in April 2021 for relevant studies. Meta-analysis was carried out by software Stata11.0. The quantification of the relationship was determined by computing the combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Sensitivity analysis, the funnel plot and Begg's rank correlation test were also applied. Our findings indicate that -94ins/delATTG polymorphism could not significantly impact the susceptibility to gastrointestinal cancers. Under any five genetic models, -94ins/delATTG polymorphism was not remarkedly linked to the risk of colorectal, gastric and oesophageal cancer, respectively. The significant role of -94ins/delATTG was only observed in some certain subgroups. Findings here suggest that NF-κB1 gene -94ins/delATTG polymorphism may not predispose to gastrointestinal cancer susceptibility.
Collapse
Affiliation(s)
- Hanqiang Wu
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| | - Jianrong Liang
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
25
|
Liu L, Jia S, Jin X, Zhu S, Zhang S. HOXC11 Expression Is Associated with the Progression of Colon Adenocarcinoma and Is a Prognostic Biomarker. DNA Cell Biol 2021; 40:1158-1166. [PMID: 34415792 DOI: 10.1089/dna.2021.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the role of HOXC11 in progression and prognosis in colon adenocarcinoma (COAD) patients. The COAD patient data were downloaded from "The Cancer Genome Atlas (TCGA)" database. The Wilcoxon rank-sum test or Kruskal-Wallis test was used to analyze the correlation between HOXC11 expression and clinicopathologic characteristics. The significance of difference in overall survival between different groups was determined by log-rank test. The HOXC11 expression was verified from mRNA and protein level by conducting real-time quantitative PCR, Western blot, and immunohistochemistry analysis. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened after gene set enrichment analysis. As a result, high HOXC11 expression was closely related to the occurrence of COAD based on the data in TCGA, which was then successfully validated in cell lines and clinical tissues. Enhanced HOXC11 expression was significantly associated with tumor-node-metastasis (TNM) and M stage. Prognosis of highly expressed HOXC11 COAD patients was significantly worse than those with low HOXC11 expression. GRAFT_VERSUS_HOST_DISEASE and other signaling pathways were significantly activated in high HOXC11 expression COAD patients. In conclusion, high expression of HOXC11 was closely associated with the progression of COAD, and HOXC11 was a promising prognostic biomarker in COAD patients.
Collapse
Affiliation(s)
- Linna Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| | - Shujuan Jia
- Department of Gastroenterology, Peking University Shougang Hospital, Beijing, P.R. China
| | - Xiaowei Jin
- Department of Gastroenterology, Peking University Shougang Hospital, Beijing, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| |
Collapse
|
26
|
Huang C, Wang M, Wang J, Wu D, Gao Y, Huang K, Yao X. Suppression MGP inhibits tumor proliferation and reverses oxaliplatin resistance in colorectal cancer. Biochem Pharmacol 2021; 189:114390. [PMID: 33359068 DOI: 10.1016/j.bcp.2020.114390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Matrix Gla protein (MGP), an extracellular matrix protein, has been widely reported to participate in the tumorigenic process and is abnormally expressed in several tumors. However, the role of MGP in colorectal cancer (CRC) remains unknown. Chemotherapy resistance represents a significant limitation in the treatment of CRC. Here, a comprehensive bioinformatics analysis revealed that MGP, which is overexpressed in CRC, might act as one of the critical genes conferring resistance to oxaliplatin (OXA). Furthermore, we found that MGP overexpression in tumor tissue might be correlated with cancer stage and patient prognosis, consistent with the bioinformatics analysis. The upregulation of MGP may act as an independent risk factor for CRC. The knockdown of MGP or inhibition of MGP expression significantly increased the sensitivity of the CRC cell lines to OXA. Suppression of MGP may reverse OXA resistance by upregulating copper transporter 1 (CTR1) and downregulating ATP7A and ATP7B. When used in combination with OXA, the inhibition of MGP reduced cancer cell proliferation, invasion, and migration and increased cell apoptosis in vitro. Suppression of MGP or OXA treatment alone significantly inhibited tumor growth in the CRC mouse model. Additionally, we found that OXA might promote the antitumor immune response in vivo. In summary, our study is the first to provide evidence that MGP expression confers OXA chemotherapy resistance in CRC and provides novel strategies to overcome chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Chengzhi Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Minjia Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
27
|
Hossain MS, Quadery Tonmoy MI, Islam MN, Islam MS, Afif IK, Singha Roy A, Fariha A, Al Reza H, Bahadur NM, Rahaman MM. MicroRNAs expression analysis shows key affirmation of Synaptopodin-2 as a novel prognostic and therapeutic biomarker for colorectal and cervical cancers. Heliyon 2021; 7:e07347. [PMID: 34195444 PMCID: PMC8239731 DOI: 10.1016/j.heliyon.2021.e07347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs play a crucial role in tumorigenesis, tumor progression, and metastasis, and thus they contribute in development of different malignancies including cervical cancer (CC) and colorectal cancer (CRC). Through integrated strategies of computational biology, this study aims to identify prognostic biomarkers responsible for CRC and CC prognosis, and potential therapeutic agents to halt the progression of these cancers. Expression analysis of miRNA datasets of CRC and CC identified 17 differentially expressed miRNAs (DEMs). SYNPO2, NEGR1, FGF7, LIFR, RUNX1T1, CFL2, BNC2, EPHB2, PMAIP1, and CDC25A differentially expressed genes (DEGs) regulated by these DEMs were classified as candidate genes responsible for CRC and CC. Down-regulation of Synaptopodin-2 (SYNPO2) is involved in emergence and progression of these cancers by activating ER, PI3K/AKT, and EMT pathways as well as by suppressing DNA damage response, and cell cycle pathways. Higher methylation rate in promoter region of SYNPO2 could be a possible reason for lowering the expression of SYNPO2 in tumor stages. Hence, the lower expression of SYNPO2 is associated with poor prognosis of CRC and CC and could function as prognostic biomarker and therapeutic target. Fourteen transcription factors were recognized which can activate/inhibit the transcription of SYNPO2 and may be a potential target to regulate expression of SYNPO2 in CRC and CC. Retinoic acid and Estradiol were identified as putative therapeutic drugs for CRC and CC patients. This study will thus help in understanding the underlying molecular events in CRC and CC that may improve the detection of malignant lesions in primary screening and will broaden the clinical applications.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Md. Nur Islam
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sajedul Islam
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Ibrahim Khalil Afif
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | |
Collapse
|
28
|
Chang K, Yuan C, Liu X. A New RBPs-Related Signature Predicts the Prognosis of Colon Adenocarcinoma Patients. Front Oncol 2021; 11:627504. [PMID: 33767995 PMCID: PMC7985171 DOI: 10.3389/fonc.2021.627504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
The dysregulation of RNA binding proteins (RBPs) is closely related to tumorigenesis and development. However, the role of RBPs in Colon adenocarcinoma (COAD) is still poorly understood. We downloaded COAD’s RNASeq data from the Cancer Genome Atlas (TCGA) database, screened the differently expressed RBPs in normal tissues and tumor, and constructed a protein interaction network. COAD patients were randomly divided into a training set (N = 315) and a testing set (N = 132). In the training set, univariate Cox analysis identified 12 RBPs significantly related to the prognosis of COAD. By multivariate COX analysis, we constructed a prognostic model composed of five RBPs (CELF4, LRRFIP2, NOP14, PPARGC1A, ZNF385A) based on the lowest Akaike information criterion. Each COAD patient was scored according to the model formula. Further analysis showed that compared with the low-risk group, the overall survival rate (OS) of patients in the high-risk group was significantly lower. The area under the curve of the time-dependent receiver operator characteristic (ROC) curve was 0.722 in the training group and 0.738 in the test group, which confirmed a good prediction feature. In addition, a nomogram was constructed based on clinicopathological characteristics and risk scores. C-index and calibration curve proved the accuracy in predicting the 1-, 3-, and 5-year survival rates of COAD patients. In short, we constructed a superior prognostic and diagnostic signature composed of five RBPs, which indicates new possibilities for individualized treatment of COAD patients.
Collapse
Affiliation(s)
- Kaili Chang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueguang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|